Linear Arrays Chapter 7

- **1.** Basics for the linear array computational model.
 - a. A diagram for this model is

 $P_1 \leftrightarrow P_2 \leftrightarrow P_3 \leftrightarrow \ldots \leftrightarrow P_k$

- **b.** It is the simplest of all models that allow some form of communication between PEs.
- **c.** Each processor only communicates with its right or left neighbor.
- **d.** We assume that the two-way links between adjacent PEs can transmit a constant nr of items (e.g., a word) in constant time
- e. Algorithms derived for the linear array are very useful, as they can

can be implemented with the same running time on most other models.

- f. Due to the simplicity of the linear array, a copy with the same number of nodes can be embedded into the meshes, hypercube, and most other interconnection networks.
 - This allows its algorithms to executed in same running time by these models.
 - The linear array is weaker than these models.
- **g.** PRAM can simulate this model (and all other fixed interconnection networks) in unit time (using shared memory).
 - PRAM is a more powerful model than this model and other fixed interconnection network models.
- h. Model is very scalable: If one can

build a linear array with a certain clock frequency, then one can also build a very long linear array with the same clock frequency.

- i. We assume that the two-way link between two adjacent processors has enough bandwidth to allow a constant number of data transfers between two processors simultaneously
 - E.g., P_i can send two values a and b to P_{i+1} and simultaneously receive two values d and e from P_{i+1}
 - We represent this by drawing multiple one-way links between processors.
- **2.** Sorting assumptions:
 - **a.** Let $S = \{s_1, s_2, \dots, s_n\}$ be a sequence of numbers.
 - **b.** The elements of *S* are not all available at once, but arrive one at a time from some input device.

- **c.** They have to be sorted "on the fly" as they arrive
- **d.** This places a lower bound of $\Omega(n)$ on the running time.
- 3. Linear Array Comparison-Exchange Sort
 - **a. Figure 7.1** illustrates this algorithm:
 - $\begin{array}{ll} \dots s_3 s_2 s_1 \\ a \in P_1 \rightleftarrows P_2 \rightleftarrows \dots \rightleftarrows P_k \\ output \end{array}$
 - **b.** The first phase requires n steps to read one element s_i at a time at P_1 .
 - **c.** The implementation of this algorithm in the textbook require *n* PEs but only PEs with odd indices do any compare-exchanges.
 - **d.** The implementation given here for this algorithm uses only $k = \lceil n/2 \rceil$ PEs but has storage for two numbers, *upper* and *lower*.
 - e. During the first step of the input

phase, P_1 reads the first element s_1 into its *upper* variable.

- **f.** During the *jth* step (j > 1) of the **input phase**
 - Each of the PEs P_1, P_2, \ldots, P_j with two numbers compare them and swaps them if the *upper* is less than the *lower*.
 - A PE with only one number moves it into *lower* to wait for another number to arrive.
 - The content of all PEs with a value in *upper* are shifted one place to the right and *P*₁reads the the next input value into its *upper* variable.
- g. During the output phase,
 - Each PE with two numbers compares them and swaps them if if *upper* is less than *lower*.
 - A PE with only one number moves it into *lower*.

- The content of all PEs with a value in *lower* are shifted one place to the left, with the value from *P*₁being output
- numbers in *lower* move right-to-left, while numbers in *upper* remain in place.
- **h. Property:** Following the execution of the first (i.e., comparison) step in either phase, the number in *lower* in P_i is the minimum of all numbers in P_j for $j \ge i$ (i.e., in P_i or to the right of P_i).
 - i. The sorted numbers are output through the *lower* variable in P_1 with smaller numbers first.
 - **j.** Algorithm analysis:
 - The running time, t(n) = O(n)is optimal since inputs arrive one at a time.
 - The cost, c(t) = O(n²) is not optimal as sequential sorting requires O(nlgn)

4. Sorting by Merging

- a. Idea is the same as used in PRAM SORT: several merging steps are overlapped and executed in pipeline fashion.
- **b.** Let $n = 2^r$. Then $r = \lg(n)$ merge steps are required to sort a sequence of *n* nrs.
- **c.** Merging two sorted subsequences of length *m* produces a sorted subsequence of length 2*m*.
- **d.** Assume the input is $S = \{s_1, s_2, \dots, s_n\}.$
- e. Configuration: We assume that each PE sends its output to the PE to its right along either an upper or lower line.

