Linear Arrays Chapter 7

1. Basics for the linear array computational model.
a. A diagram for this model is

$$
P_{1} \leftrightarrow P_{2} \leftrightarrow P_{3} \leftrightarrow \ldots \leftrightarrow P_{k}
$$

b. It is the simplest of all models that allow some form of communication between PEs.
c. Each processor only communicates with its right or left neighbor.
d. We assume that the two-way links between adjacent PEs can transmit a constant nr of items (e.g., a word) in constant time
e. Algorithms derived for the linear array are very useful, as they can
can be implemented with the same running time on most other models.
f. Due to the simplicity of the linear array, a copy with the same number of nodes can be embedded into the meshes, hypercube, and most other interconnection networks.

- This allows its algorithms to executed in same running time by these models.
- The linear array is weaker than these models.
g. PRAM can simulate this model (and all other fixed interconnection networks) in unit time (using shared memory).
- PRAM is a more powerful model than this model and other fixed interconnection network models.
h. Model is very scalable: If one can
build a linear array with a certain clock frequency, then one can also build a very long linear array with the same clock frequency.
i. We assume that the two-way link between two adjacent processors has enough bandwidth to allow a constant number of data transfers between two processors simultaneously
- E.g., P_{i} can send two values a and b to P_{i+1} and simultaneously receive two values d and e from P_{i+1}
- We represent this by drawing multiple one-way links between processors.

2. Sorting assumptions:
a. Let $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ be a sequence of numbers.
b. The elements of S are not all available at once, but arrive one at a time from some input device.
c. They have to be sorted "on the fly" as they arrive
d. This places a lower bound of $\Omega(n)$ on the running time.
3. Linear Array Comparison-Exchange Sort
a. Figure 7.1 illustrates this algorithm:

$$
\begin{aligned}
& \ldots S_{3} S_{2} S_{1} \\
& \text { output }
\end{aligned} \rightleftarrows P_{1} \rightleftarrows P_{2} \rightleftarrows \ldots \rightleftarrows P_{k}
$$

b. The first phase requires n steps to read one element s_{i} at a time at P_{1}.
c. The implementation of this algorithm in the textbook require n PEs but only PEs with odd indices do any compare-exchanges.
d. The implementation given here for this algorithm uses only $k=\lceil n / 2\rceil$ PEs but has storage for two numbers, upper and lower.
e. During the first step of the input
phase, P_{1} reads the first element s_{1} into its upper variable.
f. During the j th step $(j>1)$ of the input phase

- Each of the PEs $P_{1}, P_{2}, \ldots, P_{j}$ with two numbers compare them and swaps them if the upper is less than the lower.
- A PE with only one number moves it into lower to wait for another number to arrive.
- The content of all PEs with a value in upper are shifted one place to the right and P_{1} reads the the next input value into its upper variable.
g. During the output phase,
- Each PE with two numbers compares them and swaps them if if upper is less than lower.
- A PE with only one number moves it into lower.
- The content of all PEs with a value in lower are shifted one place to the left, with the value from P_{1} being output
- numbers in lower move right-to-left, while numbers in upper remain in place.
h. Property: Following the execution of the first (i.e., comparison) step in either phase, the number in lower in P_{i} is the minimum of all numbers in P_{j} for $j \geq i$ (i.e., in P_{i} or to the right of P_{i}).
i. The sorted numbers are output through the lower variable in P_{1} with smaller numbers first.
j. Algorithm analysis:
- The running time, $t(n)=O(n)$ is optimal since inputs arrive one at a time.
- The cost, $c(t)=O\left(n^{2}\right)$ is not optimal as sequential sorting requires $O(n \lg n)$

