
1

Chapter 9: Virtual
Memory

Sections Covered in Chapter
Background
Demand Paging
Copy-on-Write
Page Replacement
Allocation of Frames
Thrashing
Memory-Mapped Files
Allocating Kernel Memory
Other Considerations (Slide 73 only)
Operating-System Examples

Note: Skipped slides also indicated in slide notes.
2

3

Chapter 9: Virtual Memory
Background
Demand Paging
Copy-on-Write
Page Replacement
Allocation of Frames
Thrashing
Memory-Mapped Files
Allocating Kernel Memory
Other Considerations
Operating-System Examples

4

Objectives
To describe the benefits of a virtual
memory system

To explain the concepts of demand
paging, page-replacement algorithms, and
the allocation of page frames

To discuss the principle of the working-set
model

5

Background
Virtual memory – separation of user logical
memory from physical memory.
 Only part of the program needs to be in memory for

execution
 Logical address space can therefore be much

larger than physical address space
 Allows address spaces to be shared by several

processes
 Allows for more efficient process creation

Virtual memory can be implemented via:
 Demand paging
 Demand segmentation

6

Virtual Memory That is Larger Than
Physical Memory

⇒

Presenter
Presentation Notes
Each process has a virtual memory that can be larger than physical memory

7

Virtual-address Space

Presenter
Presentation Notes
This is the virtual memory of one process, which “thinks” it has the entire physical memory

8

Shared Library Using Virtual
Memory

Presenter
Presentation Notes
Each process the same region of memory in their virtual / logical address space.

9

Chapter 9: Virtual Memory
Background
Demand Paging
Copy-on-Write
Page Replacement
Allocation of Frames
Thrashing
Memory-Mapped Files
Allocating Kernel Memory
Other Considerations
Operating-System Examples

10

Demand Paging
Bring a page into memory only when needed
 Less I/O needed
 Less memory needed
 Faster response
 More users

Page is needed ⇒ reference to it
 invalid reference ⇒ abort
 not-in-memory ⇒ bring to memory

Lazy swapper – never swaps a page into
memory unless page will be needed
 Swapper that deals with pages is a pager

11

Transfer of a Paged Memory to
Contiguous Disk Space

12

Valid-Invalid Bit
With each page table entry a valid–invalid bit
exists (v ⇒ in-memory, i ⇒ not-in-memory)
Initially the valid–invalid bit is set to i on all
entries

The above is an example of a page table
snapshot.

v
v
v
v
i

i
i

….

Frame #

valid-invalid bit

page table

Presenter
Presentation Notes
For each page in a process, keep track of whether it’s in memory or not

13

Page Table When Some Pages Are Not
in Main Memory

Presenter
Presentation Notes
DIFFERENCE FROM WHAT I’VE TALKED ABOUT – here all pages are on diskAdvantage – no need to swap a page back out if it’s not been modified (e.g., most code pages, some data pages)But need to keep track of modified (dirty) pages, write back to disk when page is replaced

14

Page Fault
If there is a reference to a page, the first
reference will trap to the operating system:

1.Operating system looks at another table to
decide:
 Invalid reference ⇒ abort
 Just not in memory

2.Get empty frame
3.Swap page into frame
4.Reset tables
5.Set validation bit = v
6.Restart the instruction that caused the page

fault

Presenter
Presentation Notes
GO THROUGH NEXT FEW SLIDES, THEN COME BACK TO “RESTART INSTRUCTION”

15

Page Fault (Cont.)
Restart instruction
 block move

 auto increment/decrement location

Presenter
Presentation Notes
Block move (discussed in OSC) — either source or destination may cause a page faultCan’t just restart if source and destination overlapTest both ends of source and destination range before starting the moveAuto incr/decr — ?

16

Steps in Handling a Page Fault

Presenter
Presentation Notes
We’ll come back to page replacement later

17

Performance of Demand Paging
Page Fault Rate 0 ≤ p ≤ 1.0
 if p = 0 no page faults
 if p = 1, every reference is a fault

Effective Access Time (EAT)
EAT = (1 – p) x memory access

+ p (page fault overhead
+ swap page out
+ swap page in
+ restart overhead)

Presenter
Presentation Notes
Either switch back to my slide, or use his slide with numbers (next)HIS ARE PROBABLY MORE UP TO DATE

18

Demand Paging Example
Memory access time = 200 nanoseconds
Average page-fault service time = 8
milliseconds
EAT = (1 – p) x 200 + p (8 milliseconds)

= (1 – p x 200 + p x 8,000,000
= 200 + p x 7,999,800

If one access out of 1,000 causes a page fault,
then

EAT = 8.2 microseconds.
This is a slowdown by a factor of 40!!

