Midterm Study Guide

Overall: My suggestion for preparing for this midterm is to review the material in slides carefully and use the textbook, as needed, to gain a better understanding of material covered on slides. Typically, our text provides a more extensive discussion than provided in the slides. I currently expect the test to consist of about 8-10 questions that require you to work a problem, explain a concept, explain how an algorithm works, determine the complexity of an algorithm, etc. --- as opposed to consisting mostly of a large number of true-false and multiple choice questions.

 Concepts that have been emphasized in class are more likely to be tested than ones that have only been lightly covered. Also, more important material is more likely to be tested than less important material. I strongly feel that understanding of concepts and algorithms covered is much more important that of memorization of lots of details – like all the operations supported by various ATD types. I expect test to include some problems to test your ability to use the material covered, other questions will test your understanding of the concepts, algorithms, and information covered in our slides.
 The test is likely to contain a few more questions and subparts of questions than you have time to fully answer – or perhaps to even start. View this as providing you with multiple choices to choose which problems to spend the most time on during the exam. As a result, the test scores may be artificially low (e.g., below the 90% level). To correct for this, the test scores will be curved, with the top scores receiving an A+. Before starting the test, you should look over the test and identify which test questions (and parts of questions) will be the easiest for you to complete, so you can answer them first. Harder questions and ones that require a lot of time to answer should be postponed until last.

I. Chapter 1

· Review definition of algorithm and data structures

· Running time of algorithms

· Understanding best, average, and worst cases

· Relationship with experimental running timed
· Determining running time for explicit algorithms

· RAM model (used as basis for running time analysis)

· Understand the complexity relationships of Big-Oh, Big-Theta, and Big-Omega

· Use of complexity to compare rate of growth of functions

· Determining complexity class of algorithms

· Know standard math formulas and relationships typically needed to compute complexity, such as formula for sum of “1 + … +n”

· Understand standard proof techniques and be able to use them.

· E.g., be able to use induction to prove statements such as closed forms for recurrence relationships

· Experimentation concepts

· Evaluate usefulness

· Understand ratio test and power test

II. Chapter 2
· General understanding of various data structures covered in this chapter (e.g., stacks, queues, vectors, lists & sequences, trees, etc.)

· Understand concept of ADT for various data structures covered in this chapter and why they are useful.

· Different ways to implement these data structures

· Methods of traversing through various data structures

· Examples of use of various data structures in different applications.

· Understand how operations like insertion and deletion can be supported and cost for these.
· Algorithms that allow various data structures to grow beyond the size of the reserved space

· How amortized analysis can be used to evaluate the efficiency of standard methods for allowing various data structures to grow in size.

· Will NOT cover the potential function approach to amortized analysis

· Trees

· Use of trees as a data structure

· Terminology

· Tree ADT

· Various Traversals

· Various use of binary trees – e.g., arithmetic expression tree, printing arithmetic expressions,

· Basic properties of trees – height compared to number of external leaves

· Supporting priority queues on binary trees

· Sequence-based priority queues

· Selection sort & Insertion sort
· In-Place Insertion sort

· Heaps and Priority queues

· Operations like insertion into heap, upheap, removal from heap, downheap

· Heap Sort

· Vector based heap implementation
· Merging two heaps

· Dictionaries and log files

III. Chapter III

· See slides to see exact topics covered there. Only sections 3.1 and 3.3 were covered. Even in these sections, material that was not discussed in slides will not be tested.
· Material not covered in slides on (2,4) trees or on red-black trees that was not discussed in slides will not be tested. For example, while we discussed the red-black tree algorithms and concepts, we did not go into details in this section about the verification (i.e, formal and informal proofs) of properties and techniques for red-black trees – so there won’t be questions on the test about the verification of red-black tree properties.
IV. Chapter IV

· See slides for the exact topics covered in this chapter. We covered most topics in this chapter fairly thoroughly. These topics include

· Merge-sort
· The set abstract data type, and its operations

· Algorithm, examples, and detailed analysis of Quick sort

· A proof of a lower bound for comparison based sorts

· Non-comparison-based sort: bucket sort and radix sort.

· Selection algorithm

· Java example of an in-place quicksort

· Above topics are fairly important and one or more test questions are likely to cover topics in this chapter.
· Again, any material in textbook in this chapter that covers topics not covered in slides will not be tested on the midterm.

V. Chapter V:
· Again, only topics covered in the slides will be tested. While we covered a lot of topics, some topics were either skipped or covered lighter in my slides than in the textbook. Topics will only be tested at the depth they are covered in my slides. In particular, if theorems or algorithms in the textbook are not covered in the slides, they will not be tested. If topics (e.g., algorithms or theorems) were covered lighter in my slides than in the text, you will not be tested on them at a greater depth we covered them in class (or on the homework).

· Topics covered include below. However, not all aspects of these topics were covered in my slides.

· The Greedy Method

· The Divide and Conquer Method

· Dynamic Programming
· The Master Theorem
