
Linear Arrays
Chapter 7

1. Basics for the linear array
computational model.
a. A diagram for this model is

P1 ↔ P2 ↔ P3 ↔. . .↔ Pk

b. It is the simplest of all models that
allow some form of communication
between PEs.

c. Each processor only
communicates with its right or left
neighbor.

d. We assume that the two-way links
between adjacent PEs can
transmit a constant nr of items
(e.g., a word) in constant time

e. Algorithms derived for the linear
array are very useful, as they can

1

can be implemented with the same
running time on most other
models.

f. Due to the simplicity of the linear
array, a copy with the same
number of nodes can be
embedded into the meshes,
hypercube, and most other
interconnection networks.
• This allows its algorithms to

executed in same running time
by these models.

• The linear array is weaker than
these models.

g. PRAM can simulate this model
(and all other fixed interconnection
networks) in unit time (using
shared memory).
• PRAM is a more powerful

model than this model and
other fixed interconnection
network models.

h. Model is very scalable: If one can

2

build a linear array with a certain
clock frequency, then one can also
build a very long linear array with
the same clock frequency.

i. We assume that the two-way link
between two adjacent processors
has enough bandwidth to allow a
constant number of data transfers
between two processors
simultaneously
• E.g., Pi can send two values a

and b to Pi1 and
simultaneously receive two
values d and e from Pi1

• We represent this by drawing
multiple one-way links between
processors.

2. Sorting assumptions:
a. Let S  s1, s2, . . . , sn be a

sequence of numbers.
b. The elements of S are not all

available at once, but arrive one at
a time from some input device.

3

c. They have to be sorted ”on the fly”
as they arrive

d. This places a lower bound of n
on the running time.

3. Linear Array Comparison-Exchange
Sort
a. Figure 7.1 illustrates this

algorithm:

. . . s3s2s1

output
 P1  P2 . . . Pk

b. The first phase requires n steps to
read one element si at a time at P1.

c. The implementation of this
algorithm in the textbook require n
PEs but only PEs with odd indices
do any compare-exchanges.

d. The implementation given here for
this algorithm uses only k  ⌈n/2⌉
PEs but has storage for two
numbers, upper and lower.

e. During the first step of the input

4

phase, P1reads the first element
s1into its upper variable.

f. During the jth step (j  1) of the
input phase
• Each of the PEs P1,P2, . . . ,Pj

with two numbers compare
them and swaps them if the
upper is less than the lower.

• A PE with only one number
moves it into lower to wait for
another number to arrive.

• The content of all PEs with a
value in upper are shifted one
place to the right and P1reads
the the next input value into its
upper variable.

g. During the output phase,
• Each PE with two numbers

compares them and swaps
them if if upper is less than
lower.

• A PE with only one number
moves it into lower.

5

• The content of all PEs with a
value in lower are shifted one
place to the left, with the value
from P1being output

• numbers in lower move
right-to-left, while numbers in
upper remain in place.

h. Property: Following the execution
of the first (i.e., comparison) step
in either phase, the number in
lower in Pi is the minimum of all
numbers in Pj for j ≥ i (i.e., in Pi or
to the right of Pi).

i. The sorted numbers are output
through the lower variable in P1
with smaller numbers first.

j. Algorithm analysis:
• The running time, tn  On

is optimal since inputs arrive
one at a time.

• The cost, ct  On2 is not
optimal as sequential sorting
requires On lgn

6

4. Sorting by Merging
a. Idea is the same as used in PRAM

SORT: several merging steps are
overlapped and executed in
pipeline fashion.

b. Let n  2r. Then r  lgn merge
steps are required to sort a
sequence of n nrs.

c. Merging two sorted subsequences
of length m produces a sorted
subsequence of length 2m.

d. Assume the input is
S  s1, s2, . . . , sn.

e. Configuration: We assume that
each PE sends its output to the PE
to its right along either an upper or
lower line.
input → P1  P2 . . . Pr1 → output
• Note lgn  1 PEs are needed

since P1 does not merge.
f. Algorithm Step j for P1for 1 ≤ j ≤ n.

• P1 receives sj and sends it to

7

P2 on the top line if j is odd and
on bottom line otherwise.

g. Algorithm Steps for Pi for
2 ≤ i ≤ r  1.

i. Two sequences of length 2 i−2

are sent from Pi−1 to Pi on
different lines.

ii. The two subsequences are
merged by Pi into one
sequence of length 2 i−1.

iii. Each Pi starts producing
output on its top line as soon
as it has received top
subsequence and first element
of the bottom subsequence.

h. Example: See Example 7.2 and
(Figure 7.4 or my expansion of it).