Presenter
Presentation Notes
His numbers are different than mine

19

Process Creation
Virtual memory allows other benefits
during process creation:

- Copy-on-Write

- Memory-Mapped Files (later)

Presenter
Presentation Notes
SKIP THIS SECTION

20

Chapter 9: Virtual Memory
Background
Demand Paging
Copy-on-Write
Page Replacement
Allocation of Frames
Thrashing
Memory-Mapped Files
Allocating Kernel Memory
Other Considerations
Operating-System Examples

Presenter
Presentation Notes
SKIP THIS SECTION

21

Copy-on-Write
Copy-on-Write (COW) allows both parent
and child processes to initially share the
same pages in memory

If either process modifies a shared page,
only then is the page copied

COW allows more efficient process
creation as only modified pages are
copied

Presenter
Presentation Notes
SKIP THIS SECTIONBasic idea is that a child process may not need a full duplicate of the parent, so let them share until the child changes something

22

Before Process 1 Modifies Page C

Presenter
Presentation Notes
SKIP THIS SECTION

23

After Process 1 Modifies Page C

Presenter
Presentation Notes
SKIP THIS SECTION

24

Chapter 9: Virtual Memory
Background
Demand Paging
Copy-on-Write
Page Replacement
Allocation of Frames
Thrashing
Memory-Mapped Files
Allocating Kernel Memory
Other Considerations
Operating-System Examples

25

What happens if there is no free
frame?

Page replacement – find some page in
memory, but not really in use, swap it out
 algorithm
 performance – want an algorithm which will

result in minimum number of page faults
Same page may be brought into memory
several times

Presenter
Presentation Notes
If the OS needs a frame to allocate to a process, and all frames are busy, it must evict (copy to backing store) a page from its frame to make room in memory

26

Page Replacement
Prevent over-allocation of memory by modifying
page-fault service routine to include page
replacement
Use modify (dirty) bit to reduce overhead of
page transfers – only modified pages are
written to disk
Page replacement completes separation
between logical memory and physical memory
– a large virtual memory can be provided on a
smaller physical memory

Presenter
Presentation Notes
Reduce overhead by having CPU set a modified / dirty bit to indicate that a page has been modifiedOnly copy data back to disk for dirty pagesFor non-dirty pages, just update the page table to refer to copy on disk

27

Need For Page Replacement

Presenter
Presentation Notes
Process 1 just did a Load from page 3 (M), which is not in memoryUnclear from figure what the rest of the figure is supposed to indicateBook says that now the memory is full so if Process 1 references B some page has to be evicted

28

Basic Page Replacement

1.Find the location of the desired page on disk
2.Find a free frame:

- If there is a free frame, use it
- If there is no free frame, use a page

replacement algorithm to select a victim frame
3.Bring the desired page into the (newly) free

frame; update the page and frame tables
4.Restart the process

Presenter
Presentation Notes
Two obvious algorithms are: (MORE DETAIL ON THIS LATER)RandomPick any page to evictFIFOEvict the page that has been in memory the longest (use a queue to keep track)Give each page a “fair” (equal) use of memory

29

Page Replacement

Presenter
Presentation Notes
Follow 1, 2, 3, 4 to see what’s happening

30

Page Replacement Algorithms
Want lowest page-fault rate
Evaluate algorithm by running it on a particular
string of memory references (reference string)
and computing the number of page faults on
that string

In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Presenter
Presentation Notes
This is a method for EVALUATING algorithmsReference string could by synthetic, or could be from an execution traceTwo obvious algorithms are:RandomPick any page to evictFIFOEvict the page that has been in memory the longest (use a queue to keep track)Give each page a “fair” (equal) use of memory

31

Graph of Page Faults Versus The
Number of Frames

Presenter
Presentation Notes
In general, this is what we’d expect1 or 2 frames would give a lot of page faultsMore frames gives more freedom equally less page faults

32

First-In-First-Out (FIFO) Algorithm
Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
3 frames (3 pages can be in memory at a time
per process)

4 frames
Belady’s Anomaly: more frames ⇒ more page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

Presenter
Presentation Notes
LOOK AT EXAMPLE ON *NEXT* *SLIDE* FIRST, AND THEN COME BACK TO THIS ONETHIS IS *NOT* THE EXAMPLE IN THE BOOKThis is an anomaly — the “normal” expectation is that more frames gives less page faultsBut in some cases, for some algorithms, that is not the case!

