Operating Systems, Sprint 2002

CS 5/43201
Department of Computer Science
Kent State University

Project Nachos

Suggested Reading: To do this first assignment, you will need to understand Nachos. Read the
article “A Roadmap Through Nachos” by Tom Narten (it is in the class web site) very carefully.
Also read the following source code files in the thread/ directory.

e main.cc threadtest.cc

» thread.h thread.cc

e scheduler.h, scheduler.cc
e synch.h, synch.cc

« list.h, list.cc

* synclist.h, synchlist.cc

e system.h, system.cc

o utility.h, utility.cc

» switch.h, swith.cc

You many also want to see the following files which implements the MIPS Virtual Machine:

e intterupt.h, interrupt.cc
* time.h, timer.cc

« stats.h

e console.h, console.cc
« disk.h, disk.cc

Preparation: The first thing you will need to do is to copy, install and test run a copy of Nachos
in your directory. | have kept a ready to use copy of Nachos in my account. The link “Begin
here..” in “Project Page” contains step by step instructions to get it. Make sure you can run the
simple test program in Nachos by typing at the end of following those instructions:

% nachos

There is a function called ThreadTest() in file threadtest.cc. This is a sample user program and
your starting point. This function is called by Nachos automatically for you from main.cc. In this
assignment you will need to write many versions of this function. Inspect the file and the function,
study and understand the output.

Your next step is to trace the execution path of this program. There are three ways to trace. (i)
you may insert printf() statements inside, recompile and run it. (i) you may use gdb debugger or
(iii) you can use the built-in debug of Nachos. To use Nachos’ debug run it with “-d” flag:

Y%hnachos —d

If you browse you will see that Nachos code has already many DEBUG() (i.e. conditional printf())
statements inserted in various routines. The “—d” flag activates them. For a complete listing of all
these pre-inserted printf() statements in the source files in threads directory you may type:

Y%grep DEBUG *h *cc

If you run Nachos with “-d” flag, you will see that all DEBUG statements have ‘1 flag in them. The
files in machine directory similarly have “” and “m” flags. You may choose to restrict the trace
only to the thread or the machine routines by further specifying flags in following manners:

%nachos —d t
%hnachos —d ti

This assignment is about concurrently running threads. Concurrent threads voluntarily relinquish
CPU by calling the function thread::Yield(). when Yield() is called the calling function is
temporarily suspended by Nachos scheduler and a second thread from the ready list is activated.
If the concurrent threads are written correctly then the exact point where a thread yields does not
matter. Conversely, one way of ensuring the correctness of a concurrent threaded system is to
insert Yields() at different places and see how their running behavior changes. To help in such
testing Nachos has provided a handy command line tool. It can insert random yields inside user
threads on user’s behalf. You can invoke this feature by using —rs flag. Type:

Y%nachos -rs 100
Here the number 100 is the seed. It can be 200, 300 or any integer. Every time you invoke

Nachos with the same seed the yields will be inserted at the same set of points. Experiment
running Nachos with different seeds and try to understand any change is the output.

Road Map Questions For Nachos Threads

Here | have compiled a set of questions which will lead you through the Nachos system. You
must know the correct answers for them to make sure that you have understood the Nachos
System. These are not assignments and you do not need to turn in the answers. Instead, in about
a week from now, most likely an unannouced quiz will verify if you have solved these problems or
not.

How many registers Nachos virtual machine has?
What are the physical locations of the Stack Pointer and Current Program Counter registers?
What are the preconditions for executing machine::Run()?
What is the name of the variable that remembers the ticks in Nachos? Which header file
defines it?
List the three event points at which Nachos’ time advances.
In Nachos, can you place an interrupt anywhere in time?
Will SetLevel() tick the clock if a process wants to:
a. Disable interrupt?
b. Enable interrupt from disabled state?
c. Re-enable interrupt when the interrupt is already enabled?
Why OneTick() checks SystemMode variable?
Why StackAllocate places a sentinel value at the top of allocated stack?
0. It is not physically possible for a thread to Kill itself. Explain the mechanism how a Nachos’
thread terminates.
11. Why ThreadRoot() and Switch() functions are implemented in Machine Language? Why there
are so many versions of these two routines in switch.s?
12. Trace the routines invoked from the point an user process calls the routine Fork().
a. Describe the exact point at which the new process starts running.
b. What is the purpose of ThreadRoot?
¢. When exactly a child starts execution?
13. Trace the routines invoked from the point an user process calls the routine Yield().
a. Describe the exact point at which context switch has taken place.
b. Which thread removes the carcass of a terminating thread?
14. What is “Noff’? Convert a “coff” file into a “Noff” file and execute it in Nachos.