4. Sorting by Merging

a. Idea is the same as used in PRAM SORT: several merging steps are overlapped and executed in pipeline fashion.
b. Let $n=2^{r}$. Then $r=\lg (n)$ merge steps are required to sort a sequence of n nrs.
c. Merging two sorted subsequences of length m produces a sorted subsequence of length $2 m$.
d. Assume the input is $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$.
e. Configuration: We assume that each PE sends its output to the PE to its right along either an upper or lower line.
input $\rightarrow P_{1} \rightrightarrows P_{2} \rightrightarrows \ldots \rightrightarrows P_{r+1} \rightarrow$ output

- Note $\lg (n)+1$ PEs are needed since P_{1} does not merge.
f. Algorithm Step j for P_{1} for $1 \leq j \leq n$.
- P_{1} receives s_{j} and sends it to
P_{2} on the top line if j is odd and on bottom line otherwise.
g. Algorithm Steps for P_{i} for $2 \leq i \leq r+1$.
i. Two sequences of length 2^{i-2} are sent from P_{i-1} to P_{i} on different lines.
ii. The two subsequences are merged by P_{i} into one sequence of length 2^{i-1}.
iii. Each P_{i} starts producing output on its top line as soon as it has received top subsequence and first element of the bottom subsequence.
h. Example: See Example 7.2 and (Figure 7.4 or my expansion of it).

(a)

(b)

(c)

(c)

(g)

i. Analysis:

- P_{1} produces its first output at time $t=1$.
- For $i>1, P_{i}$ requires a subseqence of size 2^{i-2} on top line and another of size 1 on bottom line before merging begins.
- P_{i} begins operating $2^{i-2}+1$ time units after P_{i-1} starts, or when

$$
\begin{aligned}
t & =1+\left(2^{0}+1\right)+\left(2^{1}+1\right)+\ldots+\left(2^{i-2}+1\right) \\
& =2^{i-1}+i-1
\end{aligned}
$$

- P_{i} terminates its operation $n-1$ time units after its first output.
- P_{r+1} terminates last at time

$$
\begin{aligned}
t & =\left(2^{r}+r\right)+(n-1) \\
& =2 n+\lg n-1
\end{aligned}
$$

- \quad Then $t(n)=O(n)$.
- Since $p(n)=1+\lg n$, the cost
is

$$
C(n)=O(n \lg n),
$$

which is optimal since $\Omega(n \lg n)$ is a lower bound on sorting.
5. Two of H.T.Kung's linear algebra algorithms for special purpose arrays
(called systolic circuits) are given next.
6. Matrix by vector multiplication:
a. Multiplying an $m \times n$ matrix A by a
$n \times 1$ column vector u produces an $m \times 1$ column vector
$v=\left(v_{1}, v_{2}, \ldots, v_{m}\right)$.
$\left(\begin{array}{lllll}a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ a_{41} & a_{42} & a_{43} & a_{41} & a_{45}\end{array}\right)\left(\begin{array}{l}u_{1} \\ w_{2} \\ w_{3} \\ u_{4} \\ u_{5}\end{array}\right)=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3} \\ v_{4}\end{array}\right)$
b. Recall that

$$
v_{i}=\sum_{j=1}^{n} a_{i, j} u_{j} \text { for } 1 \leq i \leq m
$$

c. Processor P_{i} is used to compute

> d. Matrix A and vector u are fed to the array of processors (for $m=4$ and $n=5$) as indicated in Figure 7.5 e. See Figure 7.5

$$
\begin{aligned}
& \mathrm{u}_{2} \\
& \mathrm{u}_{3} \\
& \mathrm{u}_{4} \\
& \mathrm{U}_{5}
\end{aligned}
$$

Figure 7.5: Multiplying a matrix by a
f. Note that processor P_{i} computes

$$
v_{i} \leftarrow v_{i}+a_{i j} u_{j}
$$

and then sends u_{j} to P_{i-1}.
g. Analysis:

- $a_{1,1}$ reaches P_{1} in $m-1$ steps.
- Total time for $a_{1, n}$ to reach P_{1} is $m+n-2$ steps.
- Computation is finished one step later, or in $m+n-1$ steps.
- $t(n)=O(n)$ if m is $O(n)$.
- $c(n)=O\left(n^{2}\right)$
- Cost is optimal, since each of the $\Theta\left(n^{2}\right)$ input values must be read and used.

