PRAM Divide and
Conquer
Algorithms
(Chapter Five)

Introduction:
* Really three fundamental operations:

m Divide Is the partitioning process

m Conquer the the process of
(eventually) solving the eventual base
problems (without dividing).

m Combine is the process of combining
the solutions to the subproblems.

e Merge Sort Example

m Divide repeatedly partitions sequence

Into halves.

m Conquer sorts the base sets of one
element.
m Combine does most of the work. It
repeatedly merges two sorted halves.
e Quicksort: The divide stage does most of
the work.

Search Algorithms

 Usual Format: Have a file of n records.
Each record has several data fields and a
key field.

e Problem Statement: Let S = {s1,S2,...,Sn}
be a sorted sequence of integers. Given an
Integer x, determine if x = sy for some k.

e Possibilities and actions:
m Case l. x = sk for some k.
» Action: Return k.
m Case 2. Thereis no k with x = sy.
» Action: Return

m Case 3. There are several successive
records, say Sk, Sk+1, . - -, Sk+i, Whose
key field is x.

» Action: Depends upon the
application. Perhaps Kk is returned.

* Recall: Sequential Binary Search.

m Key of middle record in file is
compared to X.

m If equal, procedure stops.
m Otherwise, top or bottom half of the

file 1s discarded and search continues
on other half.

o Searching using CRCW PRAM with n

PEs.

One PE, say P, reads x and stores it

In shared memory

All other PEs read x

Each processor P; compares X to s; for

1<i1<n.

Those P; (if any) for which x = s; use

a min-CW to write J into k.

» Can easily modify for PRIORITY

or ARBITRARY, but not
COMMON.

o Searching using PRAM and N PEs with
N < n.

Each P; is assigned the subsequence
S(i-)f+1 S X = Sin

All PEs read x.

Any P; with S(i-1)2+1 = X = Sjn
performs a binary search.

All P; with a hit (if any) use MIN-CW

to write the index of its hit to k.

Problem: Preceding algorithm is slow, as
often all PEs but one are idle for most of
the algorithm.

PRAM BINARY SEARCH

Using N processors, we can extend the
binary search to become an (N + 1)-way
search.

An Increasing sequence Is partitioned into
N + 1 blocks and each PE compares a
partition point s with the search value x.
If s > X, then x can not occur to the right
of s, so all elements following S are
discarded.

If s < X, then x can not occur to the left of
s, so all elements preceding x are
discarded.

If s = X, then the index of s is returned.
Diagram: (Figure 5.3, page 200)

drop.. S1..drop.. S2 ..keep.. S3 ..drop.. S4 ..drop...S

ptrs — ! ! ! ! 1
P, P, P P, F

e |f x Is not found, the search Is narrowed to
one block, identified by two successive
pointers.

« This procedure continues recursively.

 Number of stages required:

m Letm, be the length of largest block at

stage t.
m The maximum length of blocks In
stage 1 1S

_ n
ml—(N+1W
m The (N+ 1) blocks of indices at stage
1 are
1,..,m.],[m+1,..,2m],..,[IN=2)m1 + 1,..,Nmq],[Nm+1,..

« m Wecan let P; point to the value 1 - m;

m ClearlyNm; <n < (N+1)m; and
m; < | since nis in the (N+1)th

block.
m Similarly, m; < <1at stage 2, so
Mo < %

= Inductively, m¢ = <.

m Let g be the least integer t with

n

m Then,
_[dgn | _
0= | 125 | = ©lown)

m If nitems are divided into N + 1 equal
parts g successive times, then the
maximum length of the remaining
segment is 1.

e Analysis of Algorithm:

m The time for each stage Is a constant.

m There are at most g iterations of this
algorithm so

t(n) € Oflgy(n)]
m The sequential binary search algorithm

for this problem has a O(lgn) running
time.

m 10 show optimality of the running
time of this algorithm using this
sequential time, we would need to
show its running time is O(-%™).

» Trivial, if N Is a constant.

» Not obvious in general, as N Is
usually a function of n (e.qg.,
N =.n).

m Instead, here optimality is established
by a direct proof in the next lemma.

m Much better running time than

previous naive parallel search
algorithm with running time of

Ig(%) = Ign—IgN = ©(Ign).

Lemma: As defined above, g is a lower
bound for the running time of all PRAM
comparison-based search algorithms.

o At the first comparison step, N processors
can compare X to at most N elements of S.

 Note that n — N elements are not checked,
so one of the N + 1 groups created by the

partition by these N points has size at least
[(n—=N)/(N+1)].

Moreover,
{n—N“>n—N: +1 4
N+1 |1~ N+1 N+1

Then the largest unchecked group could
hold the key and its size could be at least
n+1
m=N+1 L
Repeating the above procedure again for a
set of size at least m could not reduce the
size of the maximal unchecked sequence to
less than
m+1 1 > n+1 1.
N+1 — (N+1)?
After t repetitions of this process, we can
not reduce the length of the maximal
unchecked sequence to less than
n+1 1
(N + 1)t '
Therefore, the number of iterations
required by any parallel search algorithm

IS not less than the minimal value h of t
with
(n+1)/(N+1)!'-1<0

or, equivalently, h is the minimum t such
that
n+1 <1
(N+ 1)t —
So at least h iterations will be required by
any parallel search algorithm, where

lgin+1) —hlg(N+1) <lIgl = 0.

or

n > lg(n+ 1) |
— Ig(N+1)
Recall that the running time of PRAM
Binary Search is

-

m ASIDE: It is pretty obvious that h < g
since h partitions into N + 1groups
each time, while g partitions into N
groups each time (as rightmost

10

g —group could always have size 1).

However, g and h have the same
complexity, as

0 < 025 = 6

lg(n +1)

|mN+D):®m)

e This can be formally by proving that

im {[25 [|} -o

using L’Hospital’s rule (assuming that
N = N(n) is a differentable function of n).

11

