
Adaptive Overlay Topology for Mesh-Based P2P-TV
Systems

Richard John Lobb
University of Canterbury

Department of CSSE
Christchurch, NZ

richard.lobb@canterbury.ac.nz

Ana Paula Couto da Silva
Federal Univ. of Juiz de Fora

Computer Science
Department

Juiz de Fora - MG, BR
anapaula.silva@ufjf.edu.br

Emilio Leonardi
Marco Mellia
Michela Meo

Politecnico di Torino
Dipartimento di Elettronica

Torino, IT
lastname@tlc.polito.it

ABSTRACT
In this paper, we propose a simple and fully distributed
mechanism for constructing and maintaining the overlay top-
ology in mesh-based P2P-TV systems. Our algorithm opti-
mizes the topology to better exploit large bandwidth peers,
so that they are automatically moved close to the source.
This improves the chunk delivery delay so that all peers
benefit, not just the high bandwidth ones. A key property
of the proposed scheme is its ability to indirectly estimate
the upload bandwidth of peers without explicitly knowing or
measuring it. Simulation results show that our scheme sig-
nificantly outperforms overlays with homogeneous proper-
ties, achieving up to 50% performance improvement. More-
over, the algorithm is robust to both parameter setting and
changing conditions, e.g., peer churning.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Network
Architecture and Design—Network topology

General Terms
Design, Performance.

Keywords
Peer to peer, Video Streaming

1. INTRODUCTION
Peer-to-peer Live Streaming (P2P-TV) systems are can-

didates for becoming the next Internet killer applications,
as testified by the growing success of commercial and pro-
prietary systems such as PPLive, SopCast and many others.
These systems, which allow users to “watch television” over
the Internet, have very low infrastructure costs, enabling
almost anyone to become a content provider to the whole

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV'09, J une 3–5, 2009, William s bu rg , Virginia, U S A .
Copyright 2009 ACM 978-1-60558-433-1/09/06 ...$5.00.

world. Freed from normal broadcasting constraints, any user
can potentially watch any content anywhere.

In P2P-TV system, hosts running the application, called
peers, form an overlay topology, i.e., a generic mesh, by set-
ting up virtual links over which information is transmitted
and received. A source peer is responsible for injecting the
video stream, by chopping it into segments called chunks
of a few kilobytes, which are then sent to a subset of its
neighbouring peers, called neighbours. Each peer can then
contribute to the chunk diffusion process by retransmitting
chunks to its neighbours following a swarming like behav-
ior, as in file sharing P2P systems like BitTorrent. Each
peer stores the received chunks in a buffer to deliver them
in order (with a possibly short delay). The major differences
between P2P-TV systems and traditional P2P file sharing
applications are i) that the source is generating the stream in
real time, ii) that data must be received by peers at constant
rate, and iii) that chunks must arrive almost in sequence so
that they can be played at the receiver with short delay.
Therefore, the main performance indices to be optimized in
P2P-TV systems are the chunk delivery delay, i.e., the de-
lay from when the source emits the chunk to when a peer
receives it, and the chunk loss rate. To this extent, typical
P2P file sharing applications mechanisms, such as the Bit-
Torrent tit-for-tat, hardly adapt to this scenario, since they
target throughput optimization rather than delay.

In this paper we consider unstructured (mesh-based) P2P-
TV systems, focusing our attention on the design of efficient
distributed mechanisms for the construction and the main-
tenance of the overlay topology, given nodes with heteroge-
neous upload bandwidths. The performance of these P2P-
TV systems is mainly determined by two mechanisms: the
scheduling policy with which a peer decides which chunk to
distribute to which of its neighbours; and the overlay con-
struction which determines the neighbourhood of each peer,
i.e., the topology over which chunks are distributed. Sev-
eral works have focused on chunk scheduling algorithms [1,
2, 3, 4, 5], devising, proposing and analyzing numerous dif-
ferent ‘optimal or near optimal’ methods. For the case of
bandwidth-heterogeneous networks it has been shown that
it is important to preferentially distribute chunks to high-
bandwidth nodes first, so that chunk replication occurs as
rapidly as possible [3, 4].

