SNFS: The design and implementation
of a Social Network File System

Charalabos Kaidos

University of Patras
kaidos@ceid.upatras.gr

Andreas Pasiopoulos

University of Patras
pasiopou@ceid.upatras.gr

Nikos Ntarmos

University of loannina
ntarmos@cs.uoi.gr

Peter Triantafillou

University of Patras

peter@ceid.upatras.gr

Abstract

Social network systems and services have become amaz-
ingly popular in recent years. This has resulted in huge
amounts of data being published by users. At the same time,
a great number of relationships between users, user groups,
and (collections of) data items are constantly being estab-
lished based on highly dynamic tagging activities by users.

With this work we present the design and implementation
of a special-purpose user-level file system, coined SNFS, de-
signed to manage social-network entities (data items, users
and their profiles, and tags) and their relationships. At the
core of our approach lie tagging, indexing, and ranked re-
trieval (top-k) algorithms, allowing the key functionality to
be provided in a timely manner. We discuss the core design
and implementation features of SNFS and present a per-
formance evaluation, exposing the key performance costs,
and present alternative designs and implementations to over-
come them. Finally, we provide a brief comparison with a
well-known desktop search application, Beagle, and show,
using real datasets, that for our envisaged queries SNFS pro-
vides significant performance gains.

Categories and Subject Descriptors H [3]
General Terms Design, Performance

Keywords Social networks, file systems, indexing, top-k
queries

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SNS 11 April 10-13, 2011, Salzburg, Austria.

Copyright © 2011 ACM 978-1-4503-0634-8/11/04. .. $10.00

1. Introduction

Social network sites are defined as “web-based services that
allow individuals to (1) construct a public or semi-public
profile within a bounded system, (2) articulate a list of other
users with whom they share a connection, and (3) view and
traverse their list of connections and those made by others
within the system”[Boyd 2007]. Part of these services is to
allow users to communicate with others through publish-
ing, viewing, or interacting with objects that express their
interests. These objects may be text, photos, videos, audio,
user profiles or other digital media. The amount of data pub-
lished by users is so large that even traversing some gen-
eral categories to find interesting objects is not reasonable or
practical. Thus, social service providers need mechanisms
to present to their users with objects that match their explic-
itly or implicitly published interests and also allow them to
search for such entities.

To allow such a mechanism, each object is associated
with a set of terms and keywords, or fags as they are known
in on-line social networks terminology. Essentially tags are
basic information morsels, characterizing other more com-
plex information entities. This makes tags appropriate for
use in search engines and matching systems. Tags may be
provided by the publisher of the object, the users of the
service, or even an authority or metadata extraction algo-
rithm, though the first two are the most common cases in
contemporary social network services. YouTube, Flickr an-
notations, and Facebook tags are examples of the first case,
while Google Book keywords represent the latter.

In this paper we present the thesis that, the relation be-
tween entities in a social network system — be it pictures or
videos, users, user groups, annotations/tags on objects, and
so on — along with the searching and matching mechanisms,
can be presented through the well-known abstraction of a file
system, yielding a Social Network File System (or SNFS).

SNFS, a file system specifically designed for social net-
works, pays particular attention to accommodating content
items and user profiles, as well as their tags. The current
design of SNFS is geared towards allowing users to iden-
tify relevant content and/or other users using a set of key-
words/tags; through this discovery step, users can then be-
friend other users, create expert groups, participate in social
discussions, etc. At the core of our query processing engine
lie implementations of Fagin’s Threshold Algorithms, facil-
itating top-K query execution. In this way, we achieve high
performance as we avoid the need to scan complete (typi-
cally huge) index lists.

We contribute a detailed performance evaluation of SNFS.
We identify the major sources of performance costs — such
as the number of disk accesses, the number of system calls,
and the impact of different versions of the TA algorithms
— and we perform experiments which measure their impact
on the total cost. In the same vein, we offer alternative de-
signs/implementations that can avoid/reduce each major cost
contributor, such as RAM-disk SNFS and FUSE-less SNFS.

Moreover, in an effort to compare SNFS against other
keyword-based search engines, we pitched SNFS’s perfor-
mance against a well-known and acknowledged desktop
search application: Beagle. Although Beagle was designed
with slightly different purposes in mind, we performed head-
to-head comparisons for queries from the same datasets.
SNFS’s response time is shown to be a fraction of that of
Beagle.

