
Hypercubes
(Chapter Nine)

Mesh Shortcomings:
• Due to its simplicity and regular structure,

the mesh is attractive, both theoretically
and practically.

• A problem with the mesh is that movement
of data is inherently slow, due to its large
diameter of O n .

• However, optimal algorithms for many
problems that does not involve long data
movements (e.g., image processing) can be
designed for a mesh.

• Approaches to increasing communication
speed (including data movement):
 Going to a higher dimensional mesh

will provide some speedup.
 E.g., the diameter of the 3D mesh

is O 3 n , which is smaller.

1

 Modify mesh by replacing or
augmenting some of its edges.
 Mesh of Trees (see Chapters 2 &

8 of Akl’s textbook)
 Pyramid (see Chapters 2 & 8 of

Akl’s textbook)
 Modify the mesh by adding buses (see

Ch. 10 of Akl’s textbook).
 Use a different network with a smaller

diameter.
 Hypercube
 Perfect Shuffle
 Cube-Connected cycles
 de Bruijn
 Star

Hypercube Features
• The diameter of the hypercube is Olgn.
• Hypercubes of dimension 0, 1, 2, 3, and 4

are shown in Figure 2.16 of Akl’s
textbook.

• A hypercube of dimension g ≥ 0 has
N  2g processors P0, P1, ... ,PN−1.

2

• Each index i for a processor Pi can be
expressed in binary as follows:

i  ig−1ig−2. . . i0

• For b  0,1, . . . ,g − 1, let index ib have
the same binary representation as i except
that its bit b is complemented.

• Then,
ib  ig−1ig−2. . . ib1ib

′ ib−1. . . i0

where ib
′ is the binary complement of ib.

• A g-dimensional hypercube connects
processor Pi to processors
Pi0 ,Pi1 , . . . ,Pig−1 using a 2-way link.i

Prefix Operations on the
Hypercube
• Sometimes called ”Recursive Doubling”
• Let P0,P1, . . . ,Pn−1 be a hypercube with a

number xi in Pi.
• For 0 ≤ i ≤ n − 1, assume each Pi has two

registers Ai and Bi.
• Initially both Ai and Bi contain xi.
• Let ∗ be an associative binary operation

3

(e.g., , , min, max)
• When the algorithm terminates, Ai

contains x0 ∗ x1 ∗. . .∗xi.
• Hypercube Prefix Operations Algorithm

(See Example 2.5)
 For j  0 to logn − 1 do

 For all i with 0 ≤ i ≤ n − 1 and
i  ij do in parallel
1. Aij ← Aij ∗ Bi

2. Bij ← Bij ∗ Bi

3. Bi ← Bij

 end for
 end for

• Figure 2.21 illustrates the prefix sum
algorithm for n  8.
 Ai and Bi are shown as the top and

bottom registers of Pi.
 Xij denotes xi  xi1 . . .xj.
 When the algorithm terminates,

Ai  X0iwhile Bi  X0,n−1.

4

5

•  The running time of the prefix
operations algorithm is
tn  Ologn

 Its cost is cn  On logn.
 While its cost is not optimal, an

optimal algorithm can be designed, as
with the PRAM prefix sum, but this
may require the use of ”partial
hypercubes”.

Sequential Matrix Products
• Let A and B be n  n matrices and

C  A  B.
• A lower bound on the number of

operations required to compute C is n2,
as any algorithm must produce the n2

values in C.
 This is also the best (i.e., largest)

known lower bound.
• Currently, the fastest known RAM

algorithm for calculating C requires
On2.38 time.

• Since C has n2 entries and each entry is a

6

sum of n products, a straight-forward
RAM algorithm requires On3 time.

Parallel Matrix Multiplication
1. Why Choose Matrix Multiplication?

• Matrix multiplication is used as an
example of a typical algorithm on
the hypercube model.

• Nothing is special about matrix
multiplication that favors its
implementation on the hypercube.

• Its inclusion here allows the
usefulness of parallel matrix multip
lication in other algorithms to be
demonstrated later in this chapter.

2. Let A and B be n  n matrices and
C  A  B.

3. The algorithm given assumes that n is
a power of 2 and uses a hypercube
with N  n3 PEs.
• Aside: In cases where n is not a

power of 2, we either
 use n ′ in place of n where n ′ is

7

the smallest power of 2 with
n ′  n.

 use the theory of ”partial
hypercubes” to minimize the
number of processors needed.