From a chunk-scheduling perspective, a fully connected
overlay is theoretically ideal in that a peer can then always
make an optimal choice of peer as target for any chunk.

31



From a practical standpoint, however, maintaining large
neighbourhoods increases the complexity of the scheduling
algorithm, forces each peer to maintain a large amount of
information and wastes bandwidth since peers have to fre-
quently exchange signalling messages with all their neigh-
bours. Hence it is essential to restrict the overlay topology
so that each peer has only a limited set of neighbours avail-
able. The overlay has to adapt to the peers’ resources (e.g.,
bandwidth), to the“churn”of peers, and to variations in net-
work status. In this paper we propose a simple distributed
algorithm to achieve these goals and we show that we obtain
significant performance gains of up to 50% with respect to
static overlays. Our scheme does not need an a priori knowl-
edge of each peer’s upload bandwidth, but simply responds
to its observed performance, measured in terms of how many
other peers it is able to serve. It thus reacts appropriately
when a peer’s performance is substandard, e.g., due to high
CPU load or network demands from other applications.

While the problem of the overlay topology optimization
has been already analyzed in structured systems [6, 7, 8],
devising globally optimal solutions that require a tight con-
trol of the whole architecture, it has been almost ignored for
unstructured mesh-based P2P-TV systems. To the best of
our knowledge, apart from [11], performance of mesh-based
systems has always been analyzed assuming the overlay top-
ology to be either a fully connected mesh or a static random
graph with given degree. In [11] the problem of building an
efficient overlay topology has been formulated as an opti-
mization problem. However, the proposed approach, which
is deterministic and assumes perfect knowledge of the over-
lay edge costs, appears impracticable for large unstructured
P2P-TV systems. Furthermore, the considered scenario in
which the stream delivery delay is mainly due to the trans-
port network latency, differs significantly from the scenario
considered in this paper and more-commonly adopted in lit-
erature [1, 2, 3, 5], where system performance is constrained
by peer upload bandwidth.

2. ASSUMPTIONS
Consider a P2P-TV system composed of one video stream

source and N peers interested in the video stream; the set
of peers is denoted by P . The stream is divided into chunks
of fixed size of S bits. The source generates chunks at rate
λ and sends them to some peers that, in their turn, forward
the chunks to other peers in a P2P fashion. Peers have
finite upload bandwidth, while download bandwidths are all
sufficiently high that chunk download time is determined
solely by upload bandwidth. We denote by Bp the upload
bandwidth of peer p. Then, the chunk download time is
equal to S/Bp.

Peers are organized in an overlay network. The over-
lay can be represented by a directed graph G(P , E), where
(p, q) ∈ E if p can deliver the chunk to q; q is an out-
neighbour of p (or, simply, a neighbour) and p is an in-
neighbour of q. For each peer p, we denote by N o(p) the set
of its out-neighbours; L(p) = card(N o(p)) is the cardinality
of this set, i.e., it is the number of output links of p. We
denote by C(p) the set of neighbours of peer p’s neighbours.
The only knowledge that peer p has of the overlay topol-
ogy is its own neighbourhood N o(p) and the union of all its
neighbours’ neighbourhoods, C(p), assumed to be acquired
by querying of its (p’s) neighbours. Peers can join and leave
the network independently.

Over a given overlay, the chunk distribution process is
determined by the scheduling policy adopted at the peers.
We consider the latest useful chunk strategy for the selection
of the chunk, meaning that the peer delivers the most recent
chunk; the peer to deliver the chunk to is chosen following a
strategy inspired by the bandwidth-aware scheduling policy
proposed in [3]. Details are given in section 3.3.

3. ADAPTIVE OVERLAY AND SCHEDUL-
ING ALGORITHMS

The adaptive overlay algorithm is independently performed
by each peer p ∈ P in a fully distributed way. The main idea
behind it is simple. After every δc received chunks, which
we call a time window, peer p possibly adjusts its neighbour-
hood by growing or pruning it. The decision is taken based
on the fraction of used output links.
• If, during the time window, p has sent at least one chunk
to a large fraction of its neighbours, it is assumed that p can
feed more peers and n+ new neighbours are assigned to it.
The new neighbours are chosen within the set C(p).
• On the contrary, if p has used only a small fraction of its
output links, its neighbourhood is shrunk by culling n− of
the neighbours to which no chunk was sent.

