Lecture 2:

Overview of Architecture

- Basic Computer Hardware
- How CPU handles Input Output?
- How Interrupts are supported?

The ability of OS are dictated in part by the architecture of the machine.

♦ Architectural support can greatly simplify, or greatly complicate the OS

Os-slide#1

Operating Systems

Lecture 2:

OS and Hardware

OS Service Hardware Support I/0 Interrupts & DMA

Protection Protected Instruction

Kernel and User modes
Interrupt & Trap Vectors

Base & Limit Registers

Scheduling Timers

Synchronization Atomic Instructions

Lecture 2:

Hardware Concepts.

Most computers are based on the Von Neumann architecture.

Four main elements of hardware

- ♦ Central Processor Unit (CPU)
- **♦** Main Memory
- ♦ I/O Modules or Devices (printers, disk drives, key board)
- ♦ System Interconnections (the bus)

Lecture 2:

CPU Registers.

Program Counter, PC

Address of NEXT instruction.

Stack Pointer, SP.

Points to the top of the process stack.

Instruction Register, IR

Contains the current instruction

Others.

Memory management etc.

Processor Status Word

Contains information about the state of the CPU, Interrupts, condition statements.

User Registers.

Used for various programming purposes.

Lecture 2:

Booting a System.

H/W looks for a boot device. (such as c:\ drive)

Boot block contains a loader program. (generally in a preset location in c:\drive)

Loader program installs OS.

OS performs various initialisation procedures

Some form of process commences (such as init)

Os-slide#11

Operating Systems

Lecture 2:

Interrupts.

An Interrupt is a mechanism that allows the normal processing of the processor to be interrupted.

Interrupts are used to increase efficiency.

Especially between components that operate at different speeds.

Lecture 2:

Classes of Interrupts.

Interrupt Class	Cause
program	generated by a s/w condition
	(e.g. error, system call)
timer	generated by system clock
I/O	generated by I/O controller
hardware failure	power failure, memory parity

Os-slide#13

Operating Systems

Lecture 2:

Handling Interrupts.

OS must provide some form of Interrupt handler.

Each hardware platform carries out some particular procedure for an Interrupt.

Eventually the h/w hands over to the s/w.

Operating Systems Lecture 2:

Interrupt Handling

- The Operating System Preserves the state of the CPU by storing registers and program counter
- Determine which type of interrupt has occurred:
 - **♦** polling
 - ♦ vectored interrupt
- Jumps to appropriate pre-stored code segment to determine what action should be taken to handle each type of interrupt.

Lecture 2:

Multiple Interrupts.

What happens when an interrupt interrupts an interrupt?

Disable Interrupts

- ♦ new interrupts remain pending
- ♦ some interrupts are more important than others

Interrupt Priorities.

Os-slide#17

Operating Systems

Lecture 2:

Performing I/O

- I/O is a major part of a computer's life. Managing I/O efficiently is a major OS responsibility.
- Each I/O device is controlled by one device controller: Device controller has its own processor, and executes asynchronously with CPU.
- Three major mechanisms to perform I/O:
 - ♦ program driven I/O
 - ♦ interrupt driven I/O
 - ♦ direct memory access (DMA)

