Models using Buses

Chapter 10

Introduction

- Mesh Advantages
- Constant link length.
- Easy to expand.
- Large bisection width (nr. of wires that must be cut to divide the network into two equal parts).
- Small and a fixed number of connections per PE.
- Models 2-D world well (and 3-D reasonably well).
- Disadvantages: diameter is large.
- Chapter 8 and 9 solutions
- Replace mesh connections with faster connections
- e.g., either of the "mesh of trees" (see Figure 2.11 \& 2.12)
- Add new connections to existing connections.
- e.g., pyramid
- Replace mesh with an architecture with a smaller diameter (e.g., hypercube, star).
- Disadvantages

New architectures are not as easy to expand.

- e.g., number of connections to each node increases on hypercube
- Physical length of links grow with the number of PEs in many architectures
- Time to traverse longer links increases.
- Alternate Solution: Use bus-enhancements to reduce the diameter
- Some or all PEs are attached to buses.
- Processors on the same bus can communicate directly.

- Fixed Bus Models

- Single Global Bus Model
- The 2-D mesh architecture is included.
- All PEs are connected to a single static bus.
- A datum placed on the bus by one PE can be read by all other PEs.
4 i.e., is a broadcast
- At any given time, only one PE can broadcast to the other PEs.
- If more than one PE broadcasts, then an arbitrary one is selected by bus to succeed.
4 No standard assumption concerning results of a multiple broadcast.
〔 Usually, programmer responsible for avoiding multiple broadcasts.
- Example: See following Figure

10.1 from Akl's textbook:

Figure 10.1: Mesh augmented with a global bus.
Mesh with Multiple Buses (MMB)

- All PEs in each row and column are connected by a bus.
- A PE can broadcast datum to other PEs on either its row or column bus.
- At each step, broadcasts can occur along one or more rows (columns).
- The row and column buses can not be used in the same step.
- Example: See Figure 10.2 from Akl's Textbook below:

Figure 10.2: Mesh augmented with row and column

- Reconfigurable Bus Models
- Allows buses to be created
dynamically during the execution of an algorithm.
- The number, shape, and length of the buses is determined and changed by the algorithm.
- One PE can broadcast to all other PEs on its bus.
- Optical Bus Models of Computation
- Differs from usual buses, which
- are electronic
- allow only exclusive broadcasts.
- An optical bus allows multiple PEs to place their datum on it simultaneously.
- Traversal time for buses
- Let $B(L)$ denote a bus of length L.
- Let $T_{B(L)}$ denote the time for word-size datum to travel the length of a bus of length $B(L)$.
- Travel time for electronic buses depends upon
- Technology used to implement the bus
- Length of bus
- Bus capacity
- Material bus is made of, which determines the "friction" on bus.
- Is typically linear on optical buses, due to speed of light.
- Some engineers argue that $T_{B(L)}$ should be assumed to be linear for all buses.
4 That is, $T_{B(L)}=c L$ for some constant c.
4 If implemented as a tree, then $T_{B(L)}=c(\log L)$
- Another possibility is to include $T_{B(L)}$ as a variable when expressing running times.
- CLAIM: It is reasonable to assume that $T_{B(L)}=O(1)$.
- It is reasonable to assume that the number of PEs are not unbounded.
4 The human brain is estimated to have about 8 billion neurons.
4 New parallel models of
computation may be needed for computational systems approaching this size.
- If the number of PEs are assumed to be at most a few million, then $T_{B(L)}$ takes less time than $\mathrm{O}(1)$-time operations such as addition and multiplication.
- As technology improves,
$4 T_{B(L)}$ should continue to decrease.
4 the length L of a bus needed to join a fixed nr of PEs should decrease.
Argument that $T_{B(L)}=O(1)$ is similiar to argument in section 2.4 of Akl's textbook that the time to access a location in a memory of size M is $O(1)$.
4 Technically, can argue that $T_{B(L)}$ is $O(M)$ - or if implemented as a tree that $T_{B(L)}$ is $O(\log M)$

4 Practically, can show to be $O(1)$.

Finding a Maxima on a Mesh with

Global Bus

- In Section 10.1.1, algorithm given for
$\sqrt{n} \times \sqrt{n}$ mesh with global bus with
$O(\sqrt[3]{n})$ execution time, which is best
possible by Section 10.1.2
- NOTE: May add further details on this.