7. Observation: Multiplication of an $m \times n$ matrix A by a $n \times p$ matrix B can be handled in either of the following ways:
a. Split the matrix B into p columns and use the linear array of PEs p times (once for each column).
b. Replicate the linear array of PEs p times and simultaneously compute
all columns.
8. Solutions of Triangular Systems (H.J. Kung)
a. A lower triangular matrix is a square matrix where all entries above the main diagonal are 0.
b. Problem: Given an $n \times n$ lower triangular matrix A and an $n \times 1$ column vector b, find an $n \times 1$ column vector x such that $A x=b$.
c. Normal Sequential Solution:

- Forward substitution: Solve the equations

$$
\begin{aligned}
a_{11} x_{1} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2} & =b_{2} \\
\ldots & =\ldots \\
a_{n 1} x_{1}+\ldots+a_{n n} x_{n} & =b_{n}
\end{aligned}
$$

successively, substituting all values found for $x_{1,}, \ldots, x_{i-1}$ into the $i^{\text {th }}$ equation.

- This yields $x_{1}=b_{1} / a_{11}$ and, in
general,

$$
x_{i}=\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}\right) / a_{i i}
$$

- The values for $x_{1}, x_{2}, \ldots, x_{i-1}$ are computed successively using this formula, with their values being found first and used in finding the value for x_{i}.
- This sequential solution runs in $\Theta\left(n^{2}\right)$ time and is optimal since each of the $\Theta\left(n^{2}\right)$ input values must be read and used
d. Recurrence equation solution to system of equations: If

$$
y_{i}^{(1)}=0
$$

and, in general,

$$
y_{i}^{(j+1)}=y_{i}^{(j)}+a_{i j} x_{i} \text { for } j<i
$$

then

$$
x_{i}=\left(b_{i}-y_{i}^{(i)}\right) / a_{i i}
$$

e. Above claim is obvious if one
notes that expanding the recurrence relation for y_{i}^{j} (for $j<i$) yields

$$
y_{i}^{(i)}=a_{i 1} X_{1}+a_{i 2} X_{2}+\ldots+a_{i, i-1} x_{i-1}
$$

f. EXAMPLE: See my corrected handout for the following Figure 7.6 :

Figure 7.6: Setup for solving a triangular system of equations.
g. Solution given for a triangular system when $n=4$.

- Example indicates the general formula.
- In each time unit, one move plus local computations take place.
- Each dot represents one time unit.
- The y_{i} values are computed as they flow up through the array of PEs.
- Each x_{i} value is computed at P_{1} and its value is used in the recursive computation of the y_{j} values at each P_{k} as x_{i} flow downward through the array of processors.
- Elements of A reach the PEs where they are needed at the appropriate time.
h. General Algorithm - Input to Array:
- The sequence $y_{1}, y_{2}, \ldots, y_{n}$ is initialized successively to 0 in P_{n}, separated by one time delay.
- The sequence of $i^{t h}$ diagonal elements of A (starting with its main diagonal and continuing with the diagonals below the main diagonal), namely

$$
a_{i 1}, a_{i+1,2}, \ldots, a_{n, n-i+1}
$$

are fed into P_{i}, one element at a time, separated by one time delay. The first input starts after a delay of $n+i-2$ time units.