• N and n are powers of 2 and may
be expressed as n  2g and
N  23g.

• PEs will be visualized in 3D-space
in a n  n  n array with processor
Pr in position i, j,k, where

r  in2  jn  k
and 0 ≤ i, j,k  n.

• The processor Pr at position i, j,k
is denoted as Pi, j,k.

• If Pr  Pi, j,k and r has the binary
representation

r  r3g−1r3g−2 ...r1r0

then the indices i, j,k and r are
related as follows:

8

i  r3g−1r3g−2 ...r2g

j  r2g−1r2g−2 ...rg

k  rg−1rg−2 ...r0

• All PEs with the same fixed value
in one of the 3 coordinates (i.e.,
i, j,k) form a hypercube of n2 PEs.

• All PEs with fixed values in 2 fixed
coordinates (i.e., i, j,k) form a
hypercube of n PEs.

• Assume each Pr has three
registers Ar, Br, and Cr, which are
denoted by

Ai, j,k, Bi, j,k, and Ci, j,k.
• Initially, the processors in the base

plane contain the matrices A and
B. In particular,
 register A0, j,k contains the

element ajk of matrix A
 register B0, j,k contains the

element bjk of matrix B.
 All other registers are

9

initialized to 0.
• At the end of the computation,

matrix C is stored in the base
plane with cjk in C0, j,k.

4. Algorithm Hypercube Matrix
Multiplication has three major steps.
a. Distribute the elements of A and B

over the n3 PEs so that Ai, j,k
contains aji and Bi, j,k contains
bik for all i, j, and k, as follows:
• Copy A0, j,k plane to Ai, j,k

so that Ai, j,k  ajk for all i
using recursive doubling in
O(lgn) time.
 The nr. of planes copied

doubles at each step.
• Likewise, copy plane B0, j,k

to Bi, j,k for all i so that
Bi, j,k  bjk.

• On each plane i, perform the
next step so that Ai, j,k  aji
for all j and k with 0 ≤ j,k  n.
 On ithplane, copy the

10

ith column into each
column.

 Takes lgn steps using
recursive doubling.

 These actions occur on
hypercubes of n2 PEs

 Look at subsequent 3D
diagram of PEs to follow
this action geometrically.

• On each plane i, perform the
next step so that Bi, j,k  bik
for all j and k with 0 ≤ j,k  n.
 On ithplane, copy the

ith row into each row.
 Takes lgn steps using

recursive doubling.
 The actions occur on

hypercubes of n2 PEs
 Look at subsequent 3D

diagram of PEs to follow
this action geometrically.

b. Each PE on plane i computes the
product

11

Ar  Br  aji  bik

and places result in Cr in one time
step.

c. Compute the sum

C0, j,k ←∑
i0

n−1

Ci, j,k

for 0 ≤ j,k ≤ n − 1 as follows:
• The values Ci, j,k to be

summed to get cjk have been
stacked vertically above
position 0, j,k.

• All prefix sums from top to
bottom are computed
simultaneously and placed in
position C0, j,k
 This procedure is

somewhat the reverse of
the recursive doubling
procedure for planes

• These sums are calculated on
hypercubes of n PEs.

12

• This step takes lgn steps.
5. Analysis: The algorithm takes Olgn

steps using n3 PEs.
The cost of On3 lgn is
non-optimal, but the algorithm is
very fast.

6. Diagram for 3-D visualization of the
hypercube

13

——————————————————
Matrix Transposition
• Definitions:

 Let A  aij be an n  n matrix.
 The transpose of A is

AT  aij
T

14

where aij
T  aji for 1 ≤ i, j ≤ n.

• Hypercube Setup for Computing
Transpose
 We assume n is a power of 2, say

n  2q

 The hypercube used has N  n2  22q

processors
 Aside: In cases where n is not a power

of 2, we either
1. •   use n ′ in place of n where

n ′ is the smallest power of
2 with n ′  n.

 use the theory of ’partial
hypercubes’ to minimize
the number of processors
needed.