Finding a Maxima on MMB

- Algorithm uses the Mesh Maximum Algorithm for 2D mesh (pg 430-431 \& Fig 10.3a in Akl).
- Phase 1 of algorithm requires $\sqrt{n}-1$ basic steps.
- Initially, each neighbor in the rightmost column sends its data to its left neighbor
- For $\sqrt{n}-2$ additional steps, each processor $\mathrm{P}(\mathrm{i}, \mathrm{j})$ receiving a datum from its right neighbor compares this datum to its own and
forwards the larger to its left neighbor.
- After preceding steps, each processor $P(i, 0)$ contains the maximum datum x_{i} in the $i^{\text {th }}$ row.
Phase 2 of algorithm also requires $\sqrt{n}-1$ basic steps
- Initially, $P(\sqrt{n}-1,0)$ sends the maximum of its row to its neighbor $P(\sqrt{n}-2,0)$ above it.
- For $\sqrt{n}-2$ additional steps, each processor $\mathrm{P}(\mathrm{i}, \mathrm{j})$ receiving a datum from its lower neighbor compares this datum to its own and forwards the larger to its upper neighbor.
- Recall, in the MMB Architecture,
- The standard mesh is augmented with row \& column buses.
- Processors can communicate using local links to four neighbors.
- All processors connected to the same bus can read a value being broadcast
simultaneously.
- A value can be broadcast to all PEs in 2 steps.
- Preliminaries for Algorithm
- Let n data items be stored in an $X \times Y$ MMB with $n=X Y$.
- For sake of definiteness, assume $X \geq Y$.
■ The algorithm partitions the mesh into $m \times m$ blocks.
- For ease of presentation, assume X is a multiple of m and Y is a multiple of m^{2}.
- The value of m is optimized after the algorithm is given.
- A row of $m \times m$ blocks is called a band.
- Algorithm: MMB Maximum
- Following are summary of algorithm steps from Akl textbook (pg 435-438)
- 1. Use Mesh Maximum Algorithm for 2D mesh discussed earlier to find

the maximum in each $m \times m$ block.

2. Copy maximum in each block to all PEs in first column of block (Fig 10.3b) using 2D mesh links.

(b)
3. The Y / m partial maxima in each band are divided into m groups of $\mathrm{Y} / \mathrm{m}^{2}$ elements. Each of the m rows in a band are assigned one of these group of Y / m^{2} elements (Fig 10.3c). No movement occurs in this step.

(c)
4. Rows successively broadcast each partial maximum. The leftmost PE in each row computes and stores the maximum of these Y / m^{2} values (Fig 10.3d).

(d)
5. Find the largest of the m partial maxima remaining in each band using second phase of Mesh Maximum algorithm and store in upper left PE (Fig 10.4a).

(a)
6. The partial maxima in each band j is moved to column $j \bmod Y$ using row broadcasts (Fig 10.4b).

(b)
7. Find the largest of the [at most $X /(Y m)$] partial maxima in each column in Fig10.4b and store it in the top processor (Fig 10.4c).

- Partial maxima are successively broadcast along each column and top PE stores largest.
- This reduces the number of partial maxima values to $Z=\min \{Y, X / m\}$

(c)

8. The largest of partial maxima is found recursively (Fig 10.4d).

- Recursively divide remaining problems into two independent subproblems

(d)
- Divide the upper left-hand $Z \times Z$ mesh into four $\frac{Z}{2} \times \frac{Z}{2}$ meshes $M_{1}, M_{2}, M_{3}, M_{4}$
- Values are moved from M_{2} to M_{4} using column buses.
- The set of rows (respectively, columns) of M_{1} and M_{4} are disjoint.
- Recursion division continues until 1×1 meshes are formed.
- Results from two submesh pairs are merged as follows: - Let m_{1} in M_{1} and m_{4} in M_{4} be submesh maximal
values stored in upper left PE of each submesh.
- m_{4} is sent to the row containing m_{1} using a column bus
- m_{4} is sent to the PE containing m_{1} using a row bus.
- The PE in upper left corner the first submesh
computes the maximal
value for the larger (i.e., parent) mesh containing the two submeshes.
This recursion allows maxima values of pairs to be calculated in parallel using recursive doubling
- As argued in Akl's textbook, the running time is minimized when

