
Models using
Buses

Chapter 10

Introduction
• Mesh Advantages

 Constant link length.
 Easy to expand.
 Large bisection width (nr. of wires

that must be cut to divide the network
into two equal parts).

 Small and a fixed number of
connections per PE.

 Models 2-D world well (and 3-D
reasonably well).

• Disadvantages: diameter is large.
• Chapter 8 and 9 solutions
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 Replace mesh connections with faster
connections
 e.g., either of the ”mesh of trees”

(see Figure 2.11 & 2.12)
 Add new connections to existing

connections.
 e.g., pyramid

 Replace mesh with an architecture
with a smaller diameter (e.g.,
hypercube, star).

• Disadvantages
 New architectures are not as easy to

expand.
 e.g., number of connections to

each node increases on hypercube
 Physical length of links grow with the

number of PEs in many architectures
 Time to traverse longer links

increases.
• Alternate Solution: Use bus-enhancements

to reduce the diameter
 Some or all PEs are attached to buses.
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 Processors on the same bus can
communicate directly.

• Fixed Bus Models
 Single Global Bus Model

 The 2-D mesh architecture is
included.

 All PEs are connected to a single
static bus.

 A datum placed on the bus by one
PE can be read by all other PEs.
 i.e., is a broadcast

 At any given time, only one PE
can broadcast to the other PEs.

 If more than one PE broadcasts,
then an arbitrary one is selected
by bus to succeed.
 No standard assumption

concerning results of a
multiple broadcast.

 Usually, programmer
responsible for avoiding
multiple broadcasts.

 Example: See following Figure
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10.1 from Akl’s textbook:

 Mesh with Multiple Buses (MMB)
 All PEs in each row and column

are connected by a bus.
 A PE can broadcast datum to

other PEs on either its row or
column bus.

 At each step, broadcasts can occur
along one or more rows
(columns).
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 The row and column buses can
not be used in the same step.

 Example: See Figure 10.2 from
Akl’s Textbook below:

• Reconfigurable Bus Models
 Allows buses to be created

dynamically during the execution of
an algorithm.
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 The number, shape, and length of the
buses is determined and changed by
the algorithm.

 One PE can broadcast to all other PEs
on its bus.

• Optical Bus Models of Computation
 Differs from usual buses, which

 are electronic
 allow only exclusive broadcasts.

 An optical bus allows multiple PEs to
place their datum on it simultaneously.

• Traversal time for buses
 Let BL denote a bus of length L.
 Let TBL denote the time for word-size

datum to travel the length of a bus of
length BL.

 Travel time for electronic buses
depends upon
 Technology used to implement

the bus
 Length of bus
 Bus capacity
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 Material bus is made of, which
determines the ”friction” on bus.

 Is typically linear on optical
buses, due to speed of light.

 Some engineers argue that TBL
should be assumed to be linear for
all buses.
 That is, TBL  cL for some

constant c.
 If implemented as a tree, then

TBL  clogL
 Another possibility is to include

TBL as a variable when
expressing running times.

 CLAIM: It is reasonable to assume
that TBL  O1.
 It is reasonable to assume that the

number of PEs are not
unbounded.
 The human brain is estimated

to have about 8 billion
neurons.

 New parallel models of
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computation may be needed
for computational systems
approaching this size.

 If the number of PEs are assumed
to be at most a few million, then
TBL takes less time than
O(1)-time operations such as
addition and multiplication.

 As technology improves,
 TBL should continue to

decrease.
 the length L of a bus needed

to join a fixed nr of PEs
should decrease.

 Argument that TBL  O1 is
similiar to argument in section 2.4
of Akl’s textbook that the time to
access a location in a memory of
size M is O1.
 Technically, can argue that

TBL is OM - or if
implemented as a tree that
TBL is OlogM
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 Practically, can show to be
O1.

Finding a Maxima on a Mesh with
Global Bus
• In Section 10.1.1, algorithm given for

n  n mesh with global bus with
O 3 n  execution time, which is best
possible by Section 10.1.2

• NOTE: May add further details on this.
Finding a Maxima on MMB
• Algorithm uses the Mesh Maximum

Algorithm for 2D mesh (pg 430-431 &
Fig 10.3a in Akl).
 Phase 1 of algorithm requires n − 1

basic steps.
 Initially, each neighbor in the

rightmost column sends its data to
its left neighbor

 For n − 2 additional steps, each
processor P(i,j) receiving a datum
from its right neighbor compares
this datum to its own and
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forwards the larger to its left
neighbor.