Basically, the number of used links is interpreted as an
indication of the contribution that p can give to the stream
delivery and p’s neighbourhood size is adjusted accordingly.
The objective of the algorithm is to make the neighbourhood
size of p slightly larger than the number of used links, so as
to trade off between two opposing needs: i) to reduce the
possibility that some upload bandwidth of p is not used due
to lack of neighbours (a larger neighbourhood is desired), ii)
to reduce the possibility of overlay maintenance overload (a
smaller neighbourhood is desired). In particular, let U(p)
be the set of p’s used links and U(p) the set of unused links,
with card(U(p)) and card(U(p)) being their cardinalities;
thus, L(p) = card(U(p)) + card(U(p)). The algorithm aims
at maintaining the following condition:

αLcard(U(p)) < card(U(p)) < αHcard(U(p)) (1)

with αL and αH representing minimum and maximum thresh-
olds that define the percentage of unused links in a neigh-
bourhood. Note that the terms “used” and “unused” refer
to the observations made by p during a time window corre-
sponding to δc received chunks; thus, an unused link is not
used during the current window but might be used in the
following one. The algorithm is sketched below.

A minimum number of out-neighbours e and in-neighbours
f is enforced by the algorithm (not shown in the sketch
above for the sake of simplicity) so as to avoid disconnect-
ing some peers from the overlay. Throughout this paper we
fixed e = 1 and f = 2. Moreover, simple mechanisms can
be implemented to recover from possible network fragmen-
tations (i.e., the creation of isles of peers disconnected from
the rest of the network); for example, a peer not receiving
any chunk for a long period can repeat the bootstrap phase.

3.1 Growing the neighbourhood
Let us turn our attention to the algorithm parameter set-

tings. We start by considering the phase of neighbourhood
growth. At each peer bootstrap, the neighbourhood size is
initially small (the initial set of neighbors is usually obtained
from a server), so that a slow peer does not risk becom-

32



Algorithm 1: Adaptive Overlay Algorithm

for every δc received chunks do
/* scan and adjust p’s neighbourhood */

if card(U(p)) < αLcard(U(p)) then
/* grow the neighbourhood */

Select n+ neighbours from C(p) −N o(p) − {p}
Add the n+ chosen neighbours to N o(p)

end

else if card(U(p)) > αHcard(U(p)) then
/* shrink the neighbourhood */

Select n− neighbours from U(p) for culling
Cull the n− neighbours from N o(p)

end

end

ing congested and overloaded due to maintaining too large
a neighbourhood. The parameter n+, the increase in the
neighbourhood size, is computed as kL(p); k is a growth
rate factor. k is initially ki but linearly reduces to kf , with
kf < ki, over the first Nstartup chunks. The higher starting
value is to ensure that high bandwidth peers, which are pre-
cious resources for the system and should have large neigh-
bourhoods, can grow their neighbourhoods quickly.

The n+ peers to be added to the neighbourhood of p are
chosen from among the neighbours of peer p’s neighbours,
trying to favor those that can contribute the most to the
chunk diffusion. Since the algorithm adjusts the neighbour-
hood size of a peer based on its contribution to the stream
diffusion, the neighbourhood size of a peer (its out-degree)
is an implicit measure of the peer’s real upload performance.
Thus, p chooses new neighbours with a selection probability
that is a function of their out-degree.

Let p be, as before, a peer which decides to increase its
neighbourhood size by n+. A value D(q) is associated with
each peer q ∈ {C(p)−N o(p)− {p}}; D(q) is the desirability
of q and is computed as a non-decreasing function of L(q),
the out-degree of q. Then, q is chosen with a probability
that is proportional to D(q).

The desirability function used in the rest of the paper
is D(q) =

p
L(q). In our preliminary investigation (not re-

ported here for the sake of brevity [12]) we tried different de-
sirability functions. The selected function is indeed a good
trade-off between chunk delay and loss probability. Intu-
itively, a too greedy policy risks clustering high-bandwidth
peers while leaving low-bandwidth peers at the overlay edge,
thus causing higher chunk loss.