$$
m=n^{1 / 8}, X=n^{5 / 8}, Y=n^{3 / 8}
$$

- In this case, the running time is

$$
t(n)=n^{1 / 8}
$$

which is considerably faster than the
$O(\sqrt[3]{n})$ time obtained for the Global Bus
Mesh Maximum Algorithm earlier in
Chapter 10 of Akl's textbook.

The Reconfigurable Mesh (RM)

- The Reconfigurable Mesh consists of a 2D mesh, augmented with reconfigurable buses. The reconfigurable buses will be discussed below.
- The four NEWS ports of a Mesh Processor (Fig. 10.5):

Figure 10.5: The four ports of a mesh processor.

- Possible internal configurations of processor ports (Fig. 10.6):

$$
\begin{array}{lllll}
5 & 2 & 4 & \square & \square \\
\square & \therefore & 5 & \square & \square
\end{array}
$$

Figure 10.6: Possible internal connections of a processor's ports.

- Each processor can connect zero or more disjoint pairs of ports.
- Bus Path Properties:
- Multiple paths created and changed dynamically, as needed, during the execution of an algorithm.
- The exact port connections made by a PE at a given step in the algorithm can depend upon their location within the mesh or upon a value in some register.
- All port connections can be made in $\mathrm{O}(1)$ time, allowing multiple bus paths to be created in one step of the algorithm.
- A single bus can be created that joins all PE, so the algorithms of the Mesh with a Global Bus can be supported. A row bus for each mesh row can be
created. Likewise, a column bus for each mesh column can be created. This allows the RM to support all of the MMB algorithms.
- Also, row buses and column buses can be supported simultanously.
- Many multiple simultanous buses are possible (Fig. 10.7):

Figure 10.7: A mesh with three configured buses.

- A Reconfigurable Mesh Sort : Setup
- Consider a mesh with n rows and n^{2} columns.
- We view this mesh as n meshes of size $n \times n$, numbered from 0 to $n-1$, placed side by side

Figure 10.8: A mesh of meshes with reconfigurable buses.

- The numbers, $Q=\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$ are fed into the left hand column.
- The technique used is called sorting by enumeration.
- Each number is compared to each of the other numbers to determine its rank.
- If two numbers are equal, the one with the smaller index is considered to be the smaller in determining its rank.
- Reconfigurable Buses Mesh

Sort(Q)
Step 1 Distribution
1.1 All PEs connect their W and E ports, creating a bus on each
row of the mesh.
1.2 Each $P(i, 0)$ of mesh 0 broadcasts x_{i} to all PEs on row i.
1.3 The PEs in column 0 of $n \times n$ meshes connect their N and S ports, creating a bus on that column.
1.4 Each processor $P(i, 0)$ in mesh i broadcasts x_{i} on the column bus. As a result, in mesh $i, P(j, 0)$ contains both x_{i} and x_{j}.

- See Fig. 10.10(a)

(a)

Step 2 Comparison

- 2.1 In mesh i, processor $P(j, 0)$ compares x_{i} and x_{j}.
2.2 If $x_{j}<x_{i}$, it stores a 1 in its register R. Otherwise, a 0 is stored in R.
- See Fig 10.10(b)

(b)

Step 3 Ranking and Enumeration:
The following steps are executed by all meshes.
3.1 All PEs in columns 1 to $n-1$ connect their W and E port in all meshes. This creates a bus on each row.
3.2 $P(j, 0)$ broadcasts the $0 / 1$ value in its R register on the
bus in row j. All PEs in row j store this value in their register.
See Fig 10.11(a) for contents in R register

(a)
3.3 If a PE contains a 0 in its R register, it connects its N and S ports; otherwise, it connects its W and N ports and its S and E ports.

- See buses created in Fig 10.11(b).

