Mesh Models

(Chapter 8)

- Overview of Mesh and Related models.
 - a. Diameter:
 - The linear array is O(n), which is large.
 - The mesh as diameter $O(\sqrt{n})$, which is significantly smaller.
 - **b.** The size of the diameter is significant for problems requiring frequent long-range data transfers.
 - c. Some advantages of 2-D Mesh.

Maximum degree is 4.

Has a regular topology (i.e., is same at all points except for boundaries).

Easily extended by row or column additions.

- **d.** Disadvantages of the 2-D Mesh.
 - Diameter is still large.

- e. Mesh of Trees and Pyramids.
 - Combines mesh and tree models
 - Both have a diameter of $O(\lg n)$.
 - These models will not be covered in this course.
- 2. Row-Major Sort
 - **a.** Suppose we are given a 2-D mesh with m rows and n columns.
 - **b.** Assume the $N = n \times m$ processors are indexed by row-major ordering:

• Note that processor P_i is in row j and column k if and only if i = jn + k, where $0 \le k < n$.

c. A sequence $\{x_1, x_2, \dots, x_{n-1}\}$ of values in a 2-D mesh with x_i in P_i is said to be sorted if $x_1 \le x_2 \le \dots \le x_{n-1}$.

3. The 0-1 Principle

- **a.** Let A be an algorithm that performs a *predetermined* sequence of comparisonexchanges on a set of N numbers.
- **b.** Each comparison-exchange compares two numbers and determines whether to exchange them, based on the outcome of the comparison.
- **c.** The 0-1 **principle** states that if A correctly sorts all 2^N sequences of length N of 0's and 1's, then it correctly sorts any sequence of N arbitrary numbers.
- **d.** The 0-1 principle occurred earlier in text as Problem 3.2.
- e. Examples of sorts satisfying this predetermined condition include

- Batcher's odd-even merge sorting circuit
- linear array sort of last chapter.
- f. Examples of sorts not satisfying this condition include
 - Quick Sort (comparisons made depends upon values)
 - Bubble Sort (Stopping depends upon comparisons)
- **g.** Proof: (0-1 Principle)
 - Let $T = \{x_1, x_2, \dots, x_n\}$ be an unsorted sequence.
 - Let $S = \{y_1, y_2, \dots, y_n\}$ be a sorted version of T.
 - Suppose A is an algorithm that sorts all sequences of 0's and 1's correctly.
 - However, assume that A applied to T incorrectly produces $T' = \{y_1', y_2', \dots, y_n'\}$.
 - Let j be the smallest index such that $y'_{j} \neq y_{j}$.

- Then, we have the following:
 - $y_i' = y_i \le y_j \text{ for } 0 \le i < j$

 - $y_k' = y_j$ for some k > j.
- We create a sequence Z of 0's and 1's from T (using y_j as a spitting value) as follows: For i = 0, 1, ..., n 1 let
 - $z_i = 0 \text{ if } x_i \leq y_j$
 - $z_i = 1 \text{ if } x_i > y_j$
- Then for each pair of indices i and m,

$$x_i \leq x_m$$
 implies that $z_i \leq z_m$

- When Algorithm A is applied to sequence Z, the comparison results are the same as when it is applied to T, so the same action is taken at each step.
- If Algorithm A produces Z' from Z, then the corresponding values of Z' and T' are

$$Z' = \{ 0 \dots 0 \quad 1 \dots 0 \dots \}$$
 $T' = \{ y'_0 \dots y'_{j-1} \quad y'_j \quad \dots \quad y'_k \dots \}$

- This establishes that Algorithm A also does not sort sequences of 0's and 1's correctly, which is a contradiction.
- 4. Transposition Sort:
 - a. The transposition sort is really a sort for linear arrays. It is used here to sort columns and rows of the 2D mesh.
 - **b.** Unlike sorts in last chapter, it assumes the data to be sorted is initially located in the PEs and sort does not involve any I/O.
 - **c.** Assume that $P_0, P_1, \ldots, P_{N-1}$ is a linear array of PEs with x_i in P_i for each i. This sort must sort a sequence $S = (x_0, x_1, \ldots, x_{N-1})$ into a sequence $S' = (y_0, y_1, \ldots, y_{N-1})$

with y_i in P_i so that $y_i \leq y_k$ when $i \leq k$.

