
Page 1

Operating Systems Lecture 10

Os-slide#1

������������	
	���
��
	����
Repeat

wait(chop stick [I]);
wait(chop stick [I+1 mod 5]);
….
Eat
….
Signal(chop stick[I]);
Signal(chod stick[I+1 mod 5]);
….
Think
….

Until false;

Is there a prob lem?
How can we avoid the prob lem?

Atmost 4 can eat together
wait t ill both are available

odd p icks right/even p icks left

Starvation?

Operating Systems Lecture 10

Os-slide#2

����

�
���	�����	�
��	
������	��

Mutual Exclusion
Hold and Wait
No Preemption
Circular Wait

Avoidance
Prevention

Recover
Do nothing

����	�
��	
��������

Page 2

Operating Systems Lecture 10

Os-slide#3

��
	�
������	����	���
���

•A Set of All Resources R= {R1, R2, R3,… Rm)
•A Set of All Processes V= { V1, V2, V3 … Vn}
•A Set of Request Edges (Pi →→ Rj)
•A Set of Assignment Edges (Rj →→ Pi)

A Process A resource with 4 instances

A process Pi requests instance of Rj A process Pi holds an instance of Rj

Operating Systems Lecture 10

Os-slide#4

�����������������

P1

P4

P3

P2R1

R2

•A RAG with no cycle => no deadlock
•A RAG with cycle =>

•if only one instance per resource type, then deadlock
•othgerwise, possiblity of deadlock

Page 3

Operating Systems Lecture 10

Os-slide#5

�����	����
������	�

• Prevent Mutual Exclusion?
�

Some resources are intrinsically nonsharable.

• Prevent Hold and Wait
�

Protocol-1: request everything at once and complete
�

Protocol-2: before every new request release all

• Prevent No preemption
�

If a new request cannot be allocated then take away all.
�

If a process is waiting by holding a resource which is requested by
another new process, then take it away from the first process.

• Prevent Circular wait
�

Impose a total ordering on all resources. All request must be in
order. Example:

» tape 1, disk 5, printer 12
» proof?

Operating Systems Lecture 10

Os-slide#6

�����	�����	������

• Deadlock Prevention schemes can reduce resource
utilization and system throughput.

• Deadlock avoidance schemes utilizes some additional
info (for example how the processes will request
resources, what will be their maximum requests, etc.)
to avoid deadlock.

• Safe State:
�

A state is safe, if the system can allocate resources to each
process (up to its maximum) in atleast one order and still avoid
deadlock.

Page 4

Operating Systems Lecture 10

Os-slide#7

 ����

����	
����
Available[M]:
Max[NxM]:
Allocation[NxM];
Need[NxM] : Need[i,j]=Max[i,j]-Allocation[i,j] Tavailable[M], and Tfinish[N]
(we will refer to entire vector by Need[i], or allocation[I])
1. Tavailable[j]=Available[j] for all j

Tfinish[i]=false for all i
2. Find an i such that

Tfinish[i]=false and
Need[i] < Tavailable;
If No such i exists go to step 4.

3. Tavail=Tavail+Allocation[i] /*consider process i done*/
Tfinish[i]=true;
go to step 2.

4. If Tfinish[i]=true for all i then it is in safe state

Operating Systems Lecture 10

Os-slide#8

!"�����
#

Total 12
Max. Allocation1

P0 10 5
P1 4 2
P2 9 2
Is it Safe?

Max. Allocation2
P0 10 5
P1 4 2
P2 9 3
Is it Safe?

Total A=10 B=5 C=7
Max. Allocation
ABC ABC

P0 753 010
P1 322 200
P2 902 302
P3 222 211
P4 433 002
Available: 332
Is it safe? (yes)

What if P1 requests additional 102?
What if now P4 requests additional 330?
What if P0 requests additional 020?

Page 5

Operating Systems Lecture 10

Os-slide#9

$��
��	�
%

• Is a deadlock state is also unsafe state?
• Does an unsafe state always lead to a deadlock state?

deadlock
Unsafe

safe

Operating Systems Lecture 10

Os-slide#10

���	��
�
• When should OS check?

�
How often deadlock is likely to occur?

�
How many processes are affected?

�
When often recovery should be initiated?

• Should we abort all processes involved?
• Should we abort one at a time?
• Should we preempt one resource at a time?
• Can there be starvation?
• Combined approach:

�
Internal resources (PCB etc.): use ordering.

�
Central memory: use preemption.

�
Job resources (printers etc.): Use avoidance.

�
Swappable space (backup scratch pad): use preallocation.