(b)
3.4 The bottom-left PE,
$P(n-1,0)$, places a special symbol (say "*") on the bus connected to its S port.
3.5 One $P(0, j)$ in the top row of mesh i will receive the $*$. The value j is the rank of i.
- See Fig 10.11(c). j is nr of 1 's in a column.

(c)

Step 4 Permutation: The element whose rank is k is output on row k.
4.1 In each mesh i, each PE connects its N and S ports, creating a column bus.
4.2 The processor $P(0, j)$ in the first row receiving a *
broadcasts the rank j of x_{i} down its column bus

- See Fig 10.12(a).
4.3 $P(i, j)$ now contains both x_{i} (from step 1) and j. It broadcasts (x_{i}, j) along column j.
- See Fig 10.12(b).
4.4 All processors of the $n \times n^{2}$ mesh connect their W and E bus, creating a row bus across the entire mesh.
4.5 $P(j, j)$ of mesh i broadcasts x_{i} along its row bus.
Figure 10.12

(a)

(b)

MESH i
(c)

- Analysis of Algorithm

Each step of the algorithm runs in constant time.

- Therefore,

$$
\begin{aligned}
t(n) & =O(1) \\
p(n) & =n^{3} \\
c(n) & =O\left(n^{3}\right)
\end{aligned}
$$

- Some of the techniques used here are quite unique, including the technique used in Step 3 to compute the sum of n bits in $O(1)$ time.
- It demonstrates the power of the reconfigurable mesh. No interconnection network model studied previously has a "Constant Time Sorting" algorithm. (Actually, Combining CRCW PRAM can sort in constant time. (e.g., prob. 8.27)
- The use of processors is exhorbant, but will be reduced in the next algorithm.

Problem 10.0

- Part (a): Show that any permutation ($p_{0}, p_{1}, \ldots, p_{n-1}$) of ($\left.x_{0}, x_{1}, \ldots, x_{n-1}\right\}$ can be obtained in constant time using the preceding $O\left(n^{3}\right)$ Reconfigurable Mesh.
- Part (b): The values in the first row or column of an $n \times n$ reconfigurable mesh can be cyclically shifted in constant time.
- The preceding problem is assumed in the next algorithm.
- Preliminaries: A More Efficient RM Sort
■ The basis for this algorithm will be the Mesh Sort.
■ Mesh Sort only uses 3 basic operations
- Sorting a row of a matrix
- Sorting a Column of a matrix
- Cyclic shifting a row of a matrix.
- Assume that the values

$$
Q=\left\{x_{0,}, x_{1}, \ldots, x_{n-1}\right\} \text { are organized }
$$

into an array $A=X \times Y$ where

$$
X=n^{2 / 3} \text { and } Y=n^{1 / 3}
$$

We associate each row of A with Y^{3} processors, organized as a sequence of Y meshs of size $Y \times Y$

- Equivalently, one mesh with Y rows and Y^{2} columns.
- Lets visualize these as attached to rows below A and \perp to plane containing A.
- See Figure 10.13 in Akl’s textbook.
We associate each column of A with X^{3} processors, organized as a sequence of X meshes of size $X \times X$.
- Equivalently, a mesh of X rows and X^{2} columns.
- Lets visualize these $X \times X^{2}$ meshes attached to each column in A and in a plane \perp to plane containing A and lying above the column of A they attach to.
- See Figure 10.13 in Akl’s textbook.
- The total number of PEs required are

$$
\begin{aligned}
p(n) & =X \times Y^{3}+Y \times X^{3}-X \times Y \\
& =n^{\frac{2}{3}} n+n^{\frac{1}{3}} n^{\frac{6}{3}}-n^{\frac{2}{3}} n^{\frac{1}{3}} \\
& =n^{5 / 3}+n^{7 / 3}-n \\
& =O\left(n^{7 / 3}\right) \subset O\left(n^{2.34}\right)
\end{aligned}
$$

which is much better than $O\left(n^{3}\right)$

- Algorithm: A More Efficient RM Sort

1. Whenever Mesh Sort calls for a
row of A to be sorted, the Y^{3}
attached PEs execute
Reconfigurable Buses Mesh Sort.
2. Whenever Mesh Sort calls for a column to be sorted, the attached X^{3} PEs execute Reconfigurable Buses Mesh Sort.
3. Whenever Mesh Sort calls for a row to be cyclically shifted, the attached Reconfigurable Mesh is
used to produce this shift in $O(1)$ time.