Finally, we discuss how to extend SNFS to operate in a
distributed environment (be it for cloud infrastructures or for
other overlay-based distributed networked infrastructures)
and how our basic design accommodates this.

2. Related work

The idea of using a file system mechanism to provide as-
sociative attribute-based access to the content of an infor-
mation storage system was first presented in semantic file
systems[Gifford 1991] as a more effective storage abstrac-
tion than traditional tree structured file systems. The query-
ing system is represented by virtual directories; when the
user asks for the contents of a directory, a virtual directory is
created and populated with files whose attributes match the
requested path.

The years following the semantic file system, other de-
signs and implementations to extend this idea were pre-
sented. With such file systems as the Be File System (or
BeFS) [Giampaolo 1999] and its descendants, the idea of
attaching keywords to files and indexing them to allow for
content searching were brought to the wide public. Unfor-
tunately, practical shortcomings (the Be Operating Systems,
featuring BeFS, never really took off) and performance is-
sues of such file systems with regard to the actual content
indexing, did not let them make a big splash.

On the other hand, the functionality of desktop search was
made commercially available by Microsoft in 1998, bundled
in the “Windows NT 4.0 Option Pack” product. It provided
filters to extract information from plain text files, Microsoft
Office files, HTML, and MIME data. Although quite effi-
cient, the early-stage, low penetration of the Internet, and the
relatively small amount of data stored in end-user comput-
ers, were manageable by the user through traditional means
and the need of a desktop search engine was not enough to
warrant a paradigm shift.

The idea was later popularized with the release of Win-
dows Desktop Search (in 2004), Mac OS X Spotlight, and
Google Desktop (2005). These applications monitor the file
systems in use and support extraction of metadata, index-
ing and retrieval of many common files, emails, applications
and visited web pages. These application were quite suc-
cessful as the timing was right; multimedia was prevalent,
large storage devices were cheaply available, and the inter-
net was already gigantic and wide-spread. These products
are still in continuous development, supporting more plat-
forms (like Linux and iOS), while many other implemen-
tations have spurred (e.g., Linux’s Beagle and Strigi) with
varying levels of popular acceptance.

Albeit useful and popular, these programs are subtly
flawed. Their primary shortcoming is that they separate the
data the user has stored in her terminal from the on-line
available data in other devices and/or on the Internet. Thus,
the results that these applications produce are only part of
the information available to the user.

Also these programs are more useful to advanced users
that know what they are looking for and how to use these
tools to find it by making specialized queries with many
search terms and even boolean or SQL-like operators. How-
ever, for the average user who not only does not know how to
perform these queries, but also in many cases does not know
beforehand what exactly she is looking for, the usefulness of
these desktop search applications is quite limited.

The approach of ranked retrieval in search results in con-
trast to the “belonging to a result set” retrieval of the boolean
model was discussed, implemented, and evaluated with the
SMART system[Shalton 1968]. This system ranks each doc-
ument by its relevance to a free text query using a weight-
ing scheme to assign a value to each document-term pair
and to each term of the query. It creates a vector[Shalton
1975] for each document and for the query, then uses the
cosine or overlap correlations to determine the similarity be-
tween each document and the query. Other than these corre-
lations, Shalton and Buckley also presented and tested sev-
eral other functions to compute scores of documents and
queries[Shalton 1988].

Top-k query processing stands as an important building
block for ranked retrieval systems. Usually these are im-
plemented using variants of the seminal Threshold Algo-
rithm[Fagin 2003]. These algorithms return the top k£ doc-

uments with the highest similarity to the query, where the
query is a set of attributes. The algorithms expect lists of
documents sorted by descending relevance to each attribute.
They traverse the lists in parallel while computing the sim-
ilarity of documents they come by using a scoring system.
When no further improvement on the top-k results can be
made, the algorithms stop without traversing the rest of the
lists.

3. The Design of SNFS

The first design decision was to choose a scoring system for
out algorithms. We opted for the classic approach of a tf-
idf scheme, but our system can accommodate other scoring
schemes as well. Moreover, the algorithms we describe in
section 3.2 need the scoring function to be monotonic, but
impose no other limitation on them. In brief, the architecture
of the system, consists of two processes, the SNFS process
and the searching application.

