
Mesh Models
(Chapter 8)

1. Overview of Mesh and Related
models.
a. Diameter:

 The linear array is On, which
is large.

 The mesh as diameter O n ,
which is significantly smaller.

b. The size of the diameter is
significant for problems requiring
frequent long-range data transfers.

c. Some advantages of 2-D Mesh.
Maximum degree is 4.
Has a regular topology (i.e., is
same at all points except for
boundaries).
Easily extended by row or
column additions.

d. Disadvantages of the 2-D Mesh.
 Diameter is still large.

1



e. Mesh of Trees and Pyramids.
 Combines mesh and tree
models

 Both have a diameter of
Olgn.

 These models will not be
covered in this course.

2. Row-Major Sort
a. Suppose we are given a 2-D mesh
with m rows and n columns.

b. Assume the N  n  m processors
are indexed by row-major ordering:

P0 P1   Pn1
Pn Pn1   P2n1
P2n    P3n1
    

Pn2n Pn2n1   Pn21
 Note that processor Pi is in
row j and column k if and only
if i  jn  k, where 0  k  n.
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c. A sequence x1,x2, . . . ,xn1 of
values in a 2-D mesh with xi in Pi
is said to be sorted if
x1  x2 . . . xn1.

3. The 0-1 Principle
a. Let A be an algorithm that
performs a predetermined
sequence of comparison-
exchanges on a set of N numbers.

b. Each comparison-exchange
compares two numbers and
determines whether to exchange
them, based on the outcome of the
comparison.

c. The 0-1 principle states that if A
correctly sorts all 2N sequences of
length N of 0’s and 1’s, then it
correctly sorts any sequence of N
arbitrary numbers.

d. The 0-1 principle occurred earlier
in text as Problem 3.2.

e. Examples of sorts satisfying this
predetermined condition include
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 odd-even sort
 linear array sort of last chapter.

f. Examples of sorts not satisfying
this condition include
 Quick Sort (comparisons
made depends upon values)

 Bubble Sort (Stopping
depends upon comparisons)

g. Proof: (0-1 Principle)
 Let T  x1,x2, . . . ,xn be an
unsorted sequence.

 Let S  y1,y2, . . . ,yn be a
sorted version of T.

 Suppose A is an algorithm that
sorts all sequences of 0’s and
1’s correctly.

 However, assume that A
applied to T incorrectly
produces T   y1

 ,y2
 , . . . ,yn

 .
 Let j be the smallest index
such that yj

  yj.
 Then, we have the following:
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 yi
  yi  yj for 0  i  j

 yj
  yj

 yk
  yj for some k  j.

 We create a sequence Z of 0’s
and 1’s from T (using yj as a
spitting value) as follows: For
i  0,1, . . . ,n  1 let
 zi  0 if xi  yj
 zi  1 if xi  yj

 Then for each pair of indices i
and m,
xi  xm implies that zi  zm

 When Algorithm A is applied to
seqence Z, the comparison
results are the same as when it
is applied to T, so the same
action is taken at each step.

 If Algorithm A produces Z  from
Z, then the corresponding
values of Z and T  are
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Z    0 . . . 0 1 . . . 0 . . .
T    y0

 . . . yj1
 yj

 . . . yk
 . . .

 This establishes that Algorithm
A also does not sort
sequences of 0’s and 1’s
correctly, which is a
contradiction.

4. Transposition Sort:
a. The transposition sort is really a
sort for linear arrays. It is used
here to sort columns and rows of
the 2D mesh.

b. Note that unlike sorts in last
chapter, it assumes the data to be
sorted is initially located in the PEs
and sort does not involve any I/O.

c. Assume that P0,P1, . . . ,PN1 is a
linear array of PEs with xi in Pi for
each i. This sort must sort
S  x0,x1, . . . ,xN1 into a
sequence S   y0,y1, . . . ,yN1 with
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yi in Pi.
d. Linear Array Transposition Sort:

i. For j  0 to N  1 do
ii. For i  0 to N  2 do
iii. if imod2  jmod2
iv. then

compare-exchange(Pi,Pi1)
v. endif
vi. endfor
vii. endfor

e. The table below illustrates the
initial action of this algorithm when
S  1,1,1,0,0,0.

time P0 P1 P2 P3 P4 P5 P6 P7

u0 1 1 1 1 0 0 0 0

u1 1 1 1 1 0 0 0 0

u3 1 1 1 0 1 0 0 0

u4 1 1 0 1 0 1 0 0

u5 1 0 1 0 1 0 1 0
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 Notice in the 1st pass,
even,even  1 exchanges are
made, while in the 2nd pass,
odd,odd  1 exchanges occur.

 Once a 1 moves right, it
continues to move right at
each step until it reaches its
destination.

 Once a 0 moves left, it
continues to move left at each
step until it is in place

f. Correctness is established using
the 0-1 principle.
 Assume a sequence Z of 0’s
and 1’s are stored in
P0,P1, . . . ,PN1 with one
element per PE.

 As in above example, the
algorithm moves the 1’s only to
the right and the 0’s only to the
left.