- The elements $b_{1}, b_{2}, \ldots, b_{n}$ are fed into P_{1}, separated by one time unit delay. This input starts after a delay of $n-1$ time units.
- The elements of $x_{1}, x_{2}, \ldots, x_{n}$ are successively defined in P_{1},
separated by one unit time delay. This input starts after a delay of $n-1$ time units.
- When x_{i} reaches P_{n}, it exits the array as output.
i. General Algorithm -

Computation in Array:

- The values $x_{i}, a_{i i}$, and b_{i} simultanenously arrive at P_{1} and the (final) value of x_{i} is computed as follows:

$$
x_{i} \leftarrow\left(b_{i}-y_{i}\right) / a_{i i}
$$

- At $P_{1}, y_{0}=0$ and $y_{i}($ for $i>1)$ is equal to

$$
a_{i 1} X_{1}+a_{i 2} x_{2}+\ldots+a_{i, i-1} X_{i-1}
$$

This ensures that

$$
x_{i}=\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}\right) / a_{i i}
$$

which is the desired value.

- In the processor P_{k} for
$2 \leq k \leq n$, the elements $a_{i j}, x_{j}$, and y_{i} arrive at the same time and P_{k} performs the following computation:

$$
y_{i} \leftarrow y_{i}+a_{i j} x_{j}
$$

At this point, $k=i-j+1$.
j. First few steps of algorithm for n = 4 (See Figure 7.7 in Akl's book on pg 287)

- In each step, some local computation and a move may occur.
- At time $u=0$, the initial input begins. Note that y_{1} is set to 0 in P_{4}.
- At time $u=3$ (column a), the values y_{1}, a_{11}, b_{1} reach P_{1} and are used to define x_{1} as

$$
x_{1} \leftarrow\left(b_{1}-y_{1}\right) / a_{11}=b_{1} / a_{11}
$$

- At time $u=4$ (column b), value x_{1} reaches P_{2} and is used to update y_{2}

$$
y_{2} \leftarrow y_{2}+a_{21} x_{1}=a_{21} x_{1}
$$

- At time $u=5$ (column c), values y_{2}, a_{22}, b_{2} reach P_{1} and are used to define x_{2} as

$$
x_{2} \leftarrow\left(b_{2}-y_{2}\right) / a_{22}=\left(b_{1}-a_{21} x_{1}\right) / a_{22}
$$

Additionally, value x_{1} reaches P_{3} and is used to update y_{3} as follows:

$$
y_{3} \leftarrow y_{3}+a_{31} x_{1}=a_{31} x_{1}
$$

- Value x_{1} is output at $u=5$ and x_{2} is output at $u=7$.
- Note that in Figure 7.7, only half of the processors are active at any time.
k. See Figure 7.7 on page 287 of Akl's textbook

Figue 7.7: Soving a triagular squtan of equations on a limear may; (a) $u=3$

I. Algorithm Analysis:

- y_{1} reaches P_{1} in $n-1$ time units.
- n time units later, x_{1} is output by P_{n}.
- Each remaining element of vector x is output at intervals of 2.
- $t(n)=(n-1)+n+2(n-1)$
$=4 n-3$.
- $c(n)=(4 n-3)(n)=4 n^{2}-3 n$ or $\theta\left(n^{2}\right)$ which is optimal.
m. Some Possible Time Improvement:
- x_{i} can be output by P_{1}, while a copy travels down the array, saving $n-1$ steps at the conclusion of the algorithm.
- Recomputing above timing yields
$t^{*}(n)=t(n)-(n-1)=3 n-2$
- Additionally, there is no need to initially wait $n-1$ steps for y_{1} to reach P_{1},
reducing the time to

$$
t^{* *}(n)=2 n-1
$$

- Another possible variation: The b values can be fed to P_{n} instead of P_{1}.
- Then, y_{i} is initialized to b_{i} and the computation in P_{k} for $k>1$ becomes

$$
y_{i} \leftarrow y_{i}-a_{i j} x_{j} .
$$

- The computation in P_{1} becomes

$$
x_{i} \leftarrow y_{i} / a_{i i}
$$

- The utilization of PEs can be significantly improved by using an array of $n / 2$ PEs and have each simulate two PEs in the algorithm