3.1 SNFS Process

The Social Network File System (SNFS) process is respon-
sible for the manipulation and indexing of objects and their
corresponding tags. Each object is associated with a unique
id and the object path is stored in a Red-Black Tree. This
tree resides in main memory for quick access. The tags,
or terms, are extracted and stemmed with the Porter2 algo-
rithm [Porter 1981]. Then, weights for each term in each ob-
ject are calculated, and the scoring is done using a tf-idf ap-
proach. When computing term weights, we are using a term
frequency variation; specifically, the term frequency normal-
ization function[Shalton 1988]:

tft,d
t frmaz(d)

where ¢ 4. (d) is the maximum term frequency of all terms
in object d, and «a is a smoothing factor to avoid large swings
of ntf;q caused by possibly modest changes in tf; 4. As
proposed by [Manning 2008] we chose a = 0.4. The term
frequency of a tag is defined as the number of users that have
assigned this tag to an object. That also allows us to mini-
mize the importance of tag spamming. Thus, the normalized
frequency does not favor popular objects (equally to a clas-
sic retrieval system not favoring longer documents). On the
other hand, as the objects are dynamically tagged by users,
a change in ¢ f,,4. (d) requires that all term weights of ob-
ject d are recalculated. This cost may become significant in
very volatile systems, and delayed/lazy update techniques or
other relevant solutions may be considered.

This information is stored in an inverted index. Each term
is associated with a posting list, containing its document fre-
quency and pairs of document ids and term weights. To allow
efficient insertions into posting lists while maintaining them
in descending order of weights, we have chosen to use B+
Trees due to their efficiency in storing information in sec-
ondary memory while allowing for minimum disk accesses

ntfra=a+(1-a)

to retrieve any node. The B+ Tree is a variation of the B-Tree
in which all records are stored in the leaves and all leaves are
linked sequentially. So each term is associated with the root
node of the B+ Tree which stores its posting list. The key
used in B+ Trees is the weight, thus keeping the documents
in the posting lists stored in decreasing order. These indices
can then be transparently distributed across several network
nodes (e.g., in a cloud-based scenario) by using distributed
B+Trees[Wu 2010] or other similar constructs.

The terms are associated with their posting list using
a second in-memory Red-Black Tree. This tree stores the
position of the root node in the inverted index file with the
key being the term. We use this tree to efficiently check for
the existence of a term in our collection and to retrieve the
root node when searching the collection.

3.2 Searching Process

The searching process is responsible for receiving queries,
searching the inverted index, computing the scores of the
objects for the given query, and returning the top-k results.
The queries supported consist of identifying content items
and/or user profiles based on the aforementioned tags. So
given a set of tags the search client can find relevant ob-
jects and given an object it should extract tag information
and return other objects with the same characteristics. Thus
the queries SNFS may answer are useful to social network
systems ranging from “objects with certain tags” to “profiles
of users that may be interested in certain objects” or “profiles
related to other profiles with a defined form of relationship
(friendship, common interests, etc.)”

To this extent, the terms given by the user or extracted by
an object are stemmed with the same algorithm as the tags
during the extraction phase. For all terms ¢ of a query, the
corresponding document frequencies stored in the posting
list of each term are retrieved, and the total inverse document
frequency is computed using the formula:

N
idfy = log —
idfy = log df,
where NV is the number of documents (objects) in the col-
lection. To compute the score of each document d for the
given query g we use the common tf-idf multiplication func-
tion[Shalton 1988]:

Score(q,d) = Zntft,d X idfy

teq

In order to find the top-k documents, a threshold algorithm
is used. We inspected two of the variants proposed by [Fagin
2003], specifically the Threshold Algorithm with Random
Access (TA) and the No Random Access (NRA) algorithm,
briefly outlined below.

3.2.1 The Random Access Threshold Algorithm

Let ¢ be the terms in the query, and L, be the correspond-
ing posting lists (ordered in descending order of weight). TA

does sorted access in parallel to each list. For each object d
that is seen in some list, it fetches its weights z; in each of
the other lists by performing random accesses. It then com-
putes the score of the object d using the scoring function
f(z1,22,...,2¢). If this score is one of the k highest seen
thus far, the object is added to the top-k set, else it is dis-
carded, so that only k objects need to be maintained at any
time. For each L4, let 2, be the weight of the last object seen
under sorted access, and let 7 (the threshold value) be equal
to f(z,2s,...,2,). As soon as k objects have been seen
whose score is at equal to or larger than 7, the algorithm
halts and returns the top-k result set.