•  This hypercube is identified with an
n  n mesh and Pr is denoted Pi, j
where

r  in  j and 0 ≤ i, j ≤ n − 1
 If the binary representation of r is

15

r  r2q−1r2q−2. . . rqrq−1. . . r0

then binary representation of i and j is
the first half and second half of r’s
representation, namely

i  r2q−1r2q−2. . . rq

j  rq−1rq−2. . . r0

 When the algorithm terminates, aij is
stored in Ps  Pj, i with s  jn  i.

 Note that aij can be routed from
Pr  Pi, j to Pj, i with at most 2q
steps.
 Check one bit of r each step and

complement it, if needed.
 The algorithm will follow a

different, recursive movement
• Algorithm Preliminaries:

 Each processor Pr has registers Ar and
Br.

 Register Ar initially holds aij where
r  in  j and 0 ≤ i, j  n.

 When the algorithm terminates, Ar

16

holds aij
T  aji.

 Recall binary indexes rb and r differ
only in position b.

 Pr uses an additional register Br for
routing data.

 The algorithm is easily stated but
difficult to interprete. A simple
recursive explanation is given below.

• Hypercube Matrix Transpose (A)
For m  2q − 1 down to q do
For u  0 to N − 1 do in parallel

(1) If um ≠ um−q
then Bum ← Au

(2) If um  um−q
then Aum−q ← Bu

• Recursive Explanation of Action of
Algorithm

 Divide an n  n matrix into four
n
2  n

2 submatrices

17

 | 

− − ↗↙ − −

 | 

 The first iteration of algorithm (i.e,
m  2q − 1 swaps the
corresponding elements in the
upper right and lower left
submatrices, leaving other
submatrices untouched.
 Step (1) moves each element

in the A register of darken
matrices to the corresponding
B register of the undarken
matrix directly above or below
it.

 Step (2) moves each element
in the B register of the
undarken matrix to the
corresponding darken matrix to
its right or left

 In each successive iteration,

18

proceed recursively with the
matrices created in the previous
iteration.
 The number of submatrices

increase by a factor of 4.
 All submatrices are processed

in parallel.
 Each submatrix is processed

using the same procedure
used in first iteration. (e.g.,
divide each into four
submatrices, etc.)

 An example on pg 372-3 of Akl’s
textbook gives full details. The
initial matrix and the one produced
at the end of each of the two
interations are as follows:

19

1 b c d

e 2 f g

h v 3 w

x y z 4

→

1 b h v

e 2 x y

c d 3 w

f g z 4

→

1 e h x

b 2 v y

c f 3 z

d g w 4

• Analysis of Matrix Transposition
 Algorithm consists of q constant time

iterations, so tn  Olgn.
 Since pn  n2, the cost

cn  On2 lgn.
 The cost is not optimal.

 To see this, note that there are
n2 − n  nn − 1 elements off the
main diagonal.

 Swapping each pair of elements
aij and aji off the main diagonal
sequentially requires nn − 1/2 or
On2 swaps.

————————————————
Computing the Connectivity
Matrix

20

• Recall the adjacency matrix of a graph G
with n vertices is an n  n matrix A  aij
defined by

ai 
1 if vi is connected to vj

0 otherwise

• The connectivity matrix of a (directed or
undirected) graph G with n vertices is an
n  n matrix C  cij defined by

cij 

1 if ∃ a path from vi to vj

1 if i  j
0 otherwise

• Problem: Given the adjacency matrix A,
determine how to compute the connectivity
matrix C.

• An algorithm to compute the adjacency
matrix will be developed next.

• Boolean Matrix Multiplication:
 Defined for binary matrices
 Product is the same as for ordinary

21

matrices, except that the binary
operations “” and “” are replaced
with “and” (denoted ∧) and “or”
(denoted ∨), respectively.

 Binary Operation Facts:
0 ∧ 0  0 ∧ 1  1 ∧ 0  0
1 ∧ 1  1
0 ∨ 0  0
0 ∨ 1  1 ∨ 0  1 ∨ 1  1

• Define n  n boolean matrix B  bij as
follows: B is identical to the adjacency
matrix A except that it has 1’s on its main
diagonal.
 Note that an element bij equals 1 if

and only if there is a path from vi to vj
of length ≤ 1.

• The matrix B is said to represent all paths
of length at most 1.

• Matrix B2 represents all paths of length at
most 2. See Figure 9.5 from Text below:

22

• Matrix B3 represents all paths of length (by
same argument as in Fig. 9.5 for B2  B.)

• In general, Bk represents all paths of length
at most k.

