
Page 1

Operating Systems Lecture 7

Os-slide#1

��������	
��
���
����

�������������
��
�����

Operating Systems Lecture 7

Os-slide#2

�����	����������������	�

��
���

/*Sequential Producer & Consumer*/

int i=0;

repeat forever

Gather material for item i;
Produce item i;
Use item i;
Discard item i;
I=I+1;

end repeat

• Analogy:
�

Manufacturing and distribution
�

Print shops
�

Bank transaction
�

Airline reservation
�

Compiler Assembler

• Problems:
�

A simple process always running in
sequence can be very inefficient.

�
All situations can not be modeled as
a sequential process

Page 2

Operating Systems Lecture 7

Os-slide#3

�����	�������������������

����
�����������������	��

• Producer produces
information

• Consumer consumes
information

out in

Operating Systems Lecture 7

Os-slide#4

��
�����������
�����������������
������

Var buffer array[0..n-1]
in=0;
out=0;

/*producer*/

repeat forever
..
Produce item nextp;
..
While(n+1 mode n == out)

do nothing
buffer[in]=nextp;
in = in+1 mod n

end repeat

/*consumer*/

repeat forever

While(in == out)
do nothing
nextc=buffer[out];
out = out+1 mod n
..
Consume item nextp;
..

end repeat

in out in out in out

Page 3

Operating Systems Lecture 7

Os-slide#5

������������
��
�����

• Processes can run independently, But...
• In many situations it is advantageous if processes

can work together:
�

Information sharing
» many user may want to access same info at the same time
» multiple write problem.

�
computational speedup

» A single job can be divided into concurrent tasks and each task
can run in parallel while communicating occasionally.

» producer-consumer problem (uncompress-print, compiler-
assembler cases).

�
Modularity

Operating Systems Lecture 7

Os-slide#6

���������
�����������
������
 �
�!

• This is a facility that OS provides so that co-operating
processes can communicate with each other more
easily.

• Goal: Save processes from buffer management,
synchronization.

• Blocking Send:
�

send(destination_process, message)
�

Sends a message to another process then blocks until message
is received.

• Blocking Receive:
�

receive(source_process, message)
�

Blocks until the message is received.

Page 4

Operating Systems Lecture 7

Os-slide#7

�
����	���������
����
������������
����	��

/*producer*/

repeat forever

Produce item nextp;
Send(consumer, nextp)
end repeat

/*consumer*/

repeat forever

receive(producer, nextc)
consume item nextp;
end repeat

OSSend() Recv()

Operating Systems Lecture 7

Os-slide#8

"����������������#����
$��

• How links are established?
• Can a link be associated with more than 2 processes?
• How many links can there be between each pair of

processes?
• What is the capacity of a link? Any buffer? If so, how

much?
• Can the message size vary?
• Is the link unidirectional or bidirectional?
• What to do if messages are lost?
• What to do if either sender or receiver dies?

Page 5

Operating Systems Lecture 7

Os-slide#9

%���
��������������
���������
�����

• Direct Communication:
�

explicitly name the other process
�

one link between two process
�

can be bidirectional

• Indirect Communication:
�

use mailbox owned by receiver
�

many can be send to one.
�

Receiver may change house

&����������������������

• Zero Capacity
�

no message wait
�

sender or receiver
one must wait

• Bounded Capacity
�

sender or receiver
one must wait, if
buffer is full

• Unbounded Capacity
�

sender can always
continue

'�(�%�������$��
��

Operating Systems Lecture 7

Os-slide#10

%���
���������
�����

Processes must name each other explicitly:
�

send (P, message) – send a message to process P
�

receive(Q, message) – receive a message from process Q

Properties of communication link
�

Links are established automatically.
�

A link is ass ociated with exactly one pair of communicating
processes .

�
Between each pair there exists exac tly one link.

�
The link may be unidirectional, but is usually bi-directional.

Page 6

Operating Systems Lecture 7

Os-slide#11

������
���������
�����

Messages are directed and received from mailboxes
(also referred to as ports).

�
Each mailbox has a un ique id.

�
Processes c an communicate only if they share a mailbox.

Properties of communication link
�

Link established only if processes share a common mailbox
�

A link may be associated with many processes .
�

Each pair of processe s may share several communication
links.

�
Link may be unidirectional or bi-directional.