3.2.2 The No Random Access Algorithm

Let ¢ be the terms in the query, and L, be the corresponding
posting lists ordered in descending order of weight. NRA
accesses these lists in parallel, scanning through each list
in a sequential manner in descending weight order. At each
depth m (that is, after having scanned m entries in each
list), it maintains a list of the last (and thus least) weight
Zi,Zy,...,2, encountered in each list. For each object d
encountered in some list for which not all ¢ weights have
been seen yet, it computes a lower W (d) and upper B™(d)
limit for its score, substituting either 0 or the bottom values
Zi,Zy, ...,z respectively for the yet unseen weights. Let
T;" be the current top-k list containing the % objects with
the largest W™ values seen so far and their scores, and My
be the k" largest W™ value in T;". An object D is called
viable if B™ (D) > Mj,. The algorithm halts when at least &
distinct objects have been found and there are no more viable
objects — that is, B"™ (D) < M}, — at which point the objects
in T}, are returned.

3.2.3 Qualitative Performance Comparison

We will now attempt to qualitatively compare the expected
performance of these algorithms. The time cost of each al-
gorithm is dominated by three main factors.

First, the number of disc accesses. This are dependent on
the number of objects needed to be seen before the algorithm
halts. The NRA algorithm will typically go much deeper in
the posting lists than TA, but as we are using a B+ tree we
are reading a node at a time. If wasting space on rare terms
is not a concern, we may increase the node size up to the
optimal (i.e., the block size of our device) to minimize disc
accesses. That said, we expect TA to demand much more
disk accesses, as it performs random accesses on the index.
The estimated number of disk accesses required by NRA
are DAxra = (h + A%) x t, whereas for TA they are
DAry = (h+ &) xt+ (t x (t — 1) x h x d), where
h is the height of the B+Tree, d is the depth in which each
algorithm halts, M is the lower bound of the number of keys
in the B+Tree, and ¢ is the number of terms in the query.

Second, the number of system calls. Each system call is
expected to take time as it halts the execution of the program
and makes a request to the operating system kernel. The

system calls most frequently used by these algorithms are
seek and read. For each disc access, both system calls are
expected to be used at least once. So we expect TA to make
more system calls than NRA.

Finally, the amount state and book keeping chores. As
we described earlier, TA requires minimal bookkeeping. On
the other hand, NRA maintains a much larger state and
performs more computations in each iteration, thus being
more expensive in this field.

4. Implementation

We have built a real-world implementation of our Social
Network File System so that we can support our thesis of its
use in retrieving top-k objects from social network services.
The system was written in the C programming language,
intended to be deployed in a Linux/Unix environment. To
implement the file system as a user space application we
used the FUSE infrastructure, available in all Linux distri-
butions and BSD-derived operating systems (i.e., FreeBSD,
NetBSD!, OpenBSD, DragonflyBSD, etc.). FUSE allows us
to implement our own file system functions (like write or
read) while also giving us access to underlying reliable stor-
age file systems, like ext4, ReiserFS, FFS, and UFS. The
main shortcoming of FUSE is its overhead with regard to
the number of system calls required to perform its opera-
tions. As shown in Figure 1, a system call from a client (like
our searching application) will be routed through VFS to the
FUSE kernel module and back to user level and SNFS. From
there the SNFS will decide whether to issue another system
call to access a storage file system (e.g., ext), or if it will
retrieve the necessary data from a distributed system (like
HDEFS) or data structure. Our small scale testing implemen-
tation uses the former, being layered on top of an ext4 file
system through VFS.

Since our objects in this case are real files containing data
and not a network or other abstraction, we need physical disc
space to store them. So the SNFS in this case acts as an over-
lay to an existing file system (i.e., ext4). Note that in general
the objects are meant to be arbitrary resources, stored ei-
ther locally or on some remote server, or available through
some on-line social networking service. In our implementa-
tion the extraction function reads N tags from the file with
name path. Then the tags are stemmed using the Porter2 al-
gorithm. This results in K (K < N) terms each with ¢ fx
frequency. For the Porter2 stemming algorithm we used the
C API provided by Dr. Martin Porter?. Pairs of document-ids
and file paths are stored in-memory using a red-black tree.
The weight of each term is then computed as described in
the design section. Each object is also assigned a document
id (i.e., a unique large integer). The list of terms and weights
along with the document id is then stored in an inverted in-
dex.