8

9

i. Analysis:
• P1 produces its first output at

time t  1.
• For i  1, Pi requires a

subseqence of size 2 i−2 on top
line and another of size 1 on
bottom line before merging
begins.

• Pi begins operating 2 i−2  1
time units after Pi−1 starts, or
when
t  1  201  211 . . .2 i−21

 2 i−1  i − 1
• Pi terminates its operation

n − 1 time units after its first
output.

• Pr1 terminates last at time
t  2r  r  n − 1
 2n  lgn − 1

• Then tn  On.
• Since pn  1  lgn, the cost

10

is
Cn  On lgn,

which is optimal since n lgn
is a lower bound on sorting.

5. Two of H.T.Kung’s linear algebra
algorithms for special purpose arrays
(called systolic circuits) are given next.

6. Matrix by vector multiplication:
a. Multiplying an m  n matrix A by a

n  1 column vector u produces an
m  1 column vector
v  v1,v2, . . . ,vm.

b. Recall that
vi ∑ j1

n
ai,juj for 1 ≤ i ≤ m

c. Processor Pi is used to compute

11

vi.
d. Matrix A and vector u are fed to the

array of processors (for m  4 and
n  5) as indicated in Figure 7.5

e. See Figure 7.5

12

13

f. Note that processor Pi computes
vi ← vi  aijuj

and then sends uj to Pi−1.
g. Analysis:

• a1,1 reaches P1 in m − 1 steps.
• Total time for a1,n to reach P1 is

m  n − 2 steps.
• Computation is finished one

step later, or in m  n − 1 steps.
• tn  On if m is On.
• cn  On2
• Cost is optimal, since each of

the Θn2 input values must be
read and used.

7. Observation: Multiplication of an m  n
matrix A by a n  p matrix B can be
handled in either of the following ways:
a. Split the matrix B into p columns

and use the linear array of PEs p
times (once for each column).

b. Replicate the linear array of PEs p
times and simultaneously compute

14

all columns.
8. Solutions of Triangular Systems

(H.J. Kung)
a. A lower triangular matrix is a

square matrix where all entries
above the main diagonal are 0.

b. Problem: Given an n  n lower
triangular matrix A and an n  1
column vector b, find an n  1
column vector x such that Ax  b.

c. Normal Sequential Solution:
• Forward substitution: Solve the

equations
a11x1  b1

a21x1  a22x2  b2

. . .  . . .
an1x1 . . .annxn  bn

successively, substituting all
values found for x1,. . . ,xi−1 into
the ith equation.

• This yields x1  b1/a11 and, in

15

general,

xi  bi −∑
j1

i−1

aijxj/aii

• The values for x1,x2, . . . ,xi−1 are
computed successively using
this formula, with their values
being found first and used in
finding the value for xi.

• This sequential solution runs in
Θn2 time and is optimal since
each of the Θn2 input values
must be read and used

d. Recurrence equation solution to
system of equations: If

yi
1  0

and, in general,
yi
j1  yi

j  aijxi for j  i
then

xi  bi − yi
i/aii

e. Above claim is obvious if one

16

notes that expanding the
recurrence relation for yi

j (for j  i)
yields

yi
i  ai1x1  ai2x2 . . .ai,i−1xi−1

f. EXAMPLE: See my corrected
handout for the following Figure
7.6 :

17

18

g. Solution given for a triangular
system when n  4.
• Example indicates the general

formula.
• In each time unit, one

move plus local computations
take place.

• Each dot represents one time
unit.

• The yi values are computed as
they flow up through the array
of PEs.

• Each xi value is computed at
P1 and its value is used in the
recursive computation of the yj
values at each Pk as xi flow
downward through the array of
processors.

• Elements of A reach the PEs
where they are needed at the
appropriate time.

h. General Algorithm - Input to
Array:

19

• The sequence y1,y2, . . . ,yn is
initialized successively to 0 in
Pn, separated by one time
delay.

• The sequence of ith diagonal
elements of A (starting with its
main diagonal and continuing
with the diagonals below the
main diagonal), namely

ai1,ai1,2, . . . ,an,n−i1

are fed into Pi, one element at
a time, separated by one time
delay. The first input starts
after a delay of n  i − 2 time
units.