Operating Systems Lecture 7

Os-slide#12

������
���������
�����
Operations

�
create a new mailbox

�
send and receive messages throug h mailbox

�
destroy a mailbox

Primitives are defined as:
send(A, message) – send a message to mailbox A
receive(A, message) – receive a message from mailbox A

Page 7

Operating Systems Lecture 7

Os-slide#13

������
���������
�����

Mailbox sharing
�

P1, P2, and P3 share mailbox A.
�

P1, sends; P2 and P3 receive.
�

Who gets the message?

Solutions
�

Allow a link to be associated with at most two processes.
�

Allow only one process at a time to execute a receive
operation.

�
Allow the system to select arbitrarily the receiver. Sender is
notified who the receiver was.

Operating Systems Lecture 7

Os-slide#14

���
$����)�����

Message passing may be either blocking or non-blocking.
Blocking is considered synchronous

Non-blocking is considered asynchronous

send and receive primitives may be either blocking or
non-blocking.

Page 8

Operating Systems Lecture 7

Os-slide#15

Solution: Thread

• A simple process always running in sequence
can be very inefficient. There is a need of
dividing some jobs into multiple cooperating
processes.

• Two many processes running concurrently,
result in too much context switching.

*$�����

Operating Systems Lecture 7

Os-slide#16

+���������
$���	����,��+�������-�����
��"(����$��

CPUdispatch
queueEnter Exit

OS

Job 1

Job 2

Job 3

Job 4

0

2560

3000

4200

8800

10240

3000

1200

Bank
Program

Producer
Program

Consumer
Program

unused

Program
text

Global data
Queue

Stack

Address
space

Page 9

Operating Systems Lecture 7

Os-slide#17

�����������	�&��(����
��
���
A process is:

�
A unit of resource ownership

» A process has an address space
» A process has open files
» A process may hold IO devices

It is also:
�

A unit of scheduling
» A process is the item of concurrent execution in the OS
» A CPU scheduler (dispather) assigns one process a t a time

onto a CPU.

These two functions are usually linked together, but they
don ’t have to. In modern OS:

�
Process=unit of resource ownership

�
Thread=unit of scheduling

Operating Systems Lecture 7

Os-slide#18

Shared data

Process B

��
��������*$����
• Process = un it of resource ownership

�
A process has:

» an address space
» program code
» OS resources (files, IO devices)

• Thread=unit of scheduling
�

A thread is a single sequential execution stream
within a process (also called lightweight process)

�
A thread has:

» program counter
» stack po inter (SP)
» registers

�
A thread shares with o ther threads in the process
group

» an address space
» program code, global variables
» OS resources (files, IO devices)

Shared data

Process A

Page 10

Operating Systems Lecture 7

Os-slide#19

Operating Systems Lecture 7

Os-slide#20

��
��������*$�����
������!

• A thread is bound to a particular process
�

A process may contain multiple threads of control inside.

• All of the threads in a process:
�

can execute concurrently
�

share a common address space (and thus data other than
private stack).

• Threads can block, create children, etc.

Page 11

Operating Systems Lecture 7

Os-slide#21

&�������*$��������������

MS DOS, MAC OS Traditional
UNIX

Embedded Systems,
Nachos

VMS, Mach,
Chorus, OS/2,
Windows NT,
Solaris, IRIX

Operating Systems Lecture 7

Os-slide#22

.$��*$����/

• A process wi th multiple thread makes great
server (printer server, file server, database
server):

�
One server process , many ‘worker’ threads.

�
If one thread blocks (such as read request0, others can still
continue executing.

�
All threads can share common d ata, no need for complicated
inter process c ommunication

�
also saves memory !

• But .. No protection between threads
�

since all threads in a process share common address space they
can interfare with one another.

�
Generally all threads belongs to a single process s o protection
is not a big problem.

Page 12

Operating Systems Lecture 7

Os-slide#23

+����0���	�*$����

• User-level threads: a library of functions (to create, fork,
switch, etc.) which user processes can call to create and
manage their own threads.

• Positive Points:
�

Does not require OS modification
�

Simple representation- a PC, registers, stack and a small control block, all
stored in the processes address space.

�
Fast- generally just a function call. No kernel intervention is needed.

• Negative Points:
�

OS has no knowledge of the threads so may get unfair attention
�

Requires non-blocking system calls (otherwise entire process blocks if a
single thread blocks).

�
If one thread causes page-fault the entire process blocks.