33

FIFO Page Replacement

Presenter
Presentation Notes
THIS *IS* THE EXAMPLE IN THE BOOK

34

FIFO Illustrating Belady’s
Anomaly

35

Optimal Algorithm

Replace page that will not be used for
longest period of time

4 frames example
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1

2

3

4

6 page faults

4 5

Presenter
Presentation Notes
THIS IS *NOT* THE EXAMPLE IN THE BOOKOptimal (Minimal)Evict the page that will be referenced the farthest into the futureHow do you know this? Requires knowledge of future!Cannot really be implementedUseful for evaluating other policies

36

Optimal Page Replacement

Presenter
Presentation Notes
THIS *IS* THE EXAMPLE IN THE BOOK

37

Least Recently Used (LRU)
Algorithm

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
Counter implementation
 Every page entry has a counter; every time page is

referenced through this entry, copy the clock into
the counter

 When a page needs to be changed, look at the
counters to determine which are to change

5

2

4

3

1

2

3

4

1

2

5

4

1

2

5

3

1

2

4

3

Presenter
Presentation Notes
THIS IS *NOT* THE EXAMPLE IN THE BOOK Least-Recently-Used (LRU)Approximates OptimalUse the past to predict the futureEvict the page that has been unreferenced for the longest period of timeA perfect implementation would be something like this:Associate a clock register with every page in physical memoryUpdate the clock value at every accessDuring replacement, scan through all the pages and find the one with the lowest value in its clock registerWhat’s wrong with all this?Requires space for all those clock valuesSlow to store clock values in memory, search, etc.

38

LRU Page Replacement

Presenter
Presentation Notes
THIS *IS* THE EXAMPLE IN THE BOOK

39

LRU Algorithm (Cont.)
Stack implementation – keep a stack of
page numbers in a double link form:
 Page referenced:

move it to the top
requires 6 pointers to be changed

 No search for replacement

Presenter
Presentation Notes
Silberschatz discusses using stacks, which does a lot of pointer manipulationsEven this is too much overheadTo make LRU work, OS really needs hardware support

40

Use Of A Stack to Record The Most Recent
Page References

41

LRU Approximation Algorithms

Reference bit
 With each page associate a bit, initially = 0
 When page is referenced bit set to 1
 Replace the one which is 0 (if one exists)

We do not know the order, however

Presenter
Presentation Notes
Two algorithms that require hardware supportReference bit version is called Not-Recently-Used (NRU) in my notesCan clear the bit periodicallyClock / Second Chance Algorithm (see figure on next slide)Use an R (reference) bit as beforeOn a page fault, circle around the “clock” of all pages in the user memory poolStart after the page examined last timeIf the R bit for the page is set, clear itIf the R bit for the page is clear, replace that page and set the bit

42

LRU Approximation Algorithms

Second chance
 Need reference bit
 Clock replacement
 If page to be replaced (in clock order) has

reference bit = 1 then:
set reference bit 0
leave page in memory
replace next page (in clock order), subject
to same rules

43

Second-Chance (clock) Page-
Replacement Algorithm

Presenter
Presentation Notes
If it has a 1, it gets a second chance, not replaced now but replaced next time around

44

Counting Algorithms

Keep a counter of the number of references
that have been made to each page

LFU Algorithm: replaces page with smallest
count

MFU Algorithm: based on the argument that
the page with the smallest count was probably
just brought in and has yet to be used

Presenter
Presentation Notes
Least Frequently Used (LFU) / N-th Chance AlgorithmDon’t evict a page until hand has swept by N timesUse an R bit and a counterHow is N chosen? Large or small?N Large — better approximation to LRU, but takes longer to find a pageSmall — more efficient; find free page soonerLFU — doesn’t work well if used heavily at first, then not very much afterwardsThese aren’t common algorithms

45

Chapter 9: Virtual Memory
Background
Demand Paging
Copy-on-Write
Page Replacement
Allocation of Frames
Thrashing
Memory-Mapped Files
Allocating Kernel Memory
Other Considerations
Operating-System Examples

Presenter
Presentation Notes
How many frames does each process get (M frames, N processes)?At least 2 frames (one for instruction, one for memory operand), maybe more…Maximum is number in physical memoryAllocation algorithms:Equal allocationEach gets M / N framesProportional allocationNumber depends on size and priority