d. Linear Array Transposition Sort:

i. For
$$j = 0$$
 to $N - 1$ do

ii. For
$$i = 0$$
 to $N-2$ do

iii. if
$$i \mod 2 = j \mod 2$$

iv. then compare-exchange
$$(P_i, P_{i+1})$$

- v. endif
- vi. endfor
- vii. endfor
- **e.** The table below illustrates the initial action of this algorithm when *S* is the sequence (1,1,1,1,0,0,0,0).

time	P_0	P_1	P_2	P_3	P_4	P ₅	P_6	P_7
u=0	1	1	1	1	0	0	0	0
u=1	1	1	1	1	0	0	0	0
u=2	1	1	1	0	1	0	0	0
u=3	1	1	0	1	0	1	0	0
u=4	1	0	1	0	1	0	1	0

- Notice in the 1st pass,
 (even, even + 1) exchanges are
 made, while in the 2nd pass,
 (odd, odd + 1) exchanges occur.
- In this example, once a 1
 moves right, it continues to
 move right at each step until it
 reaches its destination.
- Likewise, once a 0 moves left, it continues to move left at each step until it is in place
- **f.** Correctness is established using the 0-1 principle.
 - Assume a sequence Z of 0's

- and 1's are stored in P_0, P_1, \dots, P_{N-1} with one element per PE.
- As in above example, the algorithm moves the 1's only to the right and the 0's only to the left.
- Suppose 0's occurs q times in the sequence and 1's occur N-q times.
- Assume the worst case, in which all 1's initially lie to the left and N-q (i.e., the number of 1's) is even.
- Then, the rightmost 1 (in P_{N-q-1}) moves right during the second iteration, or when j=1 in the algorithm.
- This allows the second rightmost 1 to move right when j = 2.
- This continues until the 1 in P_0 moves right when j = N q (or

the N-q+1 step, as j is initially 0).

- This leftmost 1 travels right at each iteration afterwards and reaches its destination P_q in q-1 steps.
- Since j = 0 initially, in the worst case

$$(N-q+1)+(q-1)=N$$

iterations are needed.

5. Mesh Sort (Thomas Leighton): Preliminaries

- **a.** Alternate Reference: F. Thomas Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes, Morgan Kaufmann, 1992, pg 139-153
- **b.** Initial Agreements:
 - The 0-1 Principle allows us to restrict our attention to sorting only 0's and1's.

- The Linear Array
 Transportation Sort (called "Sort" here) will be used for sorting rows and columns in Mesh Sort.
- The presentation is simpler if we assume the matrix has m-row and n-column mesh, where
 - \blacksquare $m=2^s$

 - s > r
- Observe:
 - $N = m \times n = 2^{2r+s}$

 - $m/\sqrt{n} = 2^{s-r} \ge 1$ and this value is an integer, so \sqrt{n} divides m evenly
- Above assumptions allow us to partition the matrix into submatrices of size $\sqrt{n} \times \sqrt{n}$

c. Region Definitions

 Horizonal slice: As shown in Figure 8.4(a), the m rows can be partitioned evenly into horizonal strips, each with √n rows, since

$$m/\sqrt{n} = 2^{s-r} \ge 1$$

- Vertical Slice: As shown in Figure 8.4(b), a vertical slice is a submesh with m rows and \sqrt{n} columns.
 - There are \sqrt{n} of these vertical slices.
- **Block:** As shown in Figure 8.4(c), a block is the intersection of a vertical slice with a horizonal slice.
 - Each block is a $\sqrt{n} \times \sqrt{n}$ submesh.
- **d.** Illustration:

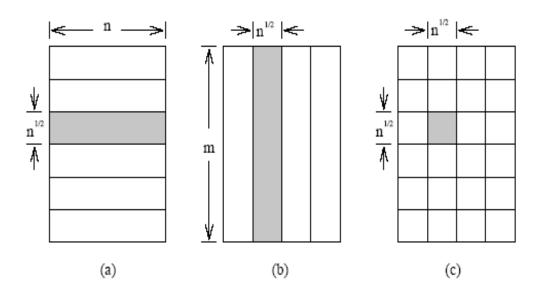


Figure 8.4: Dividing a mesh into submeshes: (a) Horizontal slice; (b) Vertical Slice (c) Block.

e. Uniformity

- Uniform Region: A row, horizonal slice, vertical slice, or block consisting either of all 0's or all 1's.
- Non-uniform Region: A row, horizonal slice, vertical slice, or block containing a mixture of 0's and 1's.
- **f.** Observation: When the sorting algorithm terminates, the mesh

consists of zero or more uniform rows filled with 0's, followed by at most one non-uniform row, followed by zero or more uniform rows filled with 1's.