 After preceding steps, each
processor Pi, 0 contains the
maximum datum xi in the ith row.

 Phase 2 of algorithm also requires
n − 1 basic steps
 Initially, P n − 1,0 sends the

maximum of its row to its
neighbor P n − 2,0 above it.

 For n − 2 additional steps, each
processor P(i,j) receiving a datum
from its lower neighbor compares
this datum to its own and
forwards the larger to its upper
neighbor.

• Recall, in the MMB Architecture,
 The standard mesh is augmented with

row & column buses.
 Processors can communicate using

local links to four neighbors.
 All processors connected to the same

bus can read a value being broadcast
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simultaneously.
 A value can be broadcast to all PEs in

2 steps.
• Preliminaries for Algorithm

 Let n data items be stored in an X  Y
MMB with n  XY.

 For sake of definiteness, assume
X ≥ Y.

 The algorithm partitions the mesh into
m  m blocks.

 For ease of presentation, assume X is
a multiple of m and Y is a multiple of
m2.

 The value of m is optimized after the
algorithm is given.

 A row of m  m blocks is called a
band.

• Algorithm: MMB Maximum
• Following are summary of

algorithm steps from Akl textbook (pg
435-438)

• 1. Use Mesh Maximum Algorithm for
2D mesh discussed earlier to find
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the maximum in each m  m block.

2. Copy maximum in each block to all
PEs in first column of block (Fig
10.3b) using 2D mesh links.
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3. The Y/m partial maxima in each
band are divided into m groups of
Y/m2 elements. Each of the m rows
in a band are assigned one of
these group of Y/m2 elements (Fig
10.3c). No movement occurs in
this step.
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4. Rows successively broadcast each
partial maximum. The leftmost PE
in each row computes and stores
the maximum of these Y/m2 values
(Fig 10.3d).

5. Find the largest of the m partial
maxima remaining in each band
using second phase of Mesh
Maximum algorithm and store in
upper left PE (Fig 10.4a).
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6. The partial maxima in each band j
is moved to column j modY using
row broadcasts (Fig 10.4b).

7. Find the largest of the [at most
X/Ym] partial maxima in each
column in Fig10.4b and store it in
the top processor (Fig 10.4c).
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 Partial maxima are
successively broadcast along
each column and top PE
stores largest.

 This reduces the number of
partial maxima values to
Z  minY,X/m

8. The largest of partial maxima is
found recursively (Fig 10.4d).
 Recursively divide remaining

problems into two independent
subproblems
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 Divide the upper left-hand
Z  Z mesh into four Z

2  Z
2

meshes M1,M2,M3,M4
 Values are moved from M2 to

M4 using column buses.
 The set of rows (respectively,

columns) of M1 and M4 are
disjoint.

 Recursion division continues
until 1  1 meshes are formed.

 Results from two submesh
pairs are merged as follows:
 Let m1in M1 and m4 in M4

be submesh maximal
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values stored in upper left
PE of each submesh.

 m4 is sent to the row
containing m1 using a
column bus

 m4 is sent to the PE
containing m1using a row
bus.

 The PE in upper left corner
the first submesh
computes the maximal
value for the larger (i.e.,
parent) mesh containing
the two submeshes.

 This recursion allows maxima
values of pairs to be calculated
in parallel using recursive
doubling

• As argued in Akl’s textbook, the running
time is minimized when

m  n1/8, X  n5/8, Y  n3/8

• In this case, the running time is
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tn  n1/8

which is considerably faster than the
O 3 n  time obtained for the Global Bus
Mesh Maximum Algorithm earlier in
Chapter 10 of Akl’s textbook.

The Reconfigurable Mesh (RM)
• The Reconfigurable Mesh consists of a 2D

mesh, augmented with reconfigurable
buses. The reconfigurable buses will be
discussed below.

• The four NEWS ports of a Mesh Processor
(Fig. 10.5):

• Possible internal configurations of
processor ports (Fig. 10.6):
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 Each processor can connect zero or
more disjoint pairs of ports.