input $\rightarrow P_1 \Rightarrow P_2 \Rightarrow \ldots \Rightarrow P_{r+1} \rightarrow$ output

- Note lg(n) + 1 PEs are needed since P₁ does not merge.
- **f.** Algorithm Step j for P_1 for $1 \le j \le n$.
 - P_1 receives s_j and sends it to

 P_2 on the top line if j is odd and on bottom line otherwise.

g. Algorithm Steps for P_i for

 $2 \le i \le r+1.$

- i. Two sequences of length 2^{i-2} are sent from P_{i-1} to P_i on different lines.
- ii. The two subsequences are merged by P_i into one sequence of length 2^{i-1} .
- iii. Each P_i starts producing output on its top line as soon as it has received top subsequence and first element of the bottom subsequence.
- h. Example: See Example 7.2 and (Figure 7.4 or my expansion of it).

Figure 7.4: Sorting by merging in a pipeline on a linear array: (a) u = 1; (b) u = 3; (c) u = 5; (d) u = 7; (e) u = 10; (f) u = 11; (g) u = 13.

i. Analysis:

- P_1 produces its first output at time t = 1.
- For *i* > 1, *P_i* requires a subseqence of size 2^{*i*-2} on top line and another of size 1 on bottom line before merging begins.
- P_i begins operating $2^{i-2} + 1$ time units after P_{i-1} starts, or when

$$t = 1 + (2^{0}+1) + (2^{1}+1) + \dots + (2^{i-2}+1)$$
$$= 2^{i-1} + i - 1$$

- *P_i* terminates its operation
 n 1 time units after its first output.
- P_{r+1} terminates last at time

$$t = (2^r + r) + (n - 1)$$

$$= 2n + \lg n - 1$$

- Then t(n) = O(n).
- Since $p(n) = 1 + \lg n$, the cost

 $C(n) = O(n \lg n),$

which is optimal since $\Omega(n \lg n)$ is a lower bound on sorting.

 Two of H.T.Kung's linear algebra algorithms for special purpose arrays (called systolic circuits) are given next.

6. Matrix by vector multiplication:

a. Multiplying an $m \times n$ matrix *A* by a $n \times 1$ column vector *u* produces an $m \times 1$ column vector

$$v = (v_1, v_2, \ldots, v_m).$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix}$$

b. Recall that

$$v_i = \sum_{j=1}^n a_{i,j} u_j$$
 for $1 \le i \le m$

c. Processor P_i is used to compute

 v_i .

- **d.** Matrix *A* and vector *u* are fed to the array of processors (for m = 4 and n = 5) as indicated in Figure 7.5
- e. See Figure 7.5

Figure 7.5: Multiplying a matrix by a ve

f. Note that processor P_i computes

 $v_i \leftarrow v_i + a_{ij}u_j$

and then sends u_j to P_{i-1} .

g. Analysis:

- $a_{1,1}$ reaches P_1 in m-1 steps.
- Total time for $a_{1,n}$ to reach P_1 is m + n 2 steps.
- Computation is finished one step later, or in m + n 1 steps.
- t(n) = O(n) if m is O(n).
- $c(n) = O(n^2)$
- Cost is optimal, since each of the Θ(n²) input values must be read and used.
- 7. Observation: Multiplication of an $m \times n$ matrix *A* by a $n \times p$ matrix *B* can be handled in either of the following ways:
 - **a.** Split the matrix *B* into *p* columns and use the linear array of PEs *p* times (once for each column).
 - **b.** Replicate the linear array of PEs *p* times and simultaneously compute

all columns.

8. Solutions of Triangular Systems

- (H.J. Kung)
 - **a.** A *lower triangular matrix* is a square matrix where all entries above the main diagonal are 0.
 - **b.** Problem: Given an $n \times n$ lower triangular matrix A and an $n \times 1$ column vector b, find an $n \times 1$ column vector x such that Ax = b.
 - c. Normal Sequential Solution:
 - *Forward substitution*: Solve the equations

$$a_{11}x_1 = b_1$$

 $a_{21}x_1 + a_{22}x_2 = b_2$
 $\dots = \dots$

 $a_{n1}x_1 + \ldots + a_{nn}x_n = b_n$

successively, substituting all values found for $x_{1,...,x_{i-1}}$ into the *i*th equation.