 Suppose 0’s occurs q times in
the sequence and 1’s occur
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N  q times.
 Assume the worst case, in
which all 1’s initially lie to the
left and N  q (i.e., the number
of 1’s) is even.

 Then, the rightmost 1 (in
PNq1) moves right during the
second iteration, or when j  1
in the algorithm.

 This allows the second
rightmost 1 to move right when
j  2.

 This continues until the 1 in P0
moves right when j  N  q.

 This leftmost 1 travels right at
each iteration afterwards and
reaches its destination Pq in
q  1 steps.

 Since j  0 initially, in the worst
case

N  q  1  q  1  N
compare-exchanges are
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needed.
5. Mesh Sort (Thomas Leighton):
Preliminaries
a. Alternate Reference: F. Thomas
Leighton, Introduction to Parallel
Algorithms and Architectures:
Arrays, Trees, Hypercubes,
Morgan Kaufmann, 1992, pg
139-153

b. Initial Agreements:
 The 0-1 Principle allows us to
restrict our attention to sorting
only 0’s and1’s.

 The Linear Array
Transportation Sort (called
”Sort” here) will be used for
sorting rows and columns in
Mesh Sort.

 The presentation is simpler if
we assume the matrix has
m-row and n-column mesh,
where
 m  2s
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 n  n  n  2r  2r  22r
 s  r

 Observe:
 N  m  n  22rs
 n  2r  2s  m
 m/ n  2sr  1 and this
value is an integer, so n
divides m evenly

 Above assumptions allow
us to partition the matrix
into submatrices of
size n  n

c. Region Definitions
 Horizonal slice: As shown in
Figure 8.4(a), the m rows can
be partitioned evenly into
horizonal strips, each with n
rows, since

m/ n  2sr  1
 Vertical Slice: As shown in
Figure 8.4(b), a vertical slice is
a submesh with m rows and n
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columns.
 There are n of these
vertical slices.

 Block: As shown in Figure
8.4(c), a block is the
intersection of some vertical
slice with some horizonal slice.
 Each block is a n  n
submesh.

 Uniform Region: A row,
horizonal slice, vertical slice, or
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block consisting either of all 0’s
or all 1’s.

 Non-uniform Region: A row,
horizonal slice, vertical slice, or
block containing a mixture of
0’s and 1’s.

d. Observation:When the sorting
algorithm terminates, the mesh
consists of zero or more uniform
rows filled with 0’s, followed by at
most one non-uniform row,
followed by zero or more uniform
rows filled with 1’s.

6. Three Basic Operations
a. Operation BALANCE:

 Applied to a horizonal or
vertical slice.

 Effect of BALANCE: In a v  w
mesh, the number of 0’s and
1’s are balanced among the w
columns, leaving at most
minv,w non-uniform rows
after the columns are sorted.
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 Since this is obviously true
if v  w. In this case, we
normally will apply
BALANCE to the w  v
mesh of w rows and v
columns instead.

 We consider the v  w
mesh case where v  w.

 Three Steps of BALANCE
Operation:
i. Sort each column in
nondecreasing order using
SORT.

ii. Shift ith row of submesh
cyclically imodw positions
right.

iii. Sort each column in
nondecreasing order using
SORT.

 Step (i) pushes all 0’s to the
top and all 1’s to the bottom of
the w columns.

 Effect of Cyclic Shift in Step (ii)
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on first element of each row:

a1,1  

 a2,1 

  a3,1
a4,1  

 a5,1 

 Overall effect of Steps (i-ii) is
to spread the 0’s and 1’s from
each column across all w
columns.

 Suppose i, j, and k are distinct
columns in the submesh.
 Step (ii) spreads the
elements of column k
among all columns.

 The number of 0’s
received from column k by
columns i and j differ at
most by 1.

 Likewise, the number of
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1’s that columns i and j
receive from column k
differ at most by 1.

 Summary: After Step (ii), the
number of 0’s (respectively,
the number of 1’s) in columns i
and j can differ at most by w.

 Combined Effect on
submatrix: Following Step (iii),
 at most w rows are
non-uniform

 the non-uniform rows are
consecutive and separate
uniform rows of 0’s from
uniform rows of 1’s.

 Example: If the height of the
box in Figure 8.5 is increased
to about 3 times its width, it
illustrates the effect of applying
BALANCE alone to a vertical
slice of the original mesh.

b. Operation UNBLOCK
 Applied to a block (i.e., a
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n  n submesh)
 Two Steps of the UNBLOCK
Operation
i. Cyclically shift the
elements in each row i to
the right i n modn
positions.

ii. Sort each column in
nondecreasing order using
SORT.

 Effect of UNBLOCK:
Distributes one element in
each block to each column in
the mesh, so that
 each uniform block
produces a uniform row.

 each non-uniform block
produces at most one
non-uniform row.

 Justification of preceding
claim:
 Step 1 transfers each of
the n elements of a block
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to a different column.
 Example: Mesh before and
after Step1. (Here
m  22  4, n  222  16,
and n  4.

