ASC Programming Advice

1. First, go through the various programming statements and do a trace of the examples to see if you obtain the same data results as those in the slides. Additional examples may be found in the ASC primer for some statements, if you feel they would be useful. Since ASC commands are similar to C commands, there is a danger of thinking of them as sequential commands and overlooking the more complex parallel action that involves both parallel and scalar variables.
2. Do the algorithm trace required of Problem 1 in your fourth homework assignment (on associative computing) to make sure you understand how the code is working.
3. Download the compiler and emulator from the website http://www.cs.kent.edu/~parallel/PACL/downloads.htm . (See slides 80-82 in Assoc. Computing 2). Also, download the program “shapes.asc” and the data file “shapes.dat” given in these slides. If you go into the “Slide Show” mode for this slide, you can just click on each of these. Then follow the instructions given in these slides and execute this program.

4. Correct the ASC program in Problem 2 of the fourth homework assignment. Trace the action of your ASC algorithm on one or more simple graphs to make sure that it works correctly.

5. Create the ASC algorithm for Dijkstra’s Shortest Path Algorithm described in Problem 3 of the Fourth Homework Assignment. Check the accuracy of your algorithm by tracing your algorithm’s execution on one or more simple graphs. That is, “hand-compute” its actions on each graph by updating the data structure used for your algorithm after each step.

6. Initially, create a very simple program that only reads in your data and then prints it back out again for you to check for correctness.

7. For Problem 4 in the Fourth Homework Assignment, slowly “grow your program” from the preceding simple program. Only add in a small piece of the program at a time and then use print statements and simple data (in a file or interactively entered) to check that new additions are operating correctly before adding in additional portions of the program.
8. If you get stuck, follow usual policies of carefully checking code syntax. If this fails to correct error, go back to an earlier “working version” of this program and try to “growing you program” more slowly by adding only one statement construct at a time and checking out each new statement using print statements and data before adding more code.
9. Also, if your program produces wrong results, recheck your algorithm using graphs of the type used in above step to make sure that the incorrect result is not due to errors in your algorithm.
