Lecture 1:

Operating Systems CS 53201, 43201

Unit background and administrivia
Why are OSes important?
History of Computers and Operating Systems

Os-slide#1

Operating Systems

Lecture 1:

The Aim of the Subject.

WILL NOT TEACH YOU HOW TO USE AN OPERATING SYSTEM.

It will examine

- · the way in which an OS works
- the algorithms and data structures inside an OS
- the problems, solutions and trade offs in designing an OS

TO ACHIEVE AN UNDERSTANDING OF HOW AN OPERATING SYSTEM WORKS.

Lecture 1:

General Information

Javed I. Khan

Email: javed@kent.edu
Office Hours: 2:00-4:00pm TR
Phone: 672-4004 ext. 217

Book:

Operating System Concepts, 5th Ed, Silberscertz and Gavin

More information on the Web:

http://www.mcs.kent.edu/~javed/class-in98m/index.html

Os-slide#3

Operating Systems

Lecture 1:

What's expected of you

At least 12 hours per week (to pass)

Learning by doing

- questions and exercises
- reading textbook
- asking questions
- taking part in discussions

Read/Listen Think Do ASK

Lecture 1:

What is an OS?

- An Interface between the user (students, teachers, programmers, hackers, system administrator, application programs, virus) and the bare hardware.
- A resource mediator (must be efficient, fair, user friendly)
- A virtual machine to its users (with many faces).
- A complex program

Os-slide#5

Operating Systems

Lecture 1:

Other Operating Systems

A Magician

provides each user with the illusion of a dedicated machine with infinite memory and CPU time

A Government

Allocated resources efficiently and fairly, protects users from each other, provides safe and secure communication (manager)

A Parent

Always there when you need, never breaks, always succeeds (helpful, robust)

Lecture 1:

Why Study OS?

Base Platform: The operating system is the foundation upon which all computing work is performed.

Primary Intersection Point: OS is the point where hardware, software, programming languages, data structure and algorithms all come together.

Knowledge of the internals of an OS is essential to achieve efficiency in

- · building software applications
- · deciding upon a computing platform

Curiosity- "look under the hood"

Os-slide#7

Operating Systems

Lecture 1:

History of OS

Phase 0: hardware is very expensive experiment; no operating systems exists

1792-1871 Analytical Engine 1940's Eniac, Mark-II, Collosus

Lecture 1:

History of OS (continued..2)

Phase 1: hardware is expensive, humans are cheap

1955-65 Transistors

IBM 1401, IBM 7094 Fortran Monitor, IBSYS

Innovations: simple batch; separate programmer, operator, designer, builder; overlapped CPU & I/O operation, spooling

Os-slide#9

Operating Systems

Lecture 1:

History of OS (continued..3)

Phase 2: hardware is expensive, but sharable, humans are cheap

1965-80 IBM System 360, DEC PDP-1

OS/360, MULTICS

Innovations: Multiprogramming,

time-sharing, protection

Bad news: Too complicated! MULTICS announced in 1963, delivered in 1969. OS 360 released with 1000 known bugs!

Lecture 1:

History of OS (continued..4)

Phase 3: hardware is cheap, humans are expensive

1980-90 PDP-11, PC's

UNIX, DOS, XENIX

Innovations: modular design, interactive time sharing, personal computing, return of simplicity

Os-slide#11

Operating Systems

Lecture 1:

New Era!

Phase 5: Networking arrives!

1990-97 Cheap local network+

SPARC, SGI, X86

Solaris, IRIX, Windows 95, OS/2,

MAC OS, WIN NT

Innovations: microkernel, thread, distributed OS, graphical user friendly uniform interface, return of 60's complexity!

Lecture 1:

History Lessons

- None of these OS were particularly bad; each depended on tradeoffs made at that point in time and the change in technology.
- Since 1953, there has been about 9 order of magnitude of change in almost every computer system component.
- Unprecedented; in past 200 years gone from horseback (10mph) to concorde(1000mph), only 2 order of magnitude.

	1981	1997	factor
M IP S		4 0 0	4 0 0
price/M IPS	\$ 1 M	\$ 5 0	2000
memory	128 KByte	64M byte	5 0 0
d is k	10 M B	10GB	1000
n e twork	9600MB/s	600M b/s	60000
address bits	1 6	6 4	
users	1 0 s		

Os-slide#13

Operating Systems

Lecture 1:

1997- Pentium Pro, Java Machine, DCE, Windows 98

Innovations: virtual ubiquitous platform, software and information portability