• This yields $x_1 = b_1/a_{11}$ and, in

general,

$$x_i = (b_i - \sum_{j=1}^{i-1} a_{ij} x_j)/a_{ii}$$

- The values for $x_1, x_2, \ldots, x_{i-1}$ are computed successively using this formula, with their values being found first and used in finding the value for x_i .
- This sequential solution runs in Θ(n²) time and is optimal since each of the Θ(n²) input values must be read and used
- d. Recurrence equation solution to system of equations: If

$$y_i^{(1)} = 0$$

and, in general,

$$y_i^{(j+1)} = y_i^{(j)} + a_{ij}x_i$$
 for $j < i$

then

$$x_i = (b_i - y_i^{(i)})/a_{ii}$$

e. Above claim is obvious if one

notes that expanding the recurrence relation for y_i^j (for j < i) yields

 $y_i^{(i)} = a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{i,i-1}x_{i-1}$

f. EXAMPLE: See my corrected handout for the following Figure 7.6 :

Figure 7.6: Setup for solving a triangular system of equations.

- **g.** Solution given for a triangular system when n = 4.
 - Example indicates the general formula.
 - In each time unit, one move plus local computations take place.
 - Each dot represents one time unit.
 - The y_i values are computed as they flow up through the array of PEs.
 - Each x_i value is computed at P₁ and its value is used in the recursive computation of the y_j values at each P_k as x_i flow downward through the array of processors.
 - Elements of *A* reach the PEs where they are needed at the appropriate time.
- h. General Algorithm Input to Array:

- The sequence y₁, y₂,..., y_n is initialized successively to 0 in P_n, separated by one time delay.
- The sequence of *i*th diagonal elements of A (starting with its main diagonal and continuing with the diagonals below the main diagonal), namely

 $a_{i1}, a_{i+1,2}, \ldots, a_{n,n-i+1}$

are fed into P_i , one element at a time, separated by one time delay. The first input starts after a delay of n + i - 2 time units.

- The elements b_1, b_2, \ldots, b_n are fed into P_1 , separated by one time unit delay. This input starts after a delay of n - 1 time units.
- The elements of x_1, x_2, \ldots, x_n are successively defined in P_1 ,

separated by one unit time delay. This input starts after a delay of n - 1 time units.

• When x_i reaches P_n , it exits the array as output.

i. General Algorithm -Computation in Array:

 The values x_i, a_{ii}, and b_i simultanenously arrive at P₁ and the (final) value of x_i is computed as follows:

$$x_i \leftarrow (b_i - y_i)/a_{ii}$$

• At P_1 , $y_0 = 0$ and y_i (for i > 1) is equal to

$$a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{i,i-1}x_{i-1}$$

This ensures that

$$x_i = (b_i - \sum_{j=1}^{i-1} a_{ij} x_j)/a_{ii},$$

which is the desired value.

• In the processor P_k for

 $2 \le k \le n$, the elements a_{ij}, x_j , and y_i arrive at the same time and P_k performs the following computation:

 $y_i \leftarrow y_i + a_{ij}x_j$

At this point, k = i - j + 1.

- j. First few steps of algorithm for n = 4 (See Figure 7.7 in Akl's book on pg 287)
 - In each step, some local computation and a move may occur.
 - At time u = 0, the initial input begins. Note that y_1 is set to 0 in P_4 .
 - At time u = 3 (column a), the values y₁, a₁₁, b₁reach P₁and are used to define x₁ as

 $x_1 \leftarrow (b_1 - y_1)/a_{11} = b_1/a_{11}$

At time u = 4 (column b), value x₁reaches P₂ and is used to update y₂

 $y_2 \leftarrow y_2 + a_{21}x_1 = a_{21}x_1$

• At time u = 5 (column c), values y_2, a_{22}, b_2 reach P_1 and are used to define x_2 as

 $x_2 \leftarrow (b_2 - y_2)/a_{22} = (b_1 - a_{21}x_1)/a_{22}$

Additionally, value x_1 reaches P_3 and is used to update y_3 as follows:

 $y_3 \leftarrow y_3 + a_{31}x_1 = a_{31}x_1$

- Value x_1 is output at u = 5 and x_2 is output at u = 7.
- Note that in Figure 7.7, only half of the processors are active at any time.
- **k.** See Figure 7.7 on page 287 of Akl's textbook

Figure 7.7: Solving a triangular system of equations on a linear array: (a) u = 3; (b) u = 4; (c) u = 5; (d) u = 6; (e) u = 7; (f) u = 8.