• The elements b1,b2, . . . ,bn are
fed into P1, separated by one
time unit delay. This input
starts after a delay of n − 1 time
units.

• The elements of x1,x2, . . . ,xn
are successively defined in P1,

20

separated by one unit time
delay. This input starts after a
delay of n − 1 time units.

• When xi reaches Pn, it exits
the array as output.

i. General Algorithm -
Computation in Array:
• The values xi, aii, and bi

simultanenously arrive at P1
and the (final) value of xi is
computed as follows:

xi ← bi − yi/aii

• At P1, y0  0 and yi (for i  1)
is equal to

ai1x1  ai2x2 . . .ai,i−1xi−1

This ensures that

xi  bi −∑
j1

i−1

aijxj/aii,

which is the desired value.
• In the processor Pk for

21

2 ≤ k ≤ n, the elements aij,xj,
and yi arrive at the same time
and Pk performs the following
computation:

yi ← yi  aijxj

At this point, k  i − j  1.
j. First few steps of algorithm for

n  4 (See Figure 7.7 in Akl’s
book on pg 287)
• In each step, some local

computation and a move may
occur.

• At time u  0, the initial input
begins. Note that y1 is set to 0
in P4.

• At time u  3 (column a), the
values y1,a11, b1reach P1and
are used to define x1 as

x1 ← b1 − y1/a11  b1/a11

• At time u  4 (column b), value
x1reaches P2 and is used to
update y2

22

y2 ← y2  a21x1  a21x1

• At time u  5 (column c),
values y2,a22, b2 reach P1and
are used to define x2 as
x2 ← b2 − y2/a22  b1 − a21x1/a22

Additionally, value x1reaches
P3 and is used to update y3 as
follows:

y3 ← y3  a31x1  a31x1

• Value x1 is output at u  5 and
x2 is output at u  7.

• Note that in Figure 7.7, only
half of the processors are
active at any time.

k. See Figure 7.7 on page 287 of
Akl’s textbook

23

24

l. Algorithm Analysis:
• y1 reaches P1 in n − 1 time

units.
• n time units later, x1 is output

by Pn.
• Each remaining element of

vector x is output at intervals of
2.

• tn  n − 1  n  2n − 1
 4n − 3.

• cn  4n − 3n  4n2 − 3n or
n2 which is optimal.

m. Some Possible Time Improvement:
• xi can be output by P1, while a

copy travels down the array,
saving n − 1 steps at the
conclusion of the algorithm.
 Recomputing above timing

yields
t∗n  tn − n − 1  3n − 2

 Additionally, there is no
need to initially wait n − 1
steps for y1 to reach P1,

25

reducing the time to
t∗∗n  2n − 1

• Another possible variation: The
b values can be fed to Pn
instead of P1.
 Then, yi is initialized to bi

and the computation in Pk
for k  1 becomes

yi ← yi − aijxj.
 The computation in P1

becomes
xi ← yi/aii

• The utilization of PEs can be
significantly improved by using
an array of n/2 PEs and have
each simulate two PEs in the
algorithm

Possible Lecture Topics

26

1. Convolutions
a. Setting: Let

• W  w1,w2, . . . ,wk be a
sequence of weights.

• X  x1,x2, . . . ,xn be an input
sequence.

b. The required output is the
sequence

Y  y1,y2, . . . ,yn1−k
where

y1  w1x1  w2x2 . . .wkxk

y2  w1x2  w2x3 . . .wkxk1

. . .  . . .
yi  w1xi  w2xi1 . . .wkxik−1

. . .  . . .
yn1−k  w1xn1−k . . .wkxn

c. In particular, Y  y1,y2, . . . ,yn1−k
where

27

yi ∑
j1

k

wjxij−1

d. Example 7.4 and Figure 7.8:
Suppose we have 3 weights
w1,w2,w3 and 8 inputs
x1,x2, . . . ,x8. Then we may slide
one sequence past the other to
produce the output y1,y2, . . . ,y6
as follows:

x1 x2 x3 x4 x5 x6 x7 x8
——————————————————–

y1 | w1 w2 w3
y2 | w1 w2 w3
y3 | w1 w2 w3
y4 | w1 w2 w3
y5 | w1 w2 w3
y6 | w1 w2 w3

e. Sequentially, the sequence Y can
be computed in

n  1 − k  k  nk time

28

f. Four Algorithm Approaches in
Text:
• There are 3 data arrays:

 The input array
 The weight array
 The output array being

computed
• Items in two of these data

types march across the array
of PEs.