Possible Lecture Topics

1. Convolutions

a. Setting: Let

- $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be a
sequence of weights.
- $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be an input sequence.
b. The required output is the sequence

$$
Y=\left\{y_{1}, y_{2}, \ldots, y_{n+1-k}\right\}
$$

where

$$
\begin{aligned}
y_{1} & =w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{k} x_{k} \\
y_{2} & =w_{1} x_{2}+w_{2} x_{3}+\ldots+w_{k} x_{k+1} \\
\ldots & =\ldots \\
y_{i} & =w_{1} x_{i}+w_{2} x_{i+1}+\ldots+w_{k} x_{i+k-1} \\
\ldots & =\ldots
\end{aligned}
$$

$$
y_{n+1-k}=w_{1} x_{n+1-k}+\ldots+w_{k} x_{n}
$$

c. In particular, $Y=\left\{y_{1}, y_{2}, \ldots, y_{n+1-k}\right\}$ where

$$
y_{i}=\sum_{j=1}^{k} w_{j} x_{i+j-1}
$$

d. Example 7.4 and Figure 7.8: Suppose we have 3 weights $\left\{w_{1}, w_{2}, w_{3}\right\}$ and 8 inputs $\left\{x_{1}, x_{2}, \ldots, x_{8}\right\}$. Then we may slide one sequence past the other to produce the output $\left\{y_{1}, y_{2}, \ldots, y_{6}\right\}$ as follows:
$\begin{array}{llllllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8}\end{array}$
$y_{1} \mid \quad w_{1} \quad w_{2} \quad w_{3}$
$\begin{array}{llll}y_{2} \mid \quad w_{1} & w_{2} & w_{3}\end{array}$
$y_{3} \mid \quad w_{1} \quad w_{2} \quad w_{3}$
$y_{4} \mid \quad w_{1} \quad w_{2} \quad w_{3}$
$y_{5} \mid \quad w_{1} \quad w_{2} \quad w_{3}$
y_{6} | $\quad w_{1} \quad w_{2} \quad w_{3}$
e. Sequentially, the sequence Y can be computed in

$$
(n+1-k) \times k=\theta(n k) \text { time }
$$

f. Four Algorithm Approaches in Text:

- There are 3 data arrays:
- The input array

The weight array
The output array being computed

- Items in two of these data types march across the array of PEs.
- Items in the remaining data type are initially assigned to a specific PE.
- The data items that move can either move in the same or opposite directions
g. Algorithm 1: Input and Weights travel in opposite directions.

$$
. x_{2} \cdot x_{1} \rightarrow\left[\begin{array}{l}
P_{3} \\
y_{3}
\end{array}\right] \rightleftarrows\left[\begin{array}{l}
P_{2} \\
y_{2}
\end{array}\right] \rightleftarrows\left[\begin{array}{l}
P_{1} \\
y_{1}
\end{array}\right] \leftarrow \ldots w_{1} .
$$

- There is one PE for each weight.
- The k weights are fed to P_{1},
separated by one time delay.
There are $k-1$ delays
initially before w_{1} is fed to P_{1} so that w_{1} and x_{1} reach P_{1} at the same time.
- After last weight w_{k} is fed to P_{1}, the weights recycle, starting with w_{1}.
- The inputs $x_{1}, x_{2}, \ldots, x_{n}$, separated by a time delay, are fed to P_{k}.
- Each processor P_{i} holds the current value of y_{i}, which is initially zero.
- Note that each P_{i} receives an x-value and a w-value every other time unit.
- Each time an x-value meets a w-value in P_{i}, their product is computed and added to y_{i}.
- When the computation of y_{i} is finished, it is output on the x-line in the gap between
x-values.
- The value y_{i} is computed as soon as w_{k} is included in the computation.
- w_{k} is identified by a special tag
- As soon as a PE completes the computation of y_{i}, the computation of y_{i+k} starts, provided $i+k \leq n+1-k$.
h. Example for Algorithm 1:

Example 7.5 and Expanded Fig 7.11
i. Analysis for Algorithm 1:

- Let $q=(n+1-k) \bmod k$
- Let P_{i} be the last processor to output.
- If $q=0$, then $n+1-k$ is a multiple of k and $i=k$ so P_{k} outputs last.
- If $q \neq 0$, then $i=q$ and P_{q} outputs last.