46

Allocation of Frames
Each process needs a minimum number of
pages
Example: IBM 370 – 6 pages to handle SS
MOVE instruction:
 instruction is 6 bytes, might span 2 pages
 2 pages to handle from
 2 pages to handle to

Two major allocation schemes
 fixed allocation
 priority allocation

Presenter
Presentation Notes
Fixed allocation algorithms:Equal allocationEach gets M / N framesProportional allocationNumber depends on size and priority

47

Fixed Allocation
Equal allocation – For example, if
there are 100 frames and 5 processes,
give each process 20 frames.
Proportional allocation – Allocate
according to the size of process

m
S
spa

m
sS

ps

i
ii

i

ii

×==

=
∑=

=

 for allocation

frames of number total

 process of size

5964
137
127

564
137
10
127
10
64

2

1

2

≈×=

≈×=

=
=
=

a

a

s
s
m

i

48

Priority Allocation
Use a proportional allocation scheme
using priorities rather than size

If process Pi generates a page fault,
 select for replacement one of its frames
 select for replacement a frame from a

process with lower priority number

49

Global vs. Local Allocation

Global replacement – process selects a
replacement frame from the set of all frames;
one process can take a frame from another
Local replacement – each process selects
from only its own set of allocated frames

Presenter
Presentation Notes
Which pool of frames is used for replacement?Local replacementProcess can only reuse its own framesGlobal replacementProcess can reuse any frame (even if used by another process)

50

Chapter 9: Virtual Memory
Background
Demand Paging
Copy-on-Write
Page Replacement
Allocation of Frames
Thrashing
Memory-Mapped Files
Allocating Kernel Memory
Other Considerations
Operating-System Examples

51

Thrashing
If a process does not have “enough” pages,
the page-fault rate is very high. This leads to:
 low CPU utilization
 operating system thinks that it needs to

increase the degree of multiprogramming
 another process is added to the system

Thrashing ≡ a process is kept busy swapping
pages in and out

52

Thrashing (Cont.)

53

Demand Paging and
Thrashing

Why does demand paging work?
Locality model
 Process migrates from one locality to

another
 Localities may overlap

Why does thrashing occur?
Σ size of locality > total memory size

54

Locality In A Memory-Reference
Pattern

55

Working-Set Model
∆ ≡ working-set window ≡ a fixed number of page
references
Example: 10,000 instruction
WSSi (working set of Process Pi) = total number of
pages referenced in the most recent ∆ (varies in time)
 if ∆ too small will not encompass entire locality
 if ∆ too large will encompass several localities
 if ∆ = ∞ ⇒ will encompass entire program

D = Σ WSSi ≡ total demand frames
if D > m ⇒ Thrashing - (m is nr of available frames)
Policy if D > m, then suspend one of the processes

Presenter
Presentation Notes
See figure on next slide, with delta = 10m = number of available frames

56

Working-set model

Presenter
Presentation Notes
So 1 needs 5 frames, 2 needs 2 framesGive each process enough frames to hold its working setIf there are free frames available, other processes can startIf there are no free frames, any new process will cause old one to be swapped out

57

Keeping Track of the Working Set
Approximate with interval timer + a reference bit
Example: ∆ = 10,000
 Timer interrupts after every 5000 time units
 Keep in memory 2 bits for each page
 Whenever a timer interrupts copy and sets the

values of all reference bits to 0
 If one of the bits in memory = 1 ⇒ page in working

set
Why is this not completely accurate?
Improvement = 10 bits and interrupt every 1000
time units

Presenter
Presentation Notes
Not accurate = can’t tell where in the 5000 time units the reference occurred

58

Page-Fault Frequency Scheme
Establish “acceptable” page-fault rate
 If actual rate too low, process loses frame
 If actual rate too high, process gains frame

Presenter
Presentation Notes
Goal is to prevent thrashing

59

Working Sets and Page Fault
Rates

60

Chapter 9: Virtual Memory
Background
Demand Paging
Copy-on-Write
Page Replacement
Allocation of Frames
Thrashing
Memory-Mapped Files
Allocating Kernel Memory
Other Considerations
Operating-System Examples

Presenter
Presentation Notes
SKIP THIS SECTION

61

Memory-Mapped Files

Memory-mapped file I/O allows file I/O to be
treated as routine memory access by mapping
a disk block to a page in memory
A file is initially read using demand paging. A
page-sized portion of the file is read from the
file system into a physical page. Subsequent
reads/writes to/from the file are treated as
ordinary memory accesses.