• Bus Path Properties:
 Multiple paths created and changed

dynamically, as needed, during the
execution of an algorithm.

 The exact port connections made by a
PE at a given step in the algorithm can
depend upon their location within the
mesh or upon a value in some register.

 All port connections can be made in
O(1) time, allowing multiple bus paths
to be created in one step of the
algorithm.

 A single bus can be created that joins
all PE, so the algorithms of the Mesh
with a Global Bus can be supported.

 A row bus for each mesh row can be
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created. Likewise, a column bus for
each mesh column can be created.
This allows the RM to support all of
the MMB algorithms.

 Also, row buses and column buses can
be supported simultanously.

 Many multiple simultanous buses are
possible (Fig. 10.7):

• A Reconfigurable Mesh Sort : Setup
 Consider a mesh with n rows and n2

columns.
 We view this mesh as n meshes of size

n  n, numbered from 0 to n − 1,
placed side by side
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 The numbers, Q  x0,x1, . . . ,xn−1
are fed into the left hand column.

 The technique used is called sorting by
enumeration.

 Each number is compared to each of
the other numbers to determine its
rank.
 If two numbers are equal, the one

with the smaller index is
considered to be the smaller in
determining its rank.

• Reconfigurable Buses Mesh
Sort(Q)
Step 1 Distribution
 1.1 All PEs connect their W and E

ports, creating a bus on each
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row of the mesh.
1.2 Each Pi, 0 of mesh 0

broadcasts xi to all PEs on row
i.

1.3 The PEs in column 0 of n  n
meshes connect their N and S
ports, creating a bus on that
column.

1.4 Each processor Pi, 0 in
mesh i broadcasts xi on the
column bus. As a result, in
mesh i, Pj, 0 contains both xi
and xj.

 See Fig. 10.10(a)

Step 2 Comparison
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 2.1 In mesh i, processor Pj, 0
compares xi and xj.

2.2 If xj  xi, it stores a 1 in its
register R. Otherwise, a 0 is
stored in R.

 See Fig 10.10(b)

Step 3 Ranking and Enumeration:
The following steps are executed
by all meshes.

 3.1 All PEs in columns 1 to n − 1
connect their W and E port in
all meshes. This creates a bus
on each row.

3.2 Pj, 0 broadcasts the 0/1
value in its R register on the
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bus in row j. All PEs in row j
store this value in their
register.

 See Fig 10.11(a) for contents in R
register

3.3 If a PE contains a 0 in its R
register, it connects its N and S
ports; otherwise, it connects its
W and N ports and its S and E
ports.

 See buses created in Fig 10.11(b).
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3.4 The bottom-left PE,
Pn − 1,0, places a special
symbol (say ”∗”) on the bus
connected to its S port.

3.5 One P0, j in the top row of
mesh i will receive the ∗. The
value j is the rank of i.

 See Fig 10.11(c). j is nr of 1’s in a
column.
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Step 4 Permutation: The element
whose rank is k is output on row k.

 4.1 In each mesh i, each PE
connects its N and S ports,
creating a column bus.

4.2 The processor P0, j in the
first row receiving a ∗
broadcasts the rank j of xi
down its column bus

 See Fig 10.12(a).
4.3 Pi, j now contains both xi

(from step 1) and j. It
broadcasts xi, j along column
j.
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 See Fig 10.12(b).
4.4 All processors of the n  n2

mesh connect their W and E
bus, creating a row bus across
the entire mesh.

4.5 Pj, j of mesh i broadcasts xi
along its row bus.

 Figure 10.12
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• Analysis of Algorithm
 Each step of the algorithm runs in

constant time.
 Therefore,

tn  O1
pn  n3

cn  On3

 Some of the techniques used here are
quite unique, including the technique
used in Step 3 to compute the sum of n
bits in O1 time.

 It demonstrates the power of the
reconfigurable mesh. No
interconnection network model
studied previously has a ”Constant
Time Sorting” algorithm. (Actually,
Combining CRCW PRAM can sort in
constant time. (e.g., prob. 8.27)

 The use of processors is exhorbant,
but will be reduced in the next
algorithm.
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 Problem 10.0
 Part (a): Show that any

permutation p0,p1, . . . ,pn−1 of
x0,x1,. . . ,xn−1 can be obtained in
constant time using the preceding
On3 Reconfigurable Mesh.