Comment: In Example 7.5
and Fig. 7.11,
$n+1-k=5+1-3=3$, so
$q=3 \bmod 3=0$ and y_{3} is
last y computed and is computed at P_{3}.

- x_{n} will enter P_{k} at time $2 n-1$ due to delays.
- The distance from P_{k} to P_{i} is $k-i$, so x_{n} enters P_{i} at time $(2 n-1)+(k-i)$.
- Output from P_{i} takes $(i-1)$ time units.
- Total time required is
$(2 n-2)+k$.
- Note that on average, only one-half of the k processors are performing computation during a time unit.
j. Algorithm 2: Inputs and weights travel in the same direction.

$$
\begin{array}{ll}
\ldots w_{1} w_{3} w_{2} w_{1} & \rightarrow \\
\ldots \ldots x_{4} x_{3} x_{2} x_{1} & \rightarrow \\
y_{1} \\
P_{1}
\end{array}|\rightrightarrows| \begin{aligned}
& y_{2} \\
& P_{2}
\end{aligned}|\rightrightarrows| \begin{aligned}
& y_{3} \\
& P_{3}
\end{aligned}
$$

- Weights and inputs at processor P_{1} travel in the same direction.
- The x-values travel twice as fast as the w-values, with each w-value remaining inside each processor an extra time period.
- When all the w-values have been fed to P_{1}, the w-values are recycled.
- Each time a x-value meets a w-value in a processor, their product is computed and added to the y-value computed by the processor.
- When a processor finishes the computation of y_{j}, it
- places the value of y_{j} in the gap between w-values so
that it will be output at P_{n}.
- begins the computation of y_{j+k} at the next step if $j+k \leq n+k-1$.
- A processor computes each step until its computation is finished.
- The convolution of k weights and n inputs requires $n+k-1$ time units.
k. Algorithm 3: Input and Outputs travel in opposite directions:

$$
. x_{2} \cdot x_{1} \rightarrow\left[\begin{array}{l}
P_{3} \\
w_{3}
\end{array}\right] \leftrightarrows\left[\begin{array}{l}
P_{2} \\
w_{2}
\end{array}\right] \leftrightarrows\left[\begin{array}{l}
P_{1} \\
w_{1}
\end{array}\right] \leftarrow y_{1} \cdot y_{2}
$$

- The value w_{i} is stored in processor P_{i}.
- The x-values are fed to P_{k} and march across the array from left to right.
- The y-values are fed to P_{1} and are initialized to 0 , then march across the array from right to left.
- Consecutive x-values and consecutive y-values are separated by 2 time units.
- A processor performs a computation only when an x-value meets a y-value.
- Convolution of k weights and n inputs requires $2 n-1$ time units.
I. Algorithm 4: Inputs and outputs travel in the same direction:
$\begin{array}{ll}\ldots y_{1} y_{3} y_{2} y_{1} & \rightarrow \\ \ldots & w_{1} \\ \ldots . x_{4} x_{3} x_{2} x_{1} & \\ P_{1}\end{array}|\rightrightarrows| \begin{aligned} & w_{2} \\ & P_{2}\end{aligned}|\rightrightarrows| \begin{aligned} & w_{3} \\ & P_{3}\end{aligned}$
- The value w_{i} is stored in processor P_{i}.
- y-values march across the array from left to right.
- x-values march across the array from left to right at one-half the speed of the y-values.
- Each x-value is slowed down by being stored in a processor register every other time unit.
- Each time a x-value meets a y-value, the product of the x-value and the w-value is computed and added to the y-value.
- Convolution of k-weights with n-inputs requires $n+k-1$ time.