pob~

Noo

S0

Operating Systems, Spring 2002

CS 5/43201
Department of Math and Computer Science
Kent State University

Project#1: Due Date: 3/13/02

Objective: In this project we will learn about threads, how concurrent threads can be started, and
how such threads can cooperate, communicate and synchronize. In this first project we will be a
user process in Nachos and explore how it can help us in managing concurrent cooperating
threads.

Assignment: In the problems 1-4 you should write a function called ThreadTest() (and replace
the initial one given in threadtest.cc), which takes no argument. This function is called by Nachos
automatically for you from main.cc. In function ThreadTest(), fork two new threads named Mary
and Anna. The Mary and Anna should look like below:

int letter = 0;
while(1)
{
printf(“Mary gets paper, pen, envelop, stamp for letter # %d \n”, letter);
printf(“Mary write letter # %d \n”, letter);
printf(“Mary seals envelop # %d \n”, letter);
printf(“Mary mails to Anna # %d \n”, letter);
/*PLACE#1*/
letter++;

}

Anna should look like this:

int letter=0;

While (1)

{
printf(“Anna receives Mary’s mail # %d in her mailbox\n”, letter);
printf(“Anna opens and reads the letter # %d\n”, letter);
printf(“Anna thinks about Mary# %d\n”, letter);
/*PLACE#1*/
letter++;

The two threads will represent two entities.

1. (200 points) In the file pa1l.cc, write a function ThreadTest, which forks a Mary and a Anna
thread as described above. At the end of the loop in both the routines (as marked as
PLACE#1 comment in the programs) insert the line “currentThread->Yield()".

Copy the file pal.cc over the file threadtest.cc, compile and run Nachos. Then answer the
following questions in the files proj1.txt:

a. What happens when it runs? It is desirable that before a particular letter can be received
by Anna, it must be mailed by Mary. Does the output correspond to the desirable
solution? Include a few line of output and explain what is happening.

b. Now let Nachos insert random yields, by calling it with “rs” command line option as
described above. Is the production/consumption is synchronized now? Explain what is
happening including few lines of output.

(200 points) In the file pa2.cc, write a new function threadtest() which creates a new
semaphore named s with an initial value of 1, and then forks the Mary and Anna threads as
described. Now place the semaphore in the right place so that the desired solution can be
achieved (Each letter should be mailed by Mary before it is received by Anna).

Copy the file pa2.cc over the file threadtest.cc, compile and run Nachos. Now in the files
proj1.txt answer the following question:

a. What happens when the program runs? Include a few line of output and explain the
behavior.

b. Now, let Nachos insert the random Yields. What happens now? Include few lines of
output and explain the behavior. (hint: how to insert random yield has been explained in
the handout “Project Nachos”)

c. Now try inserting your own Yields in several places. Can you make things worse? Explain
what is happening including few lines of output.

d. If Mary decides, she will write a new letter only if Anna reads the earlier one, will the
above one semaphore solution work? Explain your answer (Hint: you may want to do some
experimentation like b and c).

(200 points) Let us assume that Anna’s mailbox can hold only 3 letters. As a result, US post-
office will not receive any mail from Mary if it finds that Anna’s mailbox is full. Modify pa2.cc
into pa3.cc so that that Mary will wait if Anna’s mailbox is full. Now, let Nachos insert the
random Yields. In file proj1.txt include few lines of output from several such runs and explain
the behavior.

For the next assignment read the implementation of semaphores in synch.cc file. Backup the file
synch.cc on synch.bak, and then modify the synch.cc into synchi.cc:

4.

5.