. . . . 0 0 0 1 . . . . . . . .

. . . . 0 0 1 0 . . . . . . . .

. . . . 0 1 0 0 . . . . . . . .

. . . . 1 0 0 0 . . . . . . . .

. . . . 0 0 0 1 . . . . . . . .

. . . . . . . . 0 0 1 0 . . . .

. . . . . . . . . . . . 0 1 0 0

1 0 0 0 . . . . . . . . . . . .
1. a.   Assume there are b

non-uniform blocks before
executing UNBLOCK.

 After Step (i), the
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difference in the number of
0’s of two columns is at
most b.

 After the column-sort in
Step (ii), at most b
non-uniform rows remain
in the mesh.

 The non-uniform rows are
consecutive and separate
the uniform rows of 0’s
from the uniform rows of
1’s.

c Operation SHEAR
 Steps of SHEAR

i. Sort all even numbered
(odd numbered) rows in
increasing (decreasing,
respectively) order using
SORT.

ii. Sort each column in
increasing order using
SORT.

 Effect of SHEAR: If there are b
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consecutive non-uniform rows
initially, then after operation
SHEAR, there are at most b/2
consecutive non-uniform rows.

 Justification of above Claim:
 Let mesh have b
consecutive non-uniform
rows initially.

 Consider a pair of adjacent
non-uniform rows.

 Step (i) places the 0’s of
the pair of adjacent rows at
opposite ends.

 Then a column may get at
most one more 0 or 1 than
any other column from one
pair of rows.

0/1|0’s|—0/1—-

0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0
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 Since there are b/2 pairs
of adjacent non-uniform
rows, the difference in the
number of 0’s in any two
columns is at most b/2.

 Sorting the columns in
Step (ii) causes at most
b/2 non-uniform rows to
remain.

 Again, the non-uniform
rows separate the uniform
rows of 0’s from the
uniform rows of 1’s.

7 Algorithm MESH SORT
The number of basic row/col opns
for each step is given after the
step.

Step 1: For all vertical slices, do in
parallel

  BALANCE (3)
Step 2: UNBLOCK (2)
Step 3: For all horizonal slices, do in

21



parallel
  BALANCE (3)
Step 4: UNBLOCK (3)
Step 5: For i  1 to 3, do
(sequentially)

  SHEAR (2 each loop)
Step 6: SORT each row (1)
———————————————–
Total row or column operations: 17

8 Correctness of MESH SORT
a. After Step 1, the entire mesh has
at most 2 n nonuniform blocks.
 BALANCE leaves at most n
nonuniform rows in each
vertical (i.e., m  n ) slice.

 Since the nonuniform rows are
consecutive, there are at most
two nonuniform blocks in each
vertical slice.

 See Figure 8.7 below
b. After Step 2, UNBLOCK leaves at
most 2 n nonuniform rows, which
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are consecutive.
 Now there are at most three
nonuniform horizonal slices in
entire mesh.

c. In Step 3, BALANCE is applied (in
parallel) to all the n  n horizonal
strips in parallel
 In effect, applied to rotated
n  n mesh strips.

 BALANCE applied to one
nonuniform horizonal slice
produces at most 2 nonuniform
blocks in this slice (as in Step
1).

 Since only 3 horizonal slices
were nonuniform (after Step 2),
at most 6 nonuniform blocks
remain after Step 3.

d. Figure 8.7 shows action after
”balance” operations in Steps 1
and 3.
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e. Step 4: Since only 6 blocks are
nonuniform, UNBLOCK produces at
most 6 nonuniform rows.

f. In Step 5, SHEAR reduces the 6
nonuniform rows to
  6/2  3 after iteration 1.

 3/2  2 after iteration 2.
 2/2  1 after iteration 3.

g. In Step 6, a sort of all rows will sort
the (possibly) one non-uniform
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row.
9 Analysis of MESH SORT
a. There are 17 basic row/column
operations in all, when the
substeps of BALANCE,
UNBLOCK, and SHEAR are
counted.

b. Each step above is a sort of a row
or column or a cyclic shifting of a
row by at most n  1 positions.

c. Using the Linear Transportation
Sort, each sorting step requires
On or Om time, depending on
whether a row or column is sorted.

d. Each cyclic shift of a row takes
On time, since at most n  1
parallel moves are required to
transfer items to their new row
location.
              

e. Alternately, above step can be
done by row sorts on the
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row-designation address of each
item.

f. Running time: On  m, or On if
we assume that m is On.
 This time is best possible on
the 2D mesh, since an item
may have to be moved from
P0,0 to Pm  1,n  1.

g. Cost: Assume that m  n  N .
 The running time is
tN  O N 

 The cost is cN  ON3/2
 The cost is not optimal, since
an ON lgN cost is possible for
a sequential sort of N items.
 Note: For the case where
n  m, if this algorithm
could be adjusted to allow
each processor to handle

O N
3/2

N lgN   O
N
lgN   O

n
4 lgn 

without changing its On
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running time, the resulting
algorithm would be
optimal.
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