I. Algorithm Analysis:

- y_1 reaches P_1 in n-1 time units.
- *n* time units later, x_1 is output by P_n .
- Each remaining element of vector x is output at intervals of 2.
- t(n) = (n-1) + n + 2(n-1)= 4n - 3.
- $c(n) = (4n-3)(n) = 4n^2 3n$ or $\theta(n^2)$ which is optimal.
- **m.** Some Possible Time Improvement:
 - x_i can be output by P_1 , while a copy travels down the array, saving n-1 steps at the conclusion of the algorithm.
 - Recomputing above timing yields

 $t^*(n) = t(n) - (n-1) = 3n-2$

■ Additionally, there is no need to initially wait n – 1 steps for y₁ to reach P₁,

reducing the time to

 $t^{**}(n) = 2n - 1$

- Another possible variation: The b values can be fed to P_n instead of P_1 .
 - Then, y_i is initialized to b_i and the computation in P_k for k > 1 becomes

 $y_i \leftarrow y_i - a_{ij}x_j$.

The computation in P₁
 becomes

 $x_i \leftarrow y_i/a_{ii}$

• The utilization of PEs can be significantly improved by using an array of *n*/2 PEs and have each simulate two PEs in the algorithm

Possible Lecture Topics

1. Convolutions

a. Setting: Let

- $W = \{w_1, w_2, \dots, w_k\}$ be a sequence of weights.
- $X = \{x_1, x_2, \dots, x_n\}$ be an input sequence.
- **b.** The required output is the sequence

$$Y = \{y_1, y_2, \ldots, y_{n+1-k}\}$$

where

 $y_{1} = w_{1}x_{1} + w_{2}x_{2} + \dots + w_{k}x_{k}$ $y_{2} = w_{1}x_{2} + w_{2}x_{3} + \dots + w_{k}x_{k+1}$ $\dots = \dots$ $y_{i} = w_{1}x_{i} + w_{2}x_{i+1} + \dots + w_{k}x_{i+k-1}$ $\dots = \dots$

$$y_{n+1-k} = w_1 x_{n+1-k} + \ldots + w_k x_n$$

c. In particular, $Y = \{y_1, y_2, \dots, y_{n+1-k}\}$ where

$$y_i = \sum_{j=1}^k w_j x_{i+j-1}$$

d. Example 7.4 and Figure 7.8: Suppose we have 3 weights $\{w_1, w_2, w_3\}$ and 8 inputs $\{x_1, x_2, \ldots, x_8\}$. Then we may slide one sequence past the other to produce the output $\{y_1, y_2, \ldots, y_6\}$ as follows:

 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8

e. Sequentially, the sequence Y can be computed in

 $(n+1-k) \times k = \theta(nk)$ time

- Four Algorithm Approaches in Text:
 - There are 3 data arrays:
 - The input array
 - The weight array
 - The output array being computed
 - Items in two of these data types march across the array of PEs.
 - Items in the remaining data type are initially assigned to a specific PE.
 - The data items that move can either move in the same or opposite directions
- **g. Algorithm 1:** Input and Weights travel in opposite directions.

 $x_2.x_1 \rightarrow \begin{bmatrix} P_3 \\ y_3 \end{bmatrix} \rightleftharpoons \begin{bmatrix} P_2 \\ y_2 \end{bmatrix} \rightleftharpoons \begin{bmatrix} P_1 \\ y_1 \end{bmatrix} \leftarrow \dots w_1.$

- There is one PE for each weight.
- The k weights are fed to P_1 ,

separated by one time delay.

- There are k 1 delays initially before w_1 is fed to P_1 so that w_1 and x_1 reach P_1 at the same time.
- After last weight w_k is fed to P₁, the weights recycle, starting with w₁.
- The inputs x₁, x₂,..., x_n, separated by a time delay, are fed to P_k.
- Each processor *P_i* holds the current value of *y_i*, which is initially zero.
- Note that each P_i receives an x-value and a w-value every other time unit.
- Each time an x-value meets a w-value in *P_i*, their product is computed and added to *y_i*.
- When the computation of y_i is finished, it is output on the x-line in the gap between

x-values.