3.2 Shrinking the neighbourhood
n−, the number of neighbours culled from the neighbour-

hood when shrinking is necessary, is computed as

n− = �card(U(p)) − αL + αH

2
card(U(p))� (2)

The second term represents the desired number of unused
links, which is the fraction (αL + αH)/2 of the number of
used links. The difference between that number and the
actual unused number is the number to cull.

The output links to cull are selected within the set of
unused links again based on the desirability function of the
corresponding neighbour. In particular, if n− neighbours
to cull must be selected out of U(p), then card(U(p)) − n−

neighbours are chosen randomly with a probability that is
proportional to their desirability function: these neighbours
are maintained in the neighbourhood while the remaining
neighbours are culled.

3.3 The chunk scheduler
Because the overlay algorithm requires that each peer re-

tain all links used during a time window, it is in a sense
driven by the underlying chunk scheduler, which decides
which link to use for any given chunk. The overlay can be
considered to be adapting to the needs of the chunk sched-
uler, whichever it is. Because of this coupling, it is appro-
priate to explain how the selected chunk scheduler works.

We use push-based chunk transmission, i.e., transmission
of a chunk between any two peers is always initiated by the
sender. Considering a chunk c available at peer p we denote
with N (c, p) the set of neighbouring peers of p which are
still missing chunk c.

Whenever a chunk arrives at a peer it is stored within the
peer’s playout buffer, a buffer of chunks available for redis-
tribution, unless the chunk delay exceeds the global playout
delay dmax. The peer p then performs a chunk scheduling
operation as follows:
• p selects the most recent chunk c such that the set N (c, p)
is not empty.
• The destination peer q ∈ N (c, p) is stochastically selected
with probability

pq =
D(q)P

r∈N (c,p) D(r)
(3)

where D(q) =
p

L(q) is the desirability of q. We call this a
random weighted-neighbour selection. The chunk scheduler
and the overlay algorithm currently use the same desirability
function D(q) for selecting links. We emphasize that D(q)
is used as an indirect estimate of the peer upload bandwidth
Bq but it does not require any explicit bandwidth estimation
technique. Indeed, as the presented numerical results will
show, peer out-degree is tightly correlated with peer upload
bandwidth.

As in many previous papers [1, 2, 3], we consider an ide-
alized scenario in which every peer p has a perfect view of
each neighbour’s state. Under these assumptions chunks are
never multiply-received by peers.

4. THE SIMULATOR
An event-driven simulator was developed to evaluate the

performance of the proposed adaptive overlay construction
algorithm. The simulator, including the code that imple-
ments the algorithms described in this paper, is freely avail-
able from [9].

Our simulator allows us to specify C different peer band-
width classes. For each class i of peer we specify what per-
centage of peers of the total of N peers are of that class and
the upload bandwidth range, Bi of peers in that class.

The simulation starts with a random overlay topology,
that belongs to the class of Regular Random Graphs (RRGs)
in which the arcs are randomly placed [10]. Each peer has do

randomly assigned neighbours; the out-degree L(p) within
the starting overlay is thus constant and equal to do.

Unless specified otherwise, the following parameter values
were used throughout the various simulation runs.
Number of peers: N = 10, 000, with C = 4 classes as follows.

33



Chunk

D
e
g
re
e

Out1

Out2

Out3

Out4

Figure 1: Mean out-degree versus time for the var-
ious classes of peer; N = 10, 000.

• Class 1: 10% of N , B1 = 5Mb/s ±10%
• Class 2: 40% of N , B2 = 1Mb/s ±10%
• Class 3: 40% of N , B3 = 0.5Mb/s ±10%
• Class 4: 10% of N , B4 = 0Mb/s

The last class may represent the set of peers that is behind
a NAT and cannot contribute to the chunk diffusion.