Presenter
Presentation Notes
SKIP THIS SECTION

62

Memory-Mapped Files

Simplifies file access by treating file I/O
through memory rather than read()
write() system calls
Also allows several processes to map the
same file allowing the pages in memory to
be shared

63

Memory Mapped Files

Presenter
Presentation Notes
SKIP THIS SECTION

64

Memory-Mapped Shared Memory
in Windows

Presenter
Presentation Notes
SKIP THIS SECTION

65

Chapter 9: Virtual Memory
Background
Demand Paging
Copy-on-Write
Page Replacement
Allocation of Frames
Thrashing
Memory-Mapped Files
Allocating Kernel Memory
Other Considerations
Operating-System Examples

Presenter
Presentation Notes
SKIP THIS SECTION

66

Allocating Kernel Memory
Treated differently from user memory
Often allocated from a free-memory pool
 Kernel requests memory for structures of

varying sizes
 Some kernel memory needs to be contiguous

Presenter
Presentation Notes
SKIP THIS SECTION

67

Buddy System
Allocates memory from fixed-size segment
consisting of physically-contiguous pages
Memory allocated using power-of-2 allocator
 Satisfies requests in units sized as power of 2
 Request rounded to next highest power of 2
 When smaller allocation needed than is

available, current chunk split into two buddies
of next-lower power of 2

Continue until appropriate sized chunk
available

Presenter
Presentation Notes
SKIP THIS SECTION

68

Buddy System Allocator

Presenter
Presentation Notes
SKIP THIS SECTION

69

Slab Allocator

Alternate strategy
Slab is one or more physically contiguous pages
Cache consists of one or more slabs
Single cache for each unique kernel data structure
 Each cache filled with objects – instantiations of

the data structure

Presenter
Presentation Notes
SKIP THIS SECTION

70

Slab Allocator

When cache is created, it is filled with objects
marked as free
When structures are stored, objects marked as
used
If slab is full of used objects, the next object is
allocated from an empty slab
 If there are no empty slabs, a new slab

allocated
Benefits include no fragmentation, fast memory
request satisfaction

71

Slab Allocation

Presenter
Presentation Notes
SKIP THIS SECTION

72

Chapter 9: Virtual Memory
Background
Demand Paging
Copy-on-Write
Page Replacement
Allocation of Frames
Thrashing
Memory-Mapped Files
Allocating Kernel Memory
Other Considerations
Operating-System Examples

73

Other Issues -- Prepaging
Prepaging
 To reduce the large number of page faults that

occurs at process startup
 Prepage all or some of the pages a process will

need, before they are referenced
 But if prepaged pages are unused, I/O and memory

was wasted
 Assume s pages are prepaged and α of the pages

is used
Is cost of s * α save pages faults > or < than the
cost of prepaging
s * (1- α) unnecessary pages?
α near zero ⇒ prepaging loses

Presenter
Presentation Notes
MY SLIDES CALLED THIS “LOADING A NEW PROCESS”

74

Other Issues – Page Size
Page size selection must take into
consideration:
 fragmentation
 table size
 I/O overhead
 locality

Presenter
Presentation Notes
SKIP

75

Other Issues – TLB Reach

TLB Reach - The amount of memory accessible from
the TLB
TLB Reach = (TLB Size) X (Page Size)
Ideally, the working set of each process is stored in
the TLB
 Otherwise there is a high degree of page faults

Presenter
Presentation Notes
SKIP ALL THE SLDIES FROM THIS POINT ON

76

Increase the Page Size
 This may lead to an increase in fragmentation

as not all applications require a large page
size

Provide Multiple Page Sizes
 This allows applications that require larger

page sizes the opportunity to use them
without an increase in fragmentation

77

Other Issues – Program
Structure

Program structure
 Int[128,128] data;
 Each row is stored in one page
 Program 1
for (j = 0; j <128; j++)

for (i = 0; i < 128; i++)
data[i,j] = 0;

128 x 128 = 16,384 page faults

78

Other Issues – Program
Structure

 Program 2
for (i = 0; i < 128; i++)

for (j = 0; j < 128; j++)
data[i,j] = 0;

128 page faults in contrast to 128 x 128
= 16,384 page faults !