! A native PUFFS port is also under consideration.
2http://snowball.tartarus.org/index.php

}(Posting List j

B+ Tree ‘“\.I‘(Term-Position}
,,,,,,,,,,,, : . R/BTree |
’ HDFS
User Level
Kernel Level

Figure 1: System calls through SNFS. a) Clients issue a system call to VFS. The call
is routed through FUSE to SNFS. b) SNFS issues a system call to VFS to access the
underlying file system (ext4 in our implementation). c) It is possible that SNFS is an
HDES (or other distributed FS) client, retrieving data from there, or d) SNFS may be
distributed itself by using a distributed index and/or distributed B+Trees

The latter consists of a pair of B+ Tree structures for
each posting list of the collection: one indexed on the object
weights to allow for sequential access in decreasing weight
order, and one indexed on the document IDs to allow for ran-
dom id accesses. These trees are stored in two files in the root
directory of our file system. The size of the nodes can be ad-
justed to match the needs of various specific systems. Larger
nodes reduce the height of the tree resulting in a reduction
of the number of disk accesses, while smaller nodes save up
disc space as tags usually have very low document frequen-
cies. The document frequency of each term is stored in the
root node. Note that the index does not contain the actual
terms. To this extent, we use a second in-memory red-black
tree, mapping each term to the position of the root nodes
of its posting lists in the inverted index file. Both red-black
trees are also stored as files in the root of the file system,
and updated during the unmounting phase of the file system.
When SNFS is mounted again, the files are opened and the
data are loaded back into main memory.

As far as the searching process is concerned, we built
a simple application allowing the user to enter free-text
queries and ask for top-k results. K results are returned
along with the time needed to perform the search.

Currently we have not created any interface for SNFS;
instead, we opted for the default (hierarchical) presentation
of the underlying file system. An abstraction akin to the
virtual directories of the semantic file system is left for future
work.

5. Performance Results

As outlined in the qualitative performance comparison sec-
tion, we expect the number of disk accesses to represent a
large percentage of the overall time cost, especially for TA.

To test this assumption we provide two different implemen-
tations of SNFS: (i) one using a standard mechanical hard
disk to store the index, and (ii) an implementation using
RAM-disks, minimizing the importance of disk accesses and
concentrating on the other factors that contribute to the time
overhead of our algorithms.

The datasets we used are from real on-line social net-
works and other content providers which use a tagging sys-
tem, in the form described earlier. More specifically, we used
the following four datasets: YouTube (8208 obj.), Flickr
(18246 obj.), Google (4338 obj.) and IMDB (8099 ob;.).

Time consumption during the pre-processing phase in-
creased linearly to the number of objects being indexed,
reaching 19.000 insertions in the B+Tree per second. We
then created queries that consist of tags with high docu-
ment frequencies. These queries engage terms that have long
posting lists and thus represent a worst-case scenario for
any ranked retrieval system. We tested those queries on the
above two implementations. In all cases before executing
each query, the VFS buffer cache memory was cleared to
allow for more objective results, not affected by previous ex-
ecutions.

5.1 Disk-based SNFS

Our tests on disk based indices confirmed our hypothesis that
the NRA algorithm is faster for this application. NRA goes
much deeper into the sorted lists than TA, often reaching the
end of the lists before halting, resulting in the paradox of
what seems like a constant time overhead for larger values
of k. This was not the case with TA, whose time overhead
increased with k. As expected time cost rises for more terms
in the query due to the increase in relevant objects. As is
shown in the first column of Figure 2, NRA manages to
return results quite faster than TA in all cases.

5.2 RAM-based SNFS

The RAM-disk implementations provides much lower ac-
cess times and a very large sustained bandwidth compared
to the HDD-based variant. As shown in the second column
of Figure 2, the time needed to process the queries is re-
duced considerably for both algorithms: TA needs less than
% of each time overhead with the HDD-based implementa-
tion, while almost NRA drops to % of each previous time,
achieving sub-second performance in all cases. Moreover,
NRA is still faster than TA as the access time may have been
essentially nullified but the time needed to make each sys-
tem call was not, and TA still uses many more system calls
than NRA.

5.3 Avoiding FUSE

Using FUSE hinders our program with system calls over-
head. As of this, we decided to take a detour and run our
queries directly on the indices stored on ext4. The results
showed that the time overhead imposed by FUSE is about

Terms - Time (NRA Disk) Terms - Time (NRA RAM)

A

A a
4 R
- o .
\%3 .~A'W,ﬁ"’- -= fnio.s i E’J]
@ - -
£, s £ 04 A g

N~ o
Fs

- =

E Sk

-

e

2 4] 8
terms terms

Terms - Time (TA Disk) Terms - Time {TA RAM)

time (sec)
time (sec)

—e—Flickr
—& - Google Books
code s IMDB

=% -YouTube

Figure 2: Time needed to compute the top-10 result set for varying length queries

40% of the total processing time, being even more evident
with TA which makes the most system calls.