- The value y_i is computed as soon as w_k is included in the computation.
 - *w_k* is identified by a special tag
- As soon as a PE completes the computation of y_i, the computation of y_{i+k} starts, provided i + k ≤ n + 1 - k.
- **h. Example** for Algorithm 1:

Example 7.5 and Expanded Fig 7.11

- **i. Analysis** for Algorithm 1:
 - Let $q = (n + 1 k) \mod k$
 - Let *P_i* be the last processor to output.
 - If q = 0, then n + 1 k is a multiple of k and i = k so P_k outputs last.
 - If $q \neq 0$, then i = q and P_q outputs last.
 - Comment: In Example 7.5

and Fig. 7.11, n+1-k=5+1-3=3, so $q = 3 \mod 3 = 0$ and y_3 is last y computed and is computed at P_3 .

- x_n will enter P_k at time 2n 1 due to delays.
- The distance from P_k to P_i is k i, so x_n enters P_i at time (2n 1) + (k i).
- Output from P_i takes (i-1) time units.
- Total time required is (2n-2) + k.
- Note that on average, only one-half of the k processors are performing computation during a time unit.
- **j. Algorithm 2:** Inputs and weights travel in the same direction.

$$\dots W_1 W_3 W_2 W_1 \xrightarrow{\rightarrow} \begin{vmatrix} y_1 \\ P_1 \end{vmatrix} \Rightarrow \begin{vmatrix} y_2 \\ P_2 \end{vmatrix} \Rightarrow \begin{vmatrix} y_3 \\ P_3 \end{vmatrix}$$

- Weights and inputs at processor *P*₁ travel in the same direction.
- The x-values travel twice as fast as the w-values, with each w-value remaining inside each processor an extra time period.
- When all the *w*-values have been fed to *P*₁, the *w*-values are recycled.
- Each time a x-value meets a w-value in a processor, their product is computed and added to the y-value computed by the processor.
- When a processor finishes the computation of y_j , it
 - places the value of y_j in the gap between w-values so

that it will be output at P_n .

- begins the computation of y_{j+k} at the next step if $j+k \le n+k-1$.
- A processor computes each step until its computation is finished.
- The convolution of k weights and n inputs requires n + k - 1time units.
- **k. Algorithm 3:** Input and Outputs travel in opposite directions:

 $.x_{2}.x_{1} \rightarrow \left[\begin{array}{c} P_{3} \\ w_{3} \end{array} \right] \leftrightarrows \left[\begin{array}{c} P_{2} \\ w_{2} \end{array} \right] \leftrightarrows \left[\begin{array}{c} P_{1} \\ w_{1} \end{array} \right] \leftarrow y_{1}.y_{2}$

- The value w_i is stored in processor P_i .
- The *x*-values are fed to *P_k* and march across the array from left to right.
- The *y*-values are fed to *P*₁ and are initialized to 0, then march across the array from right to left.

- Consecutive *x*-values and consecutive *y*-values are separated by 2 time units.
- A processor performs a computation only when an *x*-value meets a *y*-value.
- Convolution of k weights and n inputs requires 2n 1 time units.
- **I. Algorithm 4:** Inputs and outputs travel in the same direction:

$$\begin{array}{c|c} \dots y_1 y_3 y_2 y_1 \\ \dots \dots x_4 x_3 x_2 x_1 \end{array} \xrightarrow{\rightarrow} \left| \begin{array}{c} w_1 \\ P_1 \end{array} \right| \Rightarrow \left| \begin{array}{c} w_2 \\ P_2 \end{array} \right| \Rightarrow \left| \begin{array}{c} w_3 \\ P_3 \end{array} \right|$$

- The value w_i is stored in processor P_i .
- y-values march across the array from left to right.
- x-values march across the array from left to right at one-half the speed of the y-values.

- Each x-value is slowed down by being stored in a processor register every other time unit.
- Each time a *x*-value meets a *y*-value, the product of the *x*-value and the *w*-value is computed and added to the *y*-value.
- Convolution of *k*-weights with *n*-inputs requires n + k 1 time.