- Problem 10.0, which was included earlier, justifies this.

4. Whenever cyclic shifts of rows within all vertical strips is required, this is just a permutation of each row and is handled in the same way as (3) above.

- Algorithm Analysis
- We have already shown that

$$
p(n)=O\left(n^{7 / 3}\right)
$$

- The running time is

$$
t(n)=O(1)
$$

since each step in Mesh Sort can be executed in constant time.

- The cost,

$$
c(n)=O\left(n^{7 / 3}\right)
$$

is an improvement over the $O\left(n^{3}\right)$ cost of the previous algorithm.

- A 3D Reconfigurable Mesh

Improvement

Note that the $3 D$ space above A is large enough to contain the $3 D$ space below A.

- The two spaces can not be combined without adding $3 D$ mesh and bus connections for at least the first $X \times Y^{2}$ block of PEs in the X^{3} block above A.
- If a $3 D$ Reconfigurable Mesh connections are allowed, a $\sqrt{n} \times \sqrt{n} \times \sqrt{n}$ cube can support a constant time sort of n items. Additionally, only the base plane has to contain PEs and the rest can be switches (i.e, components).
- This reduces the cost of the above algorithm to $c(t)=O\left(n^{3 / 2}\right)$, even if PEs are used instead of switches. Reference: "A Constant Time Sorting Algorithm for a $3 D$ Reconfigurable Mesh and Reconfigurable Network", M. Merry and J. Baker, Parallel Processing Letters, vol 5, 1995,

401-412.

Optical Buses

- Models of Computation
- Usefulness depends upon their ability to capture true computing engines.
- Types of assumptions:
- Based on what is currently feasible and what is expected in the foreseeable future.
- Includes important aspects of their computation.
- Ignores aspects of computation that are of secondary importance
- Includes time for operations and travel along the network.
- Important that models allows the general performance of algorithms to be predicted and compared.
- Additionally, some models allow the running time of algorithms to
be accurately estimated.
4 Based on the data size and execution time for various basic operations.
- Two Properties of Electronic Buses:
- bidirectionality:
- Datum placed on a bus by a processor P travels in both directions away from P.
- Speed of electronic signals on a bus:
- There is no precise function to compute the speed a signal travels along a bus.
- Customary to assume that the speed is infinite and arrives at all PEs on the bus instantaneously.
- Important Optical Bus Properties:
- Unidirectional:
- Datum placed on a bus travels in one direction.
- Propogation Delay:
- Predictable
- distance traveled is directly proportional to time.
- Use of Optical Buses

Previous assumptions support forming a pipeline.

- If P_{1} and P_{2} put their datum on the bus at the same time, the difference in the times these two datum arrive at a third processor P is predictable.
- See Figure 10.14 in Akl's textbook

Figure 10.14: A pipeline of data on an optical bus.

- Linear Arrays with Optical Buses

■ Let $P_{0}, P_{1}, \ldots, P_{n-1}$ be processors connected by a two-way link to an optical bus.

- One edge is for receiving data and the other for sending data.
- Data travels on the bus in one direction only.
- Each datum placed on the bus consists of b bits.
- Two successive PEs are a fixed number D of light waves apart.
- The number of time units required for a light pulse to traverse D is denoted τ_{D}, where

$$
\tau_{D}=D / v
$$

and v is the speed of light in the waveguide.

- If $j>i$ and P_{i} sends P_{j} a message, then it arrives after $(\mathrm{j}-\mathrm{i}) \tau_{D}$ time units.
- Multiple PEs can place their datum on a bus simultaneously.
- See Figures 10.14 and 10.15 in Akl's
textbook.

Figure 10.15: A linear array of processors with an optical
A bit is represented by a light pulse of w time units duration.

- In order to avoid overlapping messages, the following conditions must be satisfied:
- $D>b w v$
- PEs must write to the bus at pre-specified times, separated by regular time intervals.
A bus cycle is the time $\tau_{B(L)}$ for an optical signal to traverse the bus from
one end to the other.
- Since the optical length of the bus is $L=(n-1) D$ and

$$
\tau_{B(L)}=L / v,
$$

we assume $\tau_{B(L)}$ is $O(1)$.