5.4 Comparing SNFS (NRA) with Beagle

We needed to see how our indexing system performed
against competition. We opted to test it against a well known
desktop search application; Beagle. We would like to note
that Beagle’s Lucene engine is not optimized for a single
application but to index several different file types and an-
swer more complex queries consisting of boolean operators.
Nonetheless, it is interesting that SNFS managed to perform
quite well. We tested Beagle on the populous Flickr data set.
The default filtering operator of Beagle is AND, so we used
the OR operator between terms to achieve the partial match-
ing we do with free text queries on NRA. We varied both
k (demanded number of objects) and the number of terms
as shown on Table 1. Much like NRA, Beagle appears to be
less and less affected by further increasing k.

Table 1: Comparison of Beagle and NRA algorithm

Number of terms 2 3 4 5 6 7 8
NRA (Disk based) (sec) | 0.570 | 1.365 | 1.578 | 1.940 | 2.120 | 2.389 | 3.268
Beagle (sec) 4917 | 5.163 | 5.158 | 5.286 | 5.112 | 5.345 | 5.834

k (4 terms query) 1 2 5 10 50 100
NRA (Disk based) (sec) | 1.010 | 1.451 | 1.572 | 1.578 | 1.564 | 1.562
Beagle (sec) 5.017 | 5.052 | 5.126 | 5.565 | 5.915 | 5.988

6. Conclusions and future work

With this work we present the Social Network File System; a
novel means of indexing and accessing social network data,

through the familiar abstraction of files in a virtual file sys-
tem. Our purpose was twofold: (i) to provide social network
sites with a new way of managing user data and activity, and
(ii) to offer end-users a way to tag, index, and search for ob-
jects, lying both in their computers and devices as well as
over the internet. We have discussed the design details of
SNFS and its basic building blocks. We have also presented
an experimental evaluation of its performance for various
on-line datasets. Our results showcase the viability of our
approach. We also proposed two ways of expansion towards
distributed and cloud systems: (a) first, to use an underlying
distributed storage file system, such us HDFS, which will
take care of scalability and reliability chores; (b) second, to
distribute SNFS’s data structures across multi-node systems
by utilizing distributed indexes and/or distributed B+Trees,
layered over commodity storage file systems in each node.

References

[Boyd 2007] Danah M. Boyd and Nicole B. Ellison. Social network
sites: Definition, history, and scholarship. Journal of Computer-
Mediated Communication, 13(1):210-230, 2007.

[Fagin 2003] Ronald Fagin, Amnon Lotem, and Moni Naor. Op-
timal aggregation algorithms for middleware. Journal of Com-
puter and System Sciences, 66(4), 2003.

[Giampaolo 1999] Dominic Giampaolo. Practical File System
Design with the Be File System. Morgan Kaufmann, 1999. ISBN
1-55860-497-9.

[Gifford 1991] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon,
and James W. O’Toole Jr. Semantic file systems. In SOSP
'91 Proceedings of the thirteenth ACM symposium on Operating
systems principles, New York, NY, USA, 1991. ACM.

[Manning 2008] Christopher D. Manning, Prabhakar Raghavan,
and Hinrich Schtze. Introduction to Information Retrieval. Cam-
bridge University Press, 2008. ISBN 0521865719.

[Porter 1981] M. Porter. Snowball: A language for stemming al-
gorithms, 1981. http://snowball.tartarus.org/texts/
introduction.html.

[Shalton 1988] Gerard M. Shalton and Christopher Buckley. Term-
weighting approaches in automatic text retrieval. Information
Processing and Management: an International Journal, 24(5),
1988.

[Shalton 1968] Gerard M. Shalton and Michael E. Lesk. Computer
evaluation of indexong and text processing. Journal of the ACM,
15(1), 1968.

[Shalton 1975] Gerard M. Shalton, Andrew K C Wong, and C S

Yang. A vector space model for automatic indexing. Communi-
cations of the ACM, 18(11), 1975.

[Wu 2010] Sai Wu, Dawei Jiang, Beng Chin Ooi, and Kun-Lung
Wu. Efficient b-tree based indexing for cloud data processing.
Proceedings of the VLDB Endowment, 15(1), 2010.