 Part (b): The values in the first
row or column of an n  n
reconfigurable mesh can be
cyclically shifted in constant time.

 The preceding problem is assumed in
the next algorithm.

• Preliminaries: A More Efficient RM
Sort
 The basis for this algorithm will be the

Mesh Sort.
 Mesh Sort only uses 3 basic

operations
 Sorting a row of a matrix
 Sorting a Column of a matrix
 Cyclic shifting a row of a matrix.

 Assume that the values
Q  x0,x1, . . . ,xn−1 are organized
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into an array A  X  Y where
X  n2/3 and Y  n1/3

 We associate each row of A with Y3

processors, organized as a sequence of
Y meshs of size Y  Y
 Equivalently, one mesh with Y

rows and Y2 columns.
 Lets visualize these as attached to

rows below A and  to plane
containing A.

 See Figure 10.13 in Akl’s
textbook.

 We associate each column of A with
X3 processors, organized as a
sequence of X meshes of size X  X.
 Equivalently, a mesh of X rows

and X2 columns.
 Lets visualize these X  X2

meshes attached to each column
in A and in a plane  to plane
containing A and lying above the
column of A they attach to.
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 See Figure 10.13 in Akl’s
textbook.

 The total number of PEs required are
pn  X  Y3  Y  X3 − X  Y

 n 2
3 n  n 1

3 n 6
3 − n 2

3 n 1
3

 n5/3  n7/3 − n
 On7/3 ⊂ On2.34

which is much better than On3
• Algorithm: A More Efficient RM Sort

1. Whenever Mesh Sort calls for a
row of A to be sorted, the Y3

attached PEs execute
Reconfigurable Buses Mesh
Sort.

2. Whenever Mesh Sort calls for a
column to be sorted, the attached
X3 PEs execute Reconfigurable
Buses Mesh Sort.

3. Whenever Mesh Sort calls for a
row to be cyclically shifted, the
attached Reconfigurable Mesh is
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used to produce this shift in O1
time.
 Problem 10.0, which was

included earlier, justifies this.
4. Whenever cyclic shifts of rows

within all vertical strips is required,
this is just a permutation of each
row and is handled in the same
way as (3) above.

• Algorithm Analysis
 We have already shown that

pn  On7/3

 The running time is
tn  O1

since each step in Mesh Sort can be
executed in constant time.

 The cost,
cn  On7/3

is an improvement over the On3 cost
of the previous algorithm.

• A 3D Reconfigurable Mesh
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Improvement
 Note that the 3D space above A is

large enough to contain the 3D space
below A.

 The two spaces can not be combined
without adding 3D mesh and bus
connections for at least the first X  Y2

block of PEs in the X3 block above A.
 If a 3D Reconfigurable Mesh

connections are allowed, a
n  n  n cube can support a

constant time sort of n items.
Additionally, only the base plane has
to contain PEs and the rest can be
switches (i.e, components).

 This reduces the cost of the above
algorithm to ct  On3/2, even if
PEs are used instead of switches.

 Reference: ”A Constant Time Sorting
Algorithm for a 3D Reconfigurable
Mesh and Reconfigurable Network”,
M. Merry and J. Baker, Parallel
Processing Letters, vol 5, 1995,
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401-412.
———————————————

Optical Buses
• Models of Computation

 Usefulness depends upon their ability
to capture true computing engines.

 Types of assumptions:
 Based on what is currently

feasible and what is expected in
the foreseeable future.

 Includes important aspects of their
computation.

 Ignores aspects of computation
that are of secondary importance

 Includes time for operations and
travel along the network.

 Important that models allows the
general performance of
algorithms to be predicted and
compared.

 Additionally, some models allow
the running time of algorithms to

35



be accurately estimated.
 Based on the data size and

execution time for various
basic operations.

• Two Properties of Electronic Buses:
 bidirectionality:

 Datum placed on a bus by a
processor P travels in both
directions away from P.

 Speed of electronic signals on a bus:
 There is no precise function to

compute the speed a signal travels
along a bus.