- The Wait Function

- Case I (Receive) Each receiving processor P_{j} knows the identity of the sending processor P_{i}.
- All PEs wishing to send a message place a datum on the bus at the beginning of the bus cycle.
- We assume that all PEs write, with the ones without messages sending a dummy message.
- P_{j} skips $j-i-1$ messages and reads the $(j-i)$ th message that passes by.
- The function

$$
\operatorname{wait}(i, j)=(j-i) \tau_{D}
$$

specifies the time that that P_{j} must wait before reading datum d_{i}.

4 Since τ_{D} is a constant, we simplify the notation here by assuming it is 1 and simply writing

$$
w a i t(i, j)=j-i
$$

- In one bus cycle,
- The same message can be read by many PEs
4 Each PE can read only one message
4 In Akl's textbook, see Figure 10.16

Figure 10.16: Routing data when receiver "knows" sender: (a) At the beginning of the bus cycle, P_{0} places d_{0} (destined to P_{3}) on the bus, while P_{2} places d_{2} (destined to P_{4}) on the bus; (b) P_{4} receives d_{2} two time units after the beginning of the bus cycle; (c) P_{3} receives d_{0} three time units after the beginning of the bus cycle.

- ■ Case II (Send) The receiver P_{j} does not know the identity of the sender P_{i} but the sender P_{i} knows the identity of the receiver P_{j}.
- Sender P_{i} writes its message d_{i} on the bus at time

$$
(n-1)-(j-i)
$$

relative to the bus cycle.

- All PEs simultaneously read the bus at the end of the bus cycle.
- If there is a message for one or more PEs, the receiver will find it there at that time.
- In Akl's textbook, see Figure 10.17

Figure 10.17: Routing data when sender "knows" receiver: (a) P_{0} places d_{0} (destined to P_{3}) on the bus one time unit after the beginning of the bus cycle; (b) P_{2} places d_{2} (destined to P_{4}) on the bus two time units after the beginning of the bus cycle; (c) Each datum reaches its destination at the end of the bus cycle.

- ■ Supporting Two Way Communications
- The system in Figures 10.14 \& 10.15 allow travel in only one direction.
Data movement in both directions is supported using two optical buses (see Fig. 10.18).

Figure 10.18: Two-way communication using optical buses.

- Data travels left to right on one bus and travels right to left along the second bus.
- Each PE can read and write to either of the two buses.
- The two buses are synchronous and support separate pipeline.
- The definition of the wait function is extended as follows: For $i \neq j$, if wait $(i, j)>0$ then P_{j} reads from the left-to-right bus, otherwise it reads from the right-to-left bus.
- Using the wait function, any communication pattern (e.g., broadcasting a datum from one PE to all others, executing an arbitrary permutation of the data, reductions, etc.) can be specified.
- Data Communications (assuming 2-way communications)

Broadcast: If P_{i} is to broadcast to all other processors , for each P_{j} with $j \neq i$ define

$$
w a i(i, j)=j-i
$$

4 The entire broadcast operation requires one bus cycle.

4 This is a 'receive' operation

- Permutations: Suppose an arbitrary permutation r is required, so that

$$
d_{i} \rightarrow P_{r(i)}
$$

and each processor receives exactly one datum. It suffices to set

$$
\text { wait }(i, r(i)=r(i)-i
$$

for all i.
4 The entire permutation is completed in one bus cycle.
4 A permutation can be handled by either a 'send' or a 'receive' operation.
Data Mappings: Let $f(j)$ specifies the the data that j will receive. Then

$$
f:\{0,1,,,,, n-1\} \rightarrow\{0,1,2, \ldots, n-1\}
$$

and we want P_{j} to receive d_{j} from $P_{f(j)}$

4 While f is a function, it may fail to be a permutation (which also requires f to be 1-1 and onto). In particular, there could be values j and k where $0 \leq j, k<n$ and $j \neq k$ but