6. Three Basic Operations

a. Operation BALANCE:

- Applied to a horizonal or vertical slice.
- Effect of BALANCE: In a v × w mesh, the number of 0's and 1's are balanced among the w columns, leaving at most min{v, w} non-uniform rows after the columns are sorted.
 - Note this is obviously true if v < w. In this case, we normally will apply BALANCE to the w × v mesh of w rows and v columns instead.</p>
 - We discuss the $v \times w$ mesh case where v > w below.

- Three Steps of BALANCE Operation:
 - i. Sort each column in nondecreasing order using SORT.
 - ii. Shift i^{th} row of submesh cyclically $i \mod w$ positions right.
 - iii. Sort each column in nondecreasing order using SORT.
- Step (i) pushes all 0's to the top and all 1's to the bottom in each of the w columns.
- Effect of Cyclic Shift in Step (ii) on first element of each row:

- Overall effect of Steps (i-ii) is to spread the 0's and 1's from each column across all w columns.
- Suppose i and j are distinct columns and k is an arbitrary column in the submesh.
 - Step (ii) spreads the elements of column k among all columns.
 - The number of 0's received from column k by columns i and j differ at most by 1.
 - Likewise, the number of

1's that columns i and j receive from column k differ at most by 1.

- Summary: After Step (ii), the number of 0's (respectively, the number of 1's) in columns i and j can differ at most by w.
- Combined Effect after Step (iii) on v × w submatrix:
 - at most $v = \min\{v, w\}$ rows are non-uniform
 - the non-uniform rows are consecutive and separate uniform rows of 0's from uniform rows of 1's.
- Example: If the height of the box in Figure 8.5 is increased to about 3 times its width, it illustrates the effect of applying BALANCE alone to a vertical slice of the original mesh.

b. Operation UNBLOCK

Applied to a block (i.e., a

- $\sqrt{n} \times \sqrt{n}$ submesh)
- Two Steps of the UNBLOCK Operation
 - i. Cyclically shift the elements in each row i to the right $i\sqrt{n} \mod n$ positions.
 - ii. Sort each column in nondecreasing order using SORT.
- Effect of UNBLOCK:
 Distributes one element in each block to each column in the mesh, so that
 - each uniform block produces a uniform row.
 - each non-uniform block produces at most one non-uniform row.
- Justification of preceding claim:
 - Step 1 transfers each of the n elements of a block

to a different column.

■ Example: Mesh before and after Step1. (Here

$$m = 2^2 = 4$$
, $n = 2^{2 \times 2} = 16$, and $\sqrt{n} = 4$.

7. Example:



- **1.** Assume there are *b* non-uniform blocks before executing UNBLOCK.
 - a. After Step (i), the

- difference in the number of 0's of two columns is at most *b*.
- After the column-sort in Step (ii), at most b non-uniform rows remain in the mesh.
- The non-uniform rows are consecutive and separate the uniform rows of 0's from the uniform rows of 1's.

c Operation SHEAR

- Steps of SHEAR
 - i. Sort all even numbered (odd numbered) rows in increasing (decreasing, respectively) order using SORT.
 - ii. Sort each column in increasing order using SORT.
- Effect of SHEAR: If there are b

consecutive non-uniform rows initially, then after operation SHEAR, there are at most $\lceil b/2 \rceil$ consecutive non-uniform rows.

- Justification of above Claim:
 - Let mesh have b consecutive non-uniform rows initially.
 - Consider a pair of adjacent non-uniform rows.
 - Step (i) places the 0's of the pair of adjacent rows at opposite ends.
 - Then a column may get at most one more 0 or 1 than any other column from one pair of rows.

$$\leftarrow 0/1 \rightarrow |\leftarrow 0$$
's $\rightarrow |\leftarrow -0/1 \rightarrow 0$
0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0

- Since there are \[\begin{aligned} \begin{a
- Again, the non-uniform rows separate the uniform rows of 0's from the uniform rows of 1's.