 Customary to assume that the
speed is infinite and arrives at all
PEs on the bus instantaneously.

• Important Optical Bus Properties:
 Unidirectional:

 Datum placed on a bus travels in
one direction.

 Propogation Delay:
 Predictable
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 distance traveled is directly
proportional to time.

• Use of Optical Buses
 Previous assumptions support forming

a pipeline.
 If P1 and P2 put their datum on the

bus at the same time, the difference in
the times these two datum arrive at a
third processor P is predictable.

 See Figure 10.14 in Akl’s textbook

• Linear Arrays with Optical Buses
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 Let P0,P1, . . . ,Pn−1 be processors
connected by a two-way link to an
optical bus.

 One edge is for receiving data and the
other for sending data.

 Data travels on the bus in one
direction only.

 Each datum placed on the bus consists
of b bits.

 Two successive PEs are a fixed
number D of light waves apart.

 The number of time units required for
a light pulse to traverse D is denoted
D, where

D  D/v
and v is the speed of light in the
waveguide.

 If j  i and Pi sends Pj a message,
then it arrives after (j-i)D time units.

 Multiple PEs can place their datum on
a bus simultaneously.

 See Figures 10.14 and 10.15 in Akl’s
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textbook.

 A bit is represented by a light pulse of
w time units duration.

 In order to avoid overlapping
messages, the following conditions
must be satisfied:
 D  bwv
 PEs must write to the bus at

pre-specified times, separated by
regular time intervals.

 A bus cycle is the time BL for an
optical signal to traverse the bus from
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one end to the other.
 Since the optical length of the bus is

L  n − 1D and
BL  L/v,

we assume BL is O1.
• The Wait Function

 Case I (Receive) Each receiving
processor Pj knows the identity of the
sending processor Pi.
 All PEs wishing to send a

message place a datum on the bus
at the beginning of the bus cycle.

 We assume that all PEs write,
with the ones without messages
sending a dummy message.

 Pj skips j − i − 1 messages and
reads the j − ith message that
passes by.

 The function
waiti, j  j − iD

specifies the time that that Pj must
wait before reading datum di.
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 Since D is a constant, we
simplify the notation here by
assuming it is 1 and simply
writing

waiti, j  j − i
 In one bus cycle,

 The same message can be
read by many PEs

 Each PE can read only one
message

 In Akl’s textbook, see Figure
10.16
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•  Case II (Send) The receiver Pj does
not know the identity of the sender Pi
but the sender Pi knows the identity of
the receiver Pj.
 Sender Pi writes its message di on

the bus at time
n − 1 − j − i

relative to the bus cycle.
 All PEs simultaneously read the

bus at the end of the bus cycle.
 If there is a message for one or

more PEs, the receiver will find it
there at that time.

 In Akl’s textbook, see Figure
10.17
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•  Supporting Two Way
Communications

 The system in Figures 10.14 &10.15
allow travel in only one direction.

 Data movement in both directions is
supported using two optical buses (see
Fig. 10.18).

 Data travels left to right on one
bus and travels right to left along
the second bus.

 Each PE can read and write to
either of the two buses.
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 The two buses are synchronous
and support separate pipeline.

 The definition of the wait function
is extended as follows: For i ≠ j,
if waiti, j  0 then Pj reads from
the left-to-right bus, otherwise it
reads from the right-to-left bus.

 Using the wait function, any
communication pattern (e.g.,
broadcasting a datum from one PE to
all others, executing an arbitrary
permutation of the data, reductions,
etc.) can be specified.

 Data Communications (assuming
2-way communications)
 Broadcast: If Pi is to broadcast

to all other processors , for each
Pj with j ≠ i define

waii, j  j − i
 The entire broadcast

operation requires one bus
cycle.
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 This is a ’receive’ operation
 Permutations: Suppose an

arbitrary permutation r is
required, so that

di → Pri

and each processor receives
exactly one datum. It suffices to
set

waiti, ri  ri − i
for all i.
 The entire permutation is

completed in one bus cycle.
 A permutation can be handled

by either a ’send’ or a
’receive’ operation.