$$
f(j)=f(k)=i
$$

4 In all cases, the wait function is defined by

$$
\operatorname{wait}(f(j), j)=j-f(j)
$$

4 Note in the preceding formula for wait, that $f(j)$ is the location of the data sent to P_{j}.
4 More than one processor can receive the same data item f_{j} as $f_{j}=f_{k}$ for $\mathrm{j} \neq \mathrm{k}$ is possible]
4 This requires a 'receive' operation since more than one PE can receive the same datum.
4 Note that a permutation is a
special case of this operation.
A consequence of the preceding is that a linear array with optical buses can simulate PRAM in constant time, as summarized in the next theorem.
PRAM Simulation Theorem: A
linear array with optical buses
(LAOB) and n PEs and $O(1)$ memory locations per PE can simulate CREW PRAM with n PEs and $O(n)$ shared memory locations in constant time.

- The LAOB simulating model will have the same number of PEs as the PRAM model being simulated.
4 The PEs used in the two models will be assumed to be identical. so that they will have the same capabilities.
- All three of the data communication operations, i.e., broadcasting, permutation, and data distribution can be performed
within one bus cycle.
4 That is, all three of these operations can be done in constant time since $\tau_{B(L)}$ is assumed to take constant time (i.e., no more time than a basic operation such as comparing two numbers).
- The ER and EW PRAM
communication operations are
permutations, if one allows some data values to be "null values".
- Also, a CR can be viewed as a data distribution operation, again if some data values are allowed to be "null".
The PRAM CW operation can not be simulated in constant time by LAOB.
- Since a CR involves having some PEs receive an arbitrary number of values in one step, this can not be accomplished in one LAOB step.
- A CR can be viewed as an arbitrary number of ER steps.
- Meshes with Optical Buses

Two problems with optical buses

- Optical Signals weaken rapidly as they travel long distances.
- The time for a message to travel the length of the bus grows linearly with the length of the bus. When the number of PEs are large, the bus length can be decreased by placing the PEs in a $\sqrt{n} \times \sqrt{n} 2 \mathrm{D}$ mesh pattern (see Figure 10.21 in Akl’s textbook).

Figure 10.21: A mesh of processons with optical buses.

- - Observations:
- No two PEs are joined by standard 2D mesh links. Only buses are used to move data.
- A message can be sent between any two PEs in two bus cycles.
- A Sorting Algorithm
- Claim: The Mesh Sort of Chapter 8 can be executed by a Mesh with Optical Buses (MOB) in O(lgn) time.
- Each step of Mesh Sort executes one or more of the following operations:
4 Sort a row
4 Sort a column
4 Perform a cyclic shift within rows.
Comment: A row permutation is more general than a cyclic shift of a row.
- Suppose the Mesh with Optical Buses consists of $X=2^{s}$ rows and $Y=2^{2 r}$ columns where $s \geq r$ and $X Y=n$.

1. Whenever a row (or
column) is to be sorted, the PEs in that row (column) will simulate PRAM SORT.
2. Whenever a row is to be cyclically shifted, this is done using the wait function since this is just a permutation.

- Algorithm Analysis: Requires $O(\lg n)$ time and n PEs for an optimal cost of $O(n \lg n)$. A more detailed analysis follows:
- Since CW is not needed in this sort, Algorithm PRAM SORT (see Akl, pg 179) can be used.
4 PRAM SORT can be
simulated in constant time by
a linear array with optical buses.
\& Comment: The PRAM SORT was discussed in the PRAM chapter and is the Cole Sort, which is valid for

EREW (Also, see reference 166 in Akl’s textbook).

- For both rows and columns, PRAM sort will sort n^{t} numbers using n^{t} PEs in $O\left(\lg n^{t}\right)=O(\lg n)$ time for some t with $0<t<1$.
4 Recall $X=2^{s}$ rows and
$Y=2^{2 r}$ columns where $s \geq r$
and $X Y=n$.
- There are 13 sorting steps (9 column and 4 row sorts).
- Each permutation requires one bus cycle and there are 4 cycles/permutations in Mesh Sort.
- Consequently, a sequence of length n can be sorted in

$$
t(n)=O(\lg n)
$$

using $p(n)=n$ PEs.

- The above sort is cost optimal since

$$
c(n)=O(n \lg n)
$$