(200 points) Implement the condition variables directly using interrupt enable and disable to
provide atomicity in the file synch1.cc

a. Complete the null functions condition::Condition, condition::~condition, condition::Wait
and condition::Signal functions. Copy the file synch1.cc on synch.cc, recompile and run.

b. Write a new file pad.cc to synchronize the operations of the Mary and Anna threads of
problem #2 (one letter at a time) using the condition variables approach.

d. Now test the system by let Nachos insert the random Yields. What happens now? In file
proj1.txt include few lines of output from several such runs and explain the behavior.

(200 points) In this assignment we will implement a barbershop. A Barbershop has a waiting
room with 4 chairs and 2 barbers with two barbers-chairs. If there is no customers to be
served, the barbers go to sleep in the barber’s chair. If a customer enters the barbershop and
all chairs are occupied, then the customer leaves the shop. If the barber is busy, but chairs
are available, then the customer sits in one of the free chairs. If the barber is as sleep, the

customer wakes him up. Below are the two routine which describes the actions of the barbers
and that of the customers:

#define CHAIRS 4
int waiting=0 /* number of customers waiting */
void barber (void)

{
while (1) {

waiting = waiting —1; /*invite a customer*/
cut_hair();

}

}

void customer(void)

{

if (waiting< CHAIRS) { [*If there is no free chair then just leave*/
waiting=waiting+1; [*occupy a chair and increment count of a chair*/
get_haircut();

}

}

cut_hair()

{

int pid;

pid=getpid();

printf(“ #d Cutting Hair\n”l,pid);
}

get_haircut()

{

int pid;

pid=getpid();

printf(“ #d Getting Haircut\n”, pid);
}

You can simulate the Barbers shop in your computer by forking-off two barber processes and
N number of customer processes. Write/complete a new pa5.cc program with the parent, the
above two routines, and any other routines to simulate the barbershop with 2 barbers and 15
customers. Test the system with random yield of Nachos. Include some output line to explain
the operation of the system and add it to proj1.txt.

However, the above simple routines will not work properly. Because although they describe
individual entities, but there is no co-ordination between the customers and the barbers.
Customers do not know if any of the barbers is free. Conversely, the barbers also don’t know
if there is a customer waiting. As a result the barbers may end up cutting air when there is no
customer. A customer may end up sitting on an already occupied barber’s chair. Modify the
codes with semaphore(s) so that none of these happens (Hint: you can use two semaphores,
which keeps track of the free barber and number of waiting customers).

Besides the above, there is yet another problem. There is the possibility that, when there is
only one chair empty, accidentally two of the customers may simultaneously find one empty
chair. In such a case they will both try to sit on the 4™ chair (without knowing that there are
others who are trying to sit on the same chair). It may result in an embarrassing situation.

Use semaphore(s) to avoid such situation. One solution is to make sure that two customer
processes should not be allowed to access the variable waiting. Make a new file with pa6.cc
with both the routines modified which corrects the above mutual exclusion problems using
semaphore(s). (Hint: you can use a third semaphore to ensure mutual exclusion).

How to Submit:

In this assignment you have created a set of program files *.cc and one answersheet proj1.txt
which contains all your explanations.

On top of each file include your name, data and project number. Add:

/**
Nane:

Dat e:

Proj ect/ Questi on Nunber:

OS CS 5/43201, SPRING 2002

Instructor: KHAN, KSU

***/

For source files (*.cc) comment them.
You now need to mail all of them into one package using the following procedure:

Y%tar cvf projecti.tar pal.cc pa2.cc pa3.cc syncl.cc pad.cc pascc pa6.cc proji.ixt
After that you should have file project1i.tar file, which contains above files.

Send this file to okomogor@cs.kent.edu with subject “Project 1 your group number”
and attach file projecti.tar to that e-mail

Check thoroughly before you submit. If you need to re-send, for any reason inform TA
(okomogor@cs.kent.edu) beforehand. Keep a copy of all the files including projecti.tar in your
directory. Do not modify them afterward. If need arises, TA may want to check these files. Any
modification afterward (reflected in the file date) will result in late submission penalty.

Grading:

See notes to grader in the website.

Cheating and Copy:

Projects have to be done individually. If a copy is caught, all involved submissions (original as well as the copies) will be
penalized. So it is your responsibility to guard your work. Secure the read/write access of your directories. Any copy will
result in ZERO grade for the assignment for both party. Only exception is when you report the theft of your work in
advance.

