Final Exam Study Guide
(Near Final Version)

NOTE -1: As you probably know, there is a possibility that our final exam date may be postponed by one week, if classes are cancelled on Monday. This is likely to cause a lot of hardship on those of you who were not planning to spend the semester break in the Kent area. If it appears that our class will be cancelled, I will probably try to develop alternate plans that will replace our scheduled final with one that can be sent to you electronically and submitted electronically (within specified time limits). Please check our website and your “kent.edu” email in order to keep up to date on these type options, as I will probably need to get email feedback from class members on possible options.
 NOTE-2: I need to add more comments to a couple of places in this outline. When this has been done, this note will be replaced with another note telling you the additional comments have been made. These additions will be made using “blue print” so they can easily be located.
SUGGESTIONS: My suggestion for preparing for this midterm is to study the material in slides carefully and use the textbook , as needed, to gain a better understanding of material covered on slides. Sometimes our text can provide a much clearer explanation for steps and concepts than the slides due to the limited space available for explanations in the slides. The final exam will probably be similar in style to the midterm, but will probably consist of a few more questions (perhaps 10-15 questions) since more material is being covered. These questions may require you to work a problem, explain a concept, explain how an algorithm works, etc. but probably few if any multiple choice or true-false questions.

Concepts that have been emphasized in class are more likely to be tested than ones that have only been lightly covered. Also, more important material is more likely to be tested than less important material. I strongly feel that understanding of concepts and algorithms covered is much more important that of memorization of lots of details – like the exact operations supported by multiple ATD types. While I expect test to cover some homework similar to or identical to that assigned, overall, there will be more emphasis on understanding concepts and algorithms covered in our slides.
The topics listed for chapters below are included to remind you of some possible topics that may be tested on the final exam. Since the list is long, it would be more productive to spend more time reviewing important concepts

Chapter 1

· Review definition of algorithm and data structures

· Running time of algorithms

· Understanding best, average, and worst cases

· Relationship with experimental running time
· Determining running time for explicit algorithms

· RAM model (used as basis for running time analysis)

· Understand the complexity relationships of Big-Oh, Big-Theta, and Big-Omega

· Use of complexity to compare rate of growth of functions

· Determining complexity class of algorithms
· Know standard math formulas and relationships typically needed to compute complexity, such as formula for sum of “1 + … + n”

· Understand standard proof techniques and be able to use them.

· E.g., be able to use induction to prove statements such as closed forms for recurrence relationships
Chapter 2:

· Linear Structures (e.g., stacks, queues, vectors, lists, etc.)
· Understand the standard data structures for representing linear structures – e.g., arrays, linked lists.
· How can operations like insertion and deletion be supported.
· Understand different techniques that allow linear structures to grow beyond its reserved space when represented as an array, etc.
· How is amortized analysis used to evaluate the efficiency of standard methods for allowing different linear structures to grow in size.

· Skip the potential functions approach to amortized analysis
· Trees

· Use of trees as a data structure

· Terminology
· Various Traversals for Trees
· Various use of binary trees – e.g., arithmetic expression tree, printing arithmetic expressions,

· Basic properties of trees – height compared to number of external leaves

· Supporting priority queues on binary trees

· Sequence-based priority queues

· Selection sort & Insertion sort
· In-Place Insertion sort

· Heaps and Priority queues

· Operations like insertion into heap, upheap, removal from heap, downheap

· Heap Sort

· Vector based heap implementation
· Merging two heaps

· Dictionaries and log files

Chapter 3
· See slides to see topics covered here. I discussed topics that might be tested in more detail in class

· The material in Section 3.1 is the most important material covered in this chapter – at least for this course.
· Note binary tree representations here are different than used earlier in a heap.

· The material on (2,4) trees and red-black trees was covered lightly, so it will be, at most, tested only lightly.

Chapter 4
· I discussed topics that are more likely to be tested in class, and time does not permit me re-discuss them here.

· We completed covering the slides in this chapter and so all will be included in the topics that will possibly be tested on the midterm.

· There are a number of important topics we covered in the slides for this chapter, and these are reasonable topics to test on midterm.
· Any material in textbook in this chapter that covers topics not covered in slides will not be tested on the midterm.
Chapter 5
· Greedy Method

· Divide and Conquer Methods

· Dynamic Programming

Chapter 6
· Different data structure representations for graphs and how they work.

· Edge list structure

· Adjacency list structure

· Adjacency matrix structure

· Information about time required to do different operations with these.
· Graph terminology – graphs, digraphs, vertices, directed edges, parallel edges, incident edges, degree of a vertex, self-loops, path, simple path, etc.

· Understanding of various theorems and properties stated for graphs.

· Depth –first search
· How algorithm works, running time, and ability to trace its traversal on a graph.

· Use of DFS to do other tasks like path finding, cycle finding, connected components, identifying connected components of graph, etc.

· Understand concepts like trees, forests, minimal spanning trees, visited node, back edges, etc.

· Ability to trace various actions of uses of DFS on a graph, such as finding a spanning tree for graph, finding cycles for graph, etc.

· Bioconnected graph, biconnected components, relation to equivalence relations and equivalence classes.

· Breadth First Search (BFS)

· Algorithm, running time, ability to trace transversal of graph using DFS
· Multiple things one can do using BFS, such as finding spanning tree,

· Comparison of DFS and BFS

· Directed graphs

· Diagraphs

· Reachability and strong connectivity

· Understand properties & theorems

· Transitive closure G* of a graph G.

· Floyd-Warshall Algorithm – understand how it works.

· Topological Sortiing – how it works on a graph

· How Kruskal’s algorithm works

Chapter 7 Weighted Graphs

· What Dijkstra’s algorithm for shortest path does and tracing how Dijkstra’s Algorithm works on a graph.