7 Algorithm MESH SORT

The number of basic row/col opns for each step is given after the step.

Step 1: For all vertical slices, do in parallel

• **■** BALANCE (3)

Step 2: UNBLOCK (2)

Step 3: For all horizonal slices, do in

parallel

• ■ BALANCE (3)

Step 4: UNBLOCK (2)

Step 5: For i = 1 to 3, do (sequentially)

SHEAR (2 each loop)

Step 6: SORT each row (1)

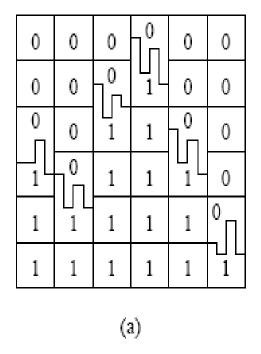
Total row or column operations: 17

8 Correctness of MESH SORT

- **a.** After Step 1, the entire mesh has at most $2\sqrt{n}$ nonuniform blocks.
 - BALANCE leaves at most \sqrt{n} nonuniform rows in each *vertical* (i.e., $m \times \sqrt{n}$) slice.
 - Since the nonuniform rows are consecutive, there are at most two nonuniform blocks in each vertical slice.
 - See Figure 8.7 below
- **b.** After Step 2, UNBLOCK leaves at most $2\sqrt{n}$ nonuniform rows, which

are consecutive.

- Now there are at most three nonuniform horizonal slices in entire mesh.
- **c.** In Step 3, BALANCE is applied (in parallel) to all the $\sqrt{n} \times n$ horizonal strips in parallel
 - In effect, applied to rotated $n \times \sqrt{n}$ mesh strips.
 - BALANCE applied to one nonuniform horizonal slice produces at most 2 nonuniform blocks in this slice (as in Step 1).
 - Since only 3 horizonal slices were nonuniform (after Step 2), at most 6 nonuniform blocks remain after Step 3.
- d. Figure 8.7 shows action after "balance" operations in Step 1 and Step 3.



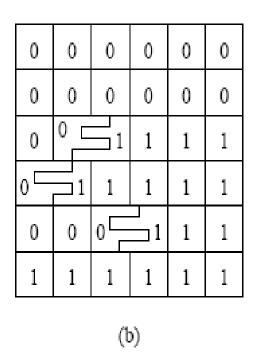


Figure 8.7: Proving the correctness of MESH SORT: (a) After Step 1; (b) Step 3.

- 1. a. Step 4: Since only 6 blocks are nonuniform, UNBLOCK produces at most 6 nonuniform rows.
 - **b.** In Step 5, SHEAR reduces the 6 nonuniform rows to
 - \bullet 6/2 = 3 after iteration 1.
 - $\lceil 3/2 \rceil = 2$ after iteration 2.
 - \blacksquare 2/2 = 1 after iteration 3.
 - c. In Step 6, a sort of all rows will sort

the (possibly) one non-uniform row.

9 Analysis of MESH SORT

- a. There are 17 basic row/column operations in all, when the substeps of BALANCE, UNBLOCK, and SHEAR are counted.
- **b.** Each step above is a sort of a row or column or a cyclic shifting of a row by at most n-1 positions.
- **c.** Using the Linear Transportation Sort, each sorting step requires O(n) or O(m) time, depending on whether a row or column is sorted.
- **d.** Each cyclic shift of a row takes O(n) time, since at most n-1 parallel moves are required to transfer items to their new row location.

e. Alternately, above step can be

done by row sorts on the row-designation address of each item.

- **f.** Running Time: O(n+m), or O(n) if we assume that m is O(n).
 - This time is **best possible** on the 2D mesh, since an item may have to be moved from P(0,0) to P(m-1,n-1).
- **g.** Cost: Assume that $m = n = \sqrt{N}$.
 - The running time is $t(N) = O(\sqrt{N})$
 - The cost is $c(N) = O(N^{3/2})$
 - The cost is not optimal, since an $O(N \lg N)$ cost is possible for a sequential sort of N items.
 - Note: For the case where n = m,
 - If this algorithm could be adjusted to allow each processor to handle

$$O(\frac{N^{3/2}}{N \lg N}) = O(\frac{\sqrt{N}}{\lg N}) = O(\frac{n}{\lg n})$$

nodes without changing its O(n) running time,

■ *then* the resulting algorithm would be optimal.