Example: POSIX Pthread, Mach C-threads, Solaris 2 UI-threads

Operating Systems Lecture 7

Os-slide#24

1����	�0���	�*$�����

• Kernel-level threads: kernel provides the
system calls to create and manage threads.

• Positive Points:
�

kernel has full knowledge of all the threads. Scheduler can
allocate more time to processes with more threads.

�
Good for applications that frequently blocks.

• Negative Points:
�

Slow: each system call is about 100 times slower.
�

Significant overhead and kernel complexity
�

requires a full TCB (thread control block) for all threads.

Examples: Windows NT, Windows 2000, Solaris 2 BeOS, Tru64 Unix

Page 13

Operating Systems Lecture 7

Os-slide#25

2������������

Many system supports both user and kernel level
thread. The mapping can be varied.

Many-to-One

One-to-One

Many-to-Many

Operating Systems Lecture 7

Os-slide#26

2�������"��

Many user-level threads
mapped to single
kernel thread.

Used on systems that do
not support kernel
threads.

Page 14

Operating Systems Lecture 7

Os-slide#27

"������"��
Each user-level thread maps to kernel thread.

Examples
- Windows 95/98/NT/2000
- OS/2

Operating Systems Lecture 7

Os-slide#28

2�������2����2���	

Allows many user level threads
to be mapped to many kernel
threads.

Allows the operating system to
create a sufficient number of
kernel threads.

Solaris 2
Windows NT/2000 with the

ThreadFiber package

Page 15

Operating Systems Lecture 7

Os-slide#29

'��3��������
���		�����*$����

Fork
If one thread calls fork() does the new process
duplicate all threads or the new process is single
threaded?

Some Unix systems have both versions.

Execv
generally works in the same way. It will overwrite the
entire process including all threads.

Operating Systems Lecture 7

Os-slide#30

*$��������
�		�����
How to handle cancellation?

Case A:
Multiple thread searching one DB. Then if one thread
completes all can be terminated.

Case B:
multiple threads in an WebBrowser. One can be
cancelled while others are running.

Page 16

Operating Systems Lecture 7

Os-slide#31

*$��������
�		�����
Asynchrornous Cancellation

One thread immediately terminates the other.

Deferred cancellation
The target thread period ically checks if it shou ld be
terminated. It can orderly terminate.

“ Cancellation po int”

Operating Systems Lecture 7

Os-slide#32

��	�����+����0���	�*$�����
User API

users c reate user level threads by
“ PThread” or “ UI-thread” API for
thread creation and management.

LWP
It has an intermediate level of thread
called LWP– light weight process .
Each process contains atleast one
LWP
The thread library mutiplexes user
level threads on a poo l of LWP.
The user level thread who are
currently on an LWP executes. Rests
are blocked.

CPU

Page 17

Operating Systems Lecture 7

Os-slide#33

��	�����1����	�*$�����

Standard Kernel Threads
Executes all operations within
kernel
Each LWP has a kernel thread.
Some kernel threads have no
associated LWP and only does
kernel job.
Kernel level threads are only
objects recognized by the
scheduler.

CPU

Operating Systems Lecture 7

Os-slide#34

*$�����4���
������
User level threads can be

“ boun d” to a LWP. If bou nd on ly that
thread will run on that LWP.

On request a LWP can be
“ dedicated” to on e CPU.

Unbound threads
of one application u se a common
poo l of LWPs.

A group o f threads in solaris (on ly)
can all bind to one LWP. CPU

Page 18

Operating Systems Lecture 7

Os-slide#35

&�������2��������-������
User level thread

Kernel thread CPU

Light weight process
Task 1

User level threads can be created easily.
Only when guaranteed concurrency with respect to a kernel event
(such as an file I/O) will be needed one separate LWP will be
needed.

Operating Systems Lecture 7

Os-slide#36

��	������$������%����
����
�����

User level thread
It has a thread ID, register set (PC, Stack Pointer), stack, priority (used by thread
library).
It is created by library call and Implemented in user space.
Very fast.

LWP
One register set for the user level thread now running. Memory and accounting
information.
A kernel data structure resides in kernel space.

Kernel level thread
A small data structure and a stack. The data structure includes a copy of kernel
registers, a pointer to LWP to which it is attached, and priority and scheduling
information.

Process
has everything described in PCB+ a pointer to a list of its threads.