• Items in the remaining data
type are initially assigned to a
specific PE.

• The data items that move can
either move in the same or
opposite directions

g. Algorithm 1: Input and Weights
travel in opposite directions.
.x2.x1 → P3

y3  P2
y2  P1

y1 ←. . . .w1.

• There is one PE for each
weight.

• The k weights are fed to P1,

29

separated by one time delay.
 There are k − 1 delays

initially before w1 is fed to
P1 so that w1 and x1 reach
P1 at the same time.

 After last weight wk is fed
to P1, the weights recycle,
starting with w1.

• The inputs x1,x2, . . . ,xn,
separated by a time delay, are
fed to Pk.

• Each processor Pi holds the
current value of yi, which is
initially zero.

• Note that each Pi receives an
x-value and a w-value every
other time unit.

• Each time an x-value meets a
w-value in Pi, their product is
computed and added to yi.

• When the computation of yi is
finished, it is output on the
x-line in the gap between

30

x-values.
• The value yi is computed as

soon as wk is included in the
computation.
 wk is identified by a special

tag
• As soon as a PE completes

the computation of yi, the
computation of yik starts,
provided i  k ≤ n  1 − k.

h. Example for Algorithm 1:
Example 7.5 and Expanded Fig 7.11

i. Analysis for Algorithm 1:
• Let q  n  1 − kmodk
• Let Pi be the last processor to

output.
• If q  0, then n  1 − k is a

multiple of k and i  k so Pk
outputs last.

• If q ≠ 0, then i  q and Pq
outputs last.
 Comment: In Example 7.5

31

and Fig. 7.11,
n  1 − k  5  1 − 3  3, so
q  3mod3  0 and y3 is
last y computed and is
computed at P3.

• xn will enter Pk at time 2n − 1
due to delays.

• The distance from Pk to Pi is
k − i, so xn enters Pi at time
2n − 1  k − i.

• Output from Pi takes i − 1
time units.

• Total time required is
2n − 2  k.

• Note that on average, only
one-half of the k processors
are performing computation
during a time unit.

j. Algorithm 2: Inputs and weights
travel in the same direction.

32

. . .w1w3w2w1

.x4x3x2x1

→
→

y1
P1

 y2
P2

 y3
P3

• Weights and inputs at
processor P1 travel in the
same direction.

• The x-values travel twice as
fast as the w-values, with each
w-value remaining inside each
processor an extra time period.

• When all the w-values have
been fed to P1, the w-values
are recycled.

• Each time a x-value meets a
w-value in a processor, their
product is computed and
added to the y-value computed
by the processor.

• When a processor finishes the
computation of yj, it
 places the value of yj in the

gap between w-values so

33

that it will be output at Pn.
 begins the computation of

yjk at the next step if
j  k ≤ n  k − 1.

• A processor computes each
step until its computation is
finished.

• The convolution of k weights
and n inputs requires n  k − 1
time units.

k. Algorithm 3: Input and Outputs
travel in opposite directions:
.x2.x1 → P3

w3  P2
w2  P1

w1 ← y1.y2

• The value wi is stored in
processor Pi.

• The x-values are fed to Pk and
march across the array from
left to right.

• The y-values are fed to P1 and
are initialized to 0, then march
across the array from right to
left.

34

• Consecutive x-values and
consecutive y-values are
separated by 2 time units.

• A processor performs a
computation only when an
x-value meets a y-value.

• Convolution of k weights and n
inputs requires 2n − 1 time
units.

l. Algorithm 4: Inputs and outputs
travel in the same direction:

. . .y1y3y2y1

.x4x3x2x1

→
→

w1
P1

 w2
P2

 w3
P3

• The value wi is stored in
processor Pi.

• y-values march across the
array from left to right.

• x-values march across the
array from left to right at
one-half the speed of the
y-values.

35

 Each x-value is slowed
down by being stored in a
processor register every
other time unit.

• Each time a x-value meets a
y-value, the product of the
x-value and the w-value is
computed and added to the
y-value.

• Convolution of k-weights with
n-inputs requires n  k − 1 time.

36