 Data Mappings: Let fj specifies
the the data that j will receive.
Then
f : 0,1, , , , ,n − 1 → 0,1,2, . . . ,n − 1

and we want Pj to receive dj from
Pfj
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 While f is a function, it may
fail to be a permutation
(which also requires f to be
1-1 and onto). In particular,
there could be values j and k
where 0 ≤ j,k  n and j ≠ k
but

fj  fk  i
 In all cases, the wait function

is defined by
waitfj, j  j − fj

 Note in the preceding formula
for wait, that fj is the
location of the data sent to Pj.

 More than one processor can
receive the same data item fj
as fj  fk for j ≠ k is possible]

 This requires a ’receive’
operation since more than one
PE can receive the same
datum.

 Note that a permutation is a
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special case of this operation.
 A consequence of the preceding is that

a linear array with optical buses can
simulate PRAM in constant time, as
summarized in the next theorem.

 PRAM Simulation Theorem: A
linear array with optical buses
(LAOB) and n PEs and O1 memory
locations per PE can simulate CREW
PRAM with n PEs and On shared
memory locations in constant time.
 The LAOB simulating model will

have the same number of PEs as
the PRAM model being
simulated.
 The PEs used in the two

models will be assumed to be
identical. so that they will
have the same capabilities.

 All three of the data
communication operations, i.e.,
broadcasting, permutation, and
data distribution can be performed
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within one bus cycle.
 That is, all three of these

operations can be done in
constant time since BL is
assumed to take constant time
(i.e., no more time than a
basic operation such as
comparing two numbers).

 The ER and EW PRAM
communication operations are
permutations, if one allows some
data values to be ”null values”.

 Also, a CR can be viewed as a
data distribution operation, again
if some data values are allowed to
be ”null”.

 The PRAM CW operation can not be
simulated in constant time by LAOB.
 Since a CR involves having some

PEs receive an arbitrary number
of values in one step, this can not
be accomplished in one LAOB
step.
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 A CR can be viewed as an
arbitrary number of ER steps.

• Meshes with Optical Buses
 Two problems with optical buses

 Optical Signals weaken rapidly as
they travel long distances.

 The time for a message to travel
the length of the bus grows
linearly with the length of the bus.

 When the number of PEs are large, the
bus length can be decreased by placing
the PEs in a n  n 2D mesh
pattern (see Figure 10.21 in Akl’s
textbook).
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•  Observations:
 No two PEs are joined by

standard 2D mesh links. Only
buses are used to move data.
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 A message can be sent between
any two PEs in two bus cycles.

 A Sorting Algorithm
 Claim: The Mesh Sort of Chapter

8 can be executed by a Mesh with
Optical Buses (MOB) in Olgn
time.

 Each step of Mesh Sort executes
one or more of the following
operations:
 Sort a row
 Sort a column
 Perform a cyclic shift within

rows.
Comment: A row
permutation is more
general than a cyclic shift
of a row.

 Suppose the Mesh with Optical
Buses consists of X  2s rows and
Y  22r columns where s ≥ r and
XY  n.
1. Whenever a row (or

53



column) is to be sorted, the
PEs in that row (column)
will simulate PRAM SORT.

2. Whenever a row is to be
cyclically shifted, this is
done using the wait
function since this is just a
permutation.

 Algorithm Analysis: Requires Olgn
time and n PEs for an optimal cost of
On lgn. A more detailed analysis
follows:
 Since CW is not needed in this

sort, Algorithm PRAM SORT
(see Akl, pg 179) can be used.
 PRAM SORT can be

simulated in constant time by
a linear array with optical
buses.

 Comment: The PRAM
SORT was discussed in the
PRAM chapter and is the
Cole Sort, which is valid for
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EREW (Also, see reference
166 in Akl’s textbook).

 For both rows and columns,
PRAM sort will sort nt numbers
using nt PEs in Olgnt  Olgn
time for some t with 0  t  1.
 Recall X  2s rows and

Y  22r columns where s ≥ r
and XY  n.

 There are 13 sorting steps (9
column and 4 row sorts).

 Each permutation requires one
bus cycle and there are 4
cycles/permutations in Mesh Sort.

 Consequently, a sequence of
length n can be sorted in

tn  Olgn
using pn  n PEs.

 The above sort is cost optimal
since

cn  On lgn
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