• Since graph has only n vertices, each path
can be assumed to have length at most
n − 1; hence,

Bk  C for all k ≥ n − 1
• Let k  ⌈lgn − 1⌉. Then k is the smallest

integer with 2k ≥ n − 1.
• Hypercube Connectivity Algorithm

 The connectivity matrix C is
computed using k  ⌈lgn − 1⌉

23

binary matrix products, as follows:
B2 ← B  B
B22 ← B2  B2

B23 ← B22  B22

........................
B2k ← B2k−1  B2k−1

C ← B2k

 Please study the pseudocode
description of this algorithm on pg 377
of Akl’s textbook.

• The Hypercube Matrix Multiplication
Algorithm used here requires that the
matrix being squared be stored in both the
A0, j,k and B0, j,k registers prior to
each iteration.

• The product matrix obtained in each
iteration has its values stored in the
C0. , j,k register.

• Analysis of Algorithm Hypercube
Connectivity:
 A modified version of Hypercube

Matrix Multiplication is used

24

⌈lgn − 1⌉ times.
 Since the Hypercube Matrix

Multiplication runs in Olgn time, the
running time of the Hypercube
Connectivity Algorithm is Olg2n

 Since pn  n3, its cost is On3 lg2n
————————————————

Connected Components
• We assume that G is a undirected graph.
• Consider row i of the connectivity matrix

C.
 It identifies all of the vertices vj that

are connected to vi by a path.
 Then all the vertices connected to vi

(i.e., as identified by the 1’s in row i)
is a connected component in the
graph.

 Let l be the smallest index with
cil  1. Then ”l” is the name given to
the connected component in the graph
containing vi.

• We define an n  n matrix D as follows:

25

dij 
vj if cij  1
0 otherwise

• Connected Component Implementation
Details:
 Assume the same registers as for the

Hypercube Connectivity Algorithm.
 The matrix D is computed in the

registers C0, j,k in processors
P0, j,k.

 Initially, A0, j,k contains the
adjacency matrix entry ajk.

 At the end of Step 2 of the
computation,
 Dj,k is stored in C0, j,k.
 Dj, 0  C0, j, 0 contains the

component number for the vertex
vj.

 For each k  0, Dj,k contains
the vertices in the component for
vertex vj.
 Clearly, vertex v0 is in the

26

component for vertex vj if
Dj, 0  0.

 The n  n matrix E is defined to be
identical to D except for the first
column. The value Ej, 0 in the first
column of row j contains the label
name for the connected component in
row j.
 Clearly, v0 is in the first column

of Dj, 0 exactly when
Ej, 0  0, so E contains all of
the information in D, but is more
useful.

 At the end of Step 3 of the matrix
entry Ej,k is stored in register
C0, j,k.

• Hypercube Connected Components
(A,C)
Step 1: Hypercube Connectivity (A,C)
Step 2: For j  0 to n − 1 do in

parallel
For k  0 to n − 1 do in

parallel

27

if C0, j,k  1
then C0, j,k ← vk

Step 3: For j  0 to n − 1 do in
parallel

(i) The n processors in row j
find the smallest l with
C0, j, l ≠ 0

(ii) C0, j, 0 ← l
• Figure 9.6 follows:

28

29

• Note that matrix E can be obtained from
matrix D in Figure 9.6 by replacing the
first column of D with the vector
0,1,0,1,0,0,1 of component labels.

• Time and Cost Analysis
 Step 1 takes Olg2n time
 Step 2 takes constant time
 The first part of Step 3 involves

finding a minimum value in a
hypercube with n elements.
 Uses the hypercube prefix

minimium operation along each
row j in processors P0, j,k.
 Same as Step 3 of Hypercube

Matrix Multiply, except use
min instead of .

 Also, see Hypercube Prefix
Sum in section 2.3

 Takes Olgn time
 The second part of Step 3 takes

constant time.
 The running time is tn  Olgn
 Since pn  n3, the cost is

30

cn  On3 lg2n

COMMENTS ABOUT PRESENTATION:

• Some of the details in this presentation
have been suppressed so that while the
basic concepts are captured, the time spent
trying to figure out details such as the
precise representation of indices, etc.is
minimized.

• The algorithms are captured at a
sufficiently low level to demonstrate real
algorithm and not just a high-level
overview of it.

• More details are included in textbook
coverage.

31

