
PRAM Divide and
Conquer

Algorithms
(Chapter Five)

Introduction:
• Really three fundamental operations:

 Divide is the partitioning process
 Conquer the the process of

(eventually) solving the eventual base
problems (without dividing).

 Combine is the process of combining
the solutions to the subproblems.

• Merge Sort Example
 Divide repeatedly partitions sequence

into halves.
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 Conquer sorts the base sets of one
element.

 Combine does most of the work. It
repeatedly merges two sorted halves.

• Quicksort: The divide stage does most of
the work.
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Search Algorithms
• Usual Format: Have a file of n records.

Each record has several data fields and a
key field.

• Problem Statement: Let S  s1, s2, . . . , sn
be a sorted sequence of integers. Given an
integer x, determine if x  sk for some k.

• Possibilities and actions:
 Case 1. x  sk for some k.

 Action: Return k.
 Case 2. There is no k with x  sk.

 Action: Return
 Case 3. There are several successive

records, say sk, sk1, . . . , ski, whose
key field is x.
 Action: Depends upon the

application. Perhaps k is returned.
• Recall: Sequential Binary Search.

 Key of middle record in file is
compared to x.

 If equal, procedure stops.
 Otherwise, top or bottom half of the

3



file is discarded and search continues
on other half.

• Searching using CRCW PRAM with n
PEs.
 One PE, say P1, reads x and stores it

in shared memory
 All other PEs read x
 Each processor P i compares x to s i for

1 ≤ i ≤ n.
 Those P j (if any) for which x  sj use

a min-CW to write j into k.
 Can easily modify for PRIORITY

or ARBITRARY, but not
COMMON.

• Searching using PRAM and N PEs with
N  n.
 Each Pi is assigned the subsequence

si−1 n
N 1 ≤ x ≤ si n

N

 All PEs read x.
 Any Pi with si−1 n

N 1 ≤ x ≤ si n
N

performs a binary search.
 All Pi with a hit (if any) use MIN-CW
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to write the index of its hit to k.
• Problem: Preceding algorithm is slow, as

often all PEs but one are idle for most of
the algorithm.

PRAM BINARY SEARCH
• Using N processors, we can extend the

binary search to become an (N  1)-way
search.

• An increasing sequence is partitioned into
N  1 blocks and each PE compares a
partition point s with the search value x.

• If s  x, then x can not occur to the right
of s, so all elements following S are
discarded.

• If s  x, then x can not occur to the left of
s, so all elements preceding x are
discarded.

• If s  x, then the index of s is returned.
• Diagram: (Figure 5.3, page 200)
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drop.. s1..drop.. s2 ..keep.. s3 ..drop.. s4 ..drop...s
ptrs → ↑ ↑ ↑ ↑ ↑

P1 P2 P3 P4 P
• If x is not found, the search is narrowed to

one block, identified by two successive
pointers.

• This procedure continues recursively.
• Number of stages required:

 Let mt be the length of largest block at
stage t.

 The maximum length of blocks in
stage 1 is

m1  n
N  1

 The N  1 blocks of indices at stage
1 are

1, . . ,m1, m11, . . , 2m1, . . , N − 1m1  1, . . ,Nm1, Nm11, . .

•  We can let Pi point to the value i  m1
 Clearly Nm1  n ≤ N  1m1 and

m1  n
N since n is in the (N1)th
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block.
 Similarly, m2  m1

N at stage 2, so
m2  n

N2 .
 Inductively, mt  n

Nt .
 Let g be the least integer t with

n
Nt ≤ 1.

 Then,

g  lgn
lgN  ΘlgNn

 If n items are divided into N  1 equal
parts g successive times, then the
maximum length of the remaining
segment is 1.

• Analysis of Algorithm:
 The time for each stage is a constant.
 There are at most g iterations of this

algorithm so
tn ∈ OlgNn

 The sequential binary search algorithm
for this problem has a Olgn running
time.
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 To show optimality of the running
time of this algorithm using this
sequential time, we would need to
show its running time is O lgn

N .
 Trivial, if N is a constant.
 Not obvious in general, as N is

usually a function of n (e.g.,
N  n ).

 Instead, here optimality is established
by a direct proof in the next lemma.

 Much better running time than
previous naive parallel search
algorithm with running time of

lg n
N  lgn − lgN  Θlgn.

Lemma: As defined above, g is a lower
bound for the running time of all PRAM
comparison-based search algorithms.
• At the first comparison step, N processors

can compare x to at most N elements of S.
• Note that n − N elements are not checked,

so one of the N  1 groups created by the
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partition by these N points has size at least
⌈n − N/N  1⌉.

• Moreover,
n − N
N  1 ≥ n − N

N  1  n  1
N  1 − 1

• Then the largest unchecked group could
hold the key and its size could be at least

m  n  1
N  1 − 1.

• Repeating the above procedure again for a
set of size at least m could not reduce the
size of the maximal unchecked sequence to
less than

m  1
N  1 − 1 ≥ n  1

N  12 − 1.

• After t repetitions of this process, we can
not reduce the length of the maximal
unchecked sequence to less than

n  1
N  1 t − 1.

• Therefore, the number of iterations
required by any parallel search algorithm
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is not less than the minimal value h of t
with

n  1/N  1 t − 1 ≤ 0
or, equivalently, h is the minimum t such
that

n  1
N  1 t ≤ 1

• So at least h iterations will be required by
any parallel search algorithm, where

lgn  1 − h lgN  1 ≤ lg1  0.
or

h ≥ lgn  1
lgN  1 .

• Recall that the running time of PRAM
Binary Search is

g  lgn
lgN

 ASIDE: It is pretty obvious that h ≤ g
since h partitions into N  1groups
each time, while g partitions into N
groups each time (as rightmost
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g −group could always have size 1).
• However, g and h have the same

complexity, as

g ∈ Θ lgn
lgN   Θ lgn  1

lgN  1   Θh

• This can be formally by proving that

n→
lim lgn

lgN / lgn  1
lgN  1  0

using L’Hospital’s rule (assuming that
N  Nn is a differentable function of n).
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