The average upload bandwidth is 1.1 Mbps.
The source is a special additional peer with a bandwidth

of 5.5 Mb/s. It emits 0.1 Mb chunks at the rate λ = 10
chunk/s, corresponding to 1 Mb/s. Each peer starts with
a neighbourhood of do = 10 and uses a playout delay of
dmax = 5s, i.e., 50 chunks. Algorithm parameters, if not
otherwise specified, are: ki = 0.4, kf = 0.1, δc =50 chunks,
Nstartup = 750, and αL = 0.1, αH = 0.3. Finally, the to-
tal chunks pushed through the overlay is by default 10,000
chunks, i.e., 1000s of video1. Many of the algorithm’s param-
eter values are somewhat arbitrary but, as will be demon-
strated in the results section, seem to result in a rapid con-
vergence and stable behaviour under a wide range of condi-
tions.

5. ALGORITHM OVERLAY TOPOLOGY
First, let us discuss the overlay evolution. Figure 1 shows

the mean out-degree for each peer class as a function of time.
The graph suggests that the overlay adapts to within about
10% of its final state in roughly 1, 000 chunks, i.e., about
100 seconds.

Table 1 shows a breakdown of links between classes, in
percentage terms, at the end of the run of 10,000 chunks.
The last column is the mean out-degree of peers in a given
class. Both the adaptive topology algorithm and the schedul-
ing mechanism are biased in favour of high bandwidth peers,
because for optimal performance these should tend to receive
chunks before low bandwidth peers. Hence we see that 34%
of the source’s outlinks go to class 1 peers, which constitute
only 10% of the total, while only 0.9% go to class 4 peers,
which also constitute 10%. Similar figures apply to class 1
peers.

We have achieved a clusterized overlay topology with high
bandwidth peers highly connected with each other. The case
of class 4 peers is not reported since the corresponding links

1Throughout the paper, time is always indicated in terms of
the chunk number.

Table 1: Percentage breakdown of links from peers
of one class to peers of another.

To 1 To 2 To 3 To 4 Degree
From source 33.6 44.0 21.6 0.9 116
From class 1 25.8 42.9 29.2 2.1 120.4
From class 2 19.6 35.7 36.7 8.0 14.5
From class 3 19.4 31.7 37.4 11.4 6.9

Table 2: Mean out-degrees of peer classes versus N

N d1 d2 d3

10000 114.4 16.4 7.5
20000 111.9 16.5 7.6
30000 111.5 16.7 7.7
40000 111.2 16.6 7.7
50000 110.5 16.7 7.7

are irrelevant for chunk distribution; they exist because of
mandatory requirement that all peers have at least e =1
out-going link. The final mean out-degree of the overlay is
20.7.

We have tested with up to 50k peers and the transient be-
haviour and final topology characteristics change very little.
Table 2 shows how the mean out-degrees, d1, d2 and d3, of
peer classes 1, 2 and 3 respectively vary with the number of
peers, N ; d4 is not shown as it is always at the lower limit
of 1 (see section 3.2).

The final topology is also insensitive to the initial topology
of the random GNR network, as determined by the random
number seed at the start of the run. In a series of 11 runs
with N = 1, 000 peers the mean out-degrees of the various
classes of peer varied by at most ±3.2%.

6. OVERLAY PERFORMANCE
Figure 2 shows the chunk delivery delay versus time; the

mean chunk delay is computed over groups of 100 consecu-
tive chunks. It can be seen that, apart from the very initial
transient, delays decrease rapidly for all classes of peers dur-
ing the initial adaptation phase, which, as noted before, lasts
about 1000 chunks. As confirmation that high bandwidth
peers tend to be served before low bandwidth peers, observe
that the curves are ordered with respect to classes and class
1 peers have the lowest delay.

Figure 3 shows the number of lost chunks versus chunk
number. Most of the losses occur during the very initial
phase and no losses are observed after about chunk number
300.

Fig. 4 shows the effect on chunk loss rate and chunk
delay of varying the video rate from 1.0 Mb/s (a load factor
of approximately 0.9) through to 1.2 Mb/s (a load factor of
approximately 1.1). Curves of median chunk delay (seconds)
and chunk loss rate (percent) are shown for the standard
playout delay of 5 seconds and also for a playout delay of 10
seconds. Data relates to the last 7,000 chunks out of 10,000
chunk runs, with 10,000 peers. All other parameters are as
before. It can be seen that the chunk delay is unaffected
by both playout delay and video rate but that the loss rate
rises sharply as the load factor approaches 1. Increasing the
playout delay significantly improves the chunk loss rate only
near the critical load factor.

