PRAM Divide and Conquer Algorithms (Chapter Five)

Introduction:

- Really three fundamental operations:
- Divide is the partitioning process
- Conquer the the process of (eventually) solving the eventual base problems (without dividing).
- Combine is the process of combining the solutions to the subproblems.
- Merge Sort Example
- Divide repeatedly partitions sequence into halves.
- Conquer sorts the base sets of one element.
- Combine does most of the work. It repeatedly merges two sorted halves. - Quicksort: The divide stage does most of the work.

Search Algorithms

- Usual Format: Have a file of n records. Each record has several data fields and a key field.
- Problem Statement: Let $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ be a sorted sequence of integers. Given an integer x, determine if $x=s_{k}$ for some k.
- Possibilities and actions:

■ Case 1. $x=s_{k}$ for some k.

- Action: Return k.
- Case 2. There is no k with $x=s_{k}$. - Action: Return

■ Case 3. There are several successive records, say $s_{k}, s_{k+1}, \ldots, s_{k+i}$, whose key field is x.

- Action: Depends upon the application. Perhaps k is returned.
- Recall: Sequential Binary Search.

Key of middle record in file is compared to x .
If equal, procedure stops.
Otherwise, top or bottom half of the
file is discarded and search continues on other half.

- Searching using CRCW PRAM with n PEs.
- One PE , say P_{1}, reads x and stores it in shared memory
- All other PEs read x

Each processor P_{i} compares x to s_{i} for $1 \leq i \leq n$.

- Those P_{j} (if any) for which $x=s_{j}$ use a min-CW to write jinto k.
- Can easily modify for PRIORITY or ARBITRARY, but not COMMON.
- Searching using PRAM and N PEs with $N<n$.
- Each P_{i} is assigned the subsequence $s_{(i-1) \frac{n}{N}+1} \leq x \leq s_{i \frac{n}{N}}$
All PEs read x.
Any P_{i} with $s_{(i-1) \frac{n}{N}+1} \leq x \leq s_{i \frac{n}{N}}$
performs a binary search.
- All P_{i} with a hit (if any) use MIN-CW
to write the index of its hit to k.
- Problem: Preceding algorithm is slow, as often all PEs but one are idle for most of the algorithm.

PRAM BINARY SEARCH

- Using N processors, we can extend the binary search to become an $(N+1)$-way search.
- An increasing sequence is partitioned into $N+1$ blocks and each PE compares a partition point s with the search value x.
- If $s>x$, then x can not occur to the right of s, so all elements following S are discarded.
- If $s<x$, then x can not occur to the left of s, so all elements preceding x are discarded.
- If $s=x$, then the index of s is returned.
- Diagram: (Figure 5.3, page 200)

$$
\text { drop.. } S_{1} . . d r o p . . ~ S_{2} \text {..keep.. } S_{3} \text {..drop.. } S_{4} \text {..drop... } S
$$

$$
\text { prs } \rightarrow
$$

$\begin{array}{llll}P_{1} & P_{2} & P_{3} & P_{4}\end{array}$

- If x is not found, the search is narrowed to one block, identified by two successive pointers.
- This procedure continues recursively.
- Number of stages required:
- Let m_{t} be the length of largest block at stage t.
- The maximum length of blocks in stage 1 is

$$
m_{1}=\left\lceil\frac{n}{N+1}\right\rceil
$$

- The $(N+1)$ blocks of indices at stage 1 are
$\left[1, . ., m_{1}\right],\left[m_{1}+1, . ., 2 m_{1}\right], . .,\left[(N-1) m_{1}+1, . ., N m_{1}\right],\left[\mathrm{Nm}_{1}+1, .\right.$.
- ■ We can let P_{i} point to the value $i \cdot m_{1}$
- Clearly $N m_{1}<n \leq(N+1) m_{1}$ and $m_{1}<\frac{n}{N}$ since n is in the ($\mathrm{N}+1$)th

block.

- Similarly, $m_{2}<\frac{m_{1}}{N}$ at stage 2 , so $m_{2}<\frac{n}{N^{2}}$.
- Inductively, $m_{t}=\frac{n}{N^{t}}$.
- Let g be the least integer t with $\frac{n}{N^{t}} \leq 1$.
- Then,

$$
g=\left\lceil\frac{\lg n}{\lg N}\right\rceil=\Theta\left(\lg _{N} n\right)
$$

- If n items are divided into $N+1$ equal parts g successive times, then the maximum length of the remaining segment is 1.
- Analysis of Algorithm:
- The time for each stage is a constant. There are at most g iterations of this algorithm so

$$
t(n) \in O\left[\lg _{N}(n)\right]
$$

■ The sequential binary search algorithm for this problem has a $O(\lg n)$ running time.

- To show optimality of the running time of this algorithm using this sequential time, we would need to show its running time is $O\left(\frac{\lg n}{N}\right)$.
- Trivial, if N is a constant.
- Not obvious in general, as N is usually a function of n (e.g., $N=\sqrt{n}$).
Instead, here optimality is established by a direct proof in the next lemma. Much better running time than previous naive parallel search algorithm with running time of

$$
\lg \left(\frac{n}{N}\right)=\lg n-\lg N=\Theta(\lg n)
$$

Lemma: As defined above, g is a lower bound for the running time of all PRAM comparison-based search algorithms.

- At the first comparison step, N processors can compare x to at most N elements of S.
- Note that $n-N$ elements are not checked, so one of the $N+1$ groups created by the
partition by these N points has size at least $\lceil(n-N) /(N+1)\rceil$.
- Moreover,

$$
\left\lceil\frac{n-N}{N+1}\right\rceil \geq \frac{n-N}{N+1}=\frac{n+1}{N+1}-1
$$

- Then the largest unchecked group could hold the key and its size could be at least

$$
m=\frac{n+1}{N+1}-1
$$

- Repeating the above procedure again for a set of size at least m could not reduce the size of the maximal unchecked sequence to less than

$$
\frac{m+1}{N+1}-1 \geq \frac{n+1}{(N+1)^{2}}-1
$$

- After t repetitions of this process, we can not reduce the length of the maximal unchecked sequence to less than

$$
\frac{n+1}{(N+1)^{t}}-1
$$

- Therefore, the number of iterations required by any parallel search algorithm
is not less than the minimal value h of t with

$$
(n+1) /(N+1)^{t}-1 \leq 0
$$

or, equivalently, h is the minimum t such that

$$
\frac{n+1}{(N+1)^{t}} \leq 1
$$

- So at least h iterations will be required by any parallel search algorithm, where

$$
\lg (n+1)-h \lg (N+1) \leq \lg 1=0
$$

or

$$
h \geq \frac{\lg (n+1)}{\lg (N+1)}
$$

- Recall that the running time of PRAM Binary Search is

$$
g=\left\lceil\frac{\lg n}{\lg N}\right\rceil
$$

- ASIDE: It is pretty obvious that $h \leq g$ since h partitions into $N+1$ groups each time, while g partitions into N groups each time (as rightmost

$$
g \text {-group could always have size 1). }
$$

- However, g and h have the same complexity, as

$$
g \in \Theta\left(\frac{\lg n}{\lg N}\right)=\Theta\left(\frac{\lg (n+1)}{\lg (N+1)}\right)=\Theta(h)
$$

- This can be formally by proving that

$$
\lim _{n \rightarrow \infty}\left\{\left[\frac{\lg n}{\lg N}\right] /\left[\frac{\lg (n+1)}{\lg (N+1)}\right]\right\}=0
$$

using L'Hospital's rule (assuming that $N=N(n)$ is a differentable function of n).