79

Other Issues – I/O interlock

I/O Interlock – Pages must sometimes be
locked into memory

Consider I/O - Pages that are used for copying
a file from a device must be locked from being
selected for eviction by a page replacement
algorithm

80

Reason Why Frames Used For I/O
Must Be In Memory

81

Chapter 9: Virtual Memory
Background
Demand Paging
Copy-on-Write
Page Replacement
Allocation of Frames
Thrashing
Memory-Mapped Files
Allocating Kernel Memory
Other Considerations
Operating-System Examples

82

Operating System Examples
Windows XP

Solaris

83

Windows XP

Uses demand paging with clustering.
Clustering brings in pages surrounding the
faulting page
Processes are assigned a working set
minimum and working set maximum
Working set minimum is the minimum
number of pages the process is guaranteed
to have in memory

84

A process may be assigned as many
pages up to its working set maximum
When the amount of free memory in the
system falls below a threshold, automatic
working set trimming is performed to
restore the amount of free memory
Working set trimming removes pages from
processes that have pages in excess of
their working set minimum

85

Solaris

Maintains a list of free pages to assign
faulting processes
Lotsfree – threshold parameter (amount of
free memory) to begin paging
Desfree – threshold parameter to increasing
paging
Minfree – threshold parameter to being
swapping

86

Paging is performed by a pageout process
Pageout scans pages using modified clock
algorithm
Scanrate is the rate at which pages are
scanned. This ranges from slowscan to
fastscan
Pageout is called more frequently
depending upon the amount of free
memory available

87

Solaris 2 Page Scanner

88

End of Chapter 9

	Chapter 9: Virtual Memory
	Sections Covered in Chapter
	Chapter 9: Virtual Memory
	Objectives
	Background
	Virtual Memory That is Larger Than Physical Memory
	Virtual-address Space
	Shared Library Using Virtual Memory
	Chapter 9: Virtual Memory
	Demand Paging
	Transfer of a Paged Memory to Contiguous Disk Space
	Valid-Invalid Bit
	Page Table When Some Pages Are Not in Main Memory
	Page Fault
	Page Fault (Cont.)
	Steps in Handling a Page Fault
	Performance of Demand Paging
	Demand Paging Example
	Process Creation
	Chapter 9: Virtual Memory
	Copy-on-Write
	Before Process 1 Modifies Page C
	After Process 1 Modifies Page C
	Chapter 9: Virtual Memory
	What happens if there is no free frame?
	Page Replacement
	Need For Page Replacement
	Basic Page Replacement
	Page Replacement
	Page Replacement Algorithms
	Graph of Page Faults Versus The Number of Frames
	First-In-First-Out (FIFO) Algorithm
	FIFO Page Replacement
	FIFO Illustrating Belady’s Anomaly
	Optimal Algorithm
	Optimal Page Replacement
	Least Recently Used (LRU) Algorithm
	LRU Page Replacement
	LRU Algorithm (Cont.)
	Use Of A Stack to Record The Most Recent Page References
	LRU Approximation Algorithms
	LRU Approximation Algorithms
	Second-Chance (clock) Page-Replacement Algorithm
	Counting Algorithms
	Chapter 9: Virtual Memory
	Allocation of Frames
	Fixed Allocation
	Priority Allocation
	Global vs. Local Allocation
	Chapter 9: Virtual Memory
	Thrashing
	Thrashing (Cont.)
	Demand Paging and Thrashing
	Locality In A Memory-Reference Pattern
	Working-Set Model
	Working-set model
	Keeping Track of the Working Set
	Page-Fault Frequency Scheme
	Working Sets and Page Fault Rates
	Chapter 9: Virtual Memory
	Memory-Mapped Files
	Memory-Mapped Files
	Memory Mapped Files
	Memory-Mapped Shared Memory in Windows
	Chapter 9: Virtual Memory
	Allocating Kernel Memory
	Buddy System
	Buddy System Allocator
	Slab Allocator
	Slab Allocator
	Slab Allocation
	Chapter 9: Virtual Memory
	Other Issues -- Prepaging
	Other Issues – Page Size
	Other Issues – TLB Reach
	Slide Number 76
	Other Issues – Program Structure
	Other Issues – Program Structure
	Other Issues – I/O interlock
	Reason Why Frames Used For I/O Must Be In Memory
	Chapter 9: Virtual Memory
	Operating System Examples
	Windows XP
	Slide Number 84
	Solaris
	Slide Number 86
	Solaris 2 Page Scanner
	End of Chapter 9