34



Chunk

D
e
la
y

Class1

Class2

Class3

Class4

Figure 2: Chunk delivery delay (secs), averaged over
100 chunks, versus time and per peer class.

Chunk number

N
u
m
b
e
r
lo
s
t

Figure 3: Number of chunks lost versus time.

All calculations in this paper so far have used the values
αL = 0.1, αH = 0.3, the goal being to achieve an “over-
supply” of out-links of around 20%. Table 3 shows how the
median chunk delay for a 1000-peer overlay varies with αL

and αH . The results, which are calculated over the last 1000
chunks of runs with 3000 chunks, suggest that, in this sce-
nario, our choice is a little sub-optimal from a delay stand-
point. Best results for delay are obtained with (αL,αH) =
(0.4, 0.5) or (0.5, 0.6); those values reduce the delay by just
over 13%. However, they also result in considerably more
links: the average degree rises from 23.2 with (αL, αH) =
(0.1, 0.3) to 34.5 and 39.1 with (αL, αH) = (0.4, 0.5) and
(0.5, 0.6), respectively. A 50% increase in the number of
links seems a rather high price to pay for a 13% delay re-
duction.

6.1 Comparison against random topology
In this section, we evaluate the performance improvement

Table 3: Median chunk delay versus αL and αH

αH

αL 0.2 0.3 0.4 0.5 0.6 0.7
0.1 0.438 0.453 0.478 0.478 0.463 0.478
0.2 0.408 0.438 0.468 0.498 0.473
0.3 0.398 0.443 0.453 0.468
0.4 0.393 0.433 0.468
0.5 0.393 0.423
0.6 0.398

Load factor

L
o
s
s
%
/D

e
la
y
(s
e
c
s
)

Loss

Delay

Loss

Delay

Figure 4: The effects of varying video rate and play-
out delay on chunk loss rate and delay.

k

M
e
d
ia
n
d
e
la
y
(s
e
c
s
)

GNR (median)

GNR (95%-ile)

AO (median)

AO (95%-ile)

Figure 5: Median chunk delays through GNR over-
lays of various degrees, k.

achieved by distributing the chunks over an adaptive overlay
topology instead of a static random overlay topology with
constant degree, which is the typical overlay topology con-
sidered in previous literature.

Fig. 5 shows the variation in both median chunk delay
and 95-percentile chunk delay through a fixed-degree GNR
overlay as the degree, k, is increased. The horizontal lines
at 0.408 secs and 0.818 secs show the performance of the
adaptive overlay, using the simulation run shown in Table
3 with (αL, αH) = (0.2, 0.3). For that run the mean degree
was 25.3, as represented by the single plotted marker on
each horizontal line. The adaptive overlay delay measures
are approximately 60% of the GNR overlay at comparable
degree and even very high-degree GNR overlays have inferior
performance. The fact that both median and 95-percentile
delays have improved by a similar amount confirms that the
improvement in median chunk delay has not been at the
expense of low-bandwidth peers.

Intuitively, the delay for static topologies is larger because
the peers’ upload bandwidth is not optimally used. Consider
for example class 1 peers: with their high upload bandwidth,
these peers can deliver a chunk to several neighbours; thus,
to fully exploit their bandwidth, these peers need always to
have some neighbour needing the chunk they are distribut-
ing. However, imposing the same large neighbourhood on
low bandwidth peers is both useless for the chunk diffusion

35



Chunk

D
e
g
re
e

Out1

Out2

Out3

Out4

Chunk

D
e
la
y

Class1

Class2

Class3

Class4

Figure 6: Mean out-degree (top) and delay (bottom)
versus time when 50% of peers are churning.

process (they can serve only a few, if any, other peers) and
harmful for them, as they have to manage large status and
signaling traffic with only a low bandwidth. An additional
reason for the improvement is that the scheduler and the
adaptive overlay algorithms work together to create a some-
what clusterized overlay topology, in which high bandwidth
peers are highly connected with each other.

