Third Homework Assignment

             (Associative Computing Chapter)
1. Provide a partial trace the ASC Minimal Spanning Tree Algorithm (not the ASC program) given in the slides for Associative Computing, Part 1. This trace should show the value of each of the parallel and scalar values in the data structure used (See Fig 6 on slide) at the end of each of the first three passes through the loop. As a check, you should obtain the values in the data structure in my slides at the end of one of the three passes through the loop.
2. Correct the ASC program for the MST in the slides for associative computing in slides for Associative Computing, Part 3. Add documentation to this program to show the purpose of each step. Clearly indicate where you added code to correct the problem and what your added code does. You should demonstrate that your code works correctly on the data used for the MST ASC program in the slides. Produce a printed copy of your work to include with your homework, but send me an electronic copy of your program with “PDC Problem 3.2” as your email subject line. 
3. Create an ASC algorithm for Dijkstra’s Single Source Shortest Path Algorithm.  This algorithm should be done using a data structure similar to the one used in Problem 2 above.
4. Create a program for Dijkstra’s Single Source Shortest Path Algorithm. This problem is described in Associative Computing, Part 3. You may assume that you have an undirected graph. Test your program on the file used in problem 2 and on three additional data files that you created to make sure your program works correctly. Again, you should document steps in your program to explain how it works.  Produce a printed copy of your work to include with your homework, but send me an electronic copy of your program with a copy of your data files and with “PDC Problem3. 4” as your email subject line. Your basic assignment for problem 3 is to do part (a) below. However, you should extend this solution  to handle parts (b) and (c), if time permits.
a You should initially assign values to  START and END by defining them as constant values  at the top of your program. When you test for different values, you will need to change these values and recompile. 
b Extend the previous program so as to print the shortest path you find. 

c Extend program so that START and END are constants whose value is assigned at the top of the program.  