6.2 The impact of churning
We now consider a scenario in which 50% of the peers are

“churning”, i.e., are intermittently disconnecting and recon-
necting. A churning peer generates a random time interval
in the range 10 to 100 seconds (100 to 1, 000 chunk arrivals)
at the end of which it resets its neighbourhood by discard-
ing all in-coming and out-going links and then connecting
with both an in-link and an out-link to 10 randomly-selected
peers. A new random time interval is generated and the pro-
cess continues throughout the simulation. We set N = 1, 000
and keep all other parameters as specified in Sec. 4.

Figure 6 shows the out-degree versus time on the top plot
and the mean delay per chunk for this new scenario. Chunk
delay is averaged over all peers that received that chunk,
whether they are churning peers or not.

Compare the results to Figures 1 and 2 where no churn-
ing was present. Although the traces are rather noisier, it
can be seen that the algorithm still manages to maintain a
fairly high mean out-degree for the critical class 1 peers even
though 50% of them are churning. Also, the chunk delays
still improve from their initial values, though the improve-
ment is less, due to the churning effects.

In other results, not shown here for the sake of brevity,
we observed that the algorithm was robust and stable even
with 90% of churning peers [12].

7. ACKNOWLEDGEMENTS
This work was funded by the European Commission un-

der the 7th Framework Programme Strep Project “NAPA-
WINE”(Network Aware Peer-to-Peer Application over Wise
Network).

8. CONCLUSION
We have presented a distributed algorithm for P2P stream-

ing TV that dynamically builds and maintains an efficient
overlay using only local information. The algorithm allo-
cates large and small neighbourhoods to high and low band-
width nodes respectively based on their measured chunk-
delivery performance rather than on theoretical bandwidth
specifications. The algorithm has been extensively tested
on a simulator and has behaved stably and efficiently over
a wide range of parameters. Because the algorithm is dis-
tributed and operates continuously, it is robust against churn-
ing and other performance disruptions like network failures.

9. REFERENCES
[1] L. Massoulie, A. Twigg, C. Gkantsidis, P. Rodriguez.

“Randomized decentralized broadcasting algorithms”,
IEEE Infocom, Anchorage, AK, May 2007.

[2] T. Bonald, L. Massoulie, F. Mathieu, D. Perino, A,
Twigg, “Epidemic Live Streaming: Optimal
Performance Trade-Offs”, ACM Sigmetrics, Annapolis,
ML, June 2008.

[3] A. P. C.da Silva, E. Leonardi, M. Mellia, M. Meo, “A
Bandwidth-Aware Scheduling Strategy for P2P-TV
Systems”, IEEE P2P, Aachen, DE,September 2008.

[4] Yong Liu, ”On the minimum delay peer-to-peer video
streaming: how realtime can it be?”, ACM
Multimedia, Augsburg, DE, September 2007.

[5] F. Picconi and L. Massoulie, ”Is there a future for
mesh-based live video streaming?”, IEEE P2P 2008,
Aachen, DE, September 2008.

[6] R. Rejaie, A. Ortega, “PALS: peer-to-peer adaptive
layered streaming”, ACM NOSSDAV 03, Monterey,
CA, USA, June 2003.

[7] R. Iqbal, B. Hariri, S. Shirmohammadi “Modeling and
Evaluation of Overlay Generation Problem for
Peer-assisted Video Adaptation and Streaming”, ACM
NOSSDAV 08, Braunschweig, Germany, May 2008.

[8] T. Small, B. Liang, B. Li, “Scaling laws and tradeoffs
in peer-to-peer live multimedia streaming”, ACM
Multimedia 06, Santa Barbara, CA, USA, Oct. 2006.

[9] “Network-Aware P2P-TV Application over Wise
Networks ”, http://www.napa-wine.eu

[10] Béla Bollobás. ”Random Graphs”, Cambridge
University Press, 2001.

[11] Dongni Ren, Y.T. Hillman Li, S.H. Gary Chan, “On
Reducing Mesh Delay for Peer-to-Peer Live
Streaming”, IEEE Infocom, Phoenix, AZ, April 2008.

[12] R.J.Lobb, A. P. C.da Silva, E. Leonardi, M. Mellia, M.
Meo. “Adaptive Overlays: a Feasibility Study”, Tech.
Rep. - Polito092802-1. Available from http: // www.

tlc. polito. it/ mellia/ Polito092802-1. pdf

36


