SIMD+ Overview

- Early machines
- Illiac IV (first SIMD)
- Cray-1 (vector processor, not a SIMD)

■ SIMDs in the 1980s and 1990s

- Thinking Machines CM-2 (1980s)
- General characteristics
- Host computer to interact with user and execute scalar instructions, control unit to send parallel instructions to PE array
- 100s or 1000s of simple custom PEs, each with its own private memory
- PEs connected by 2D torus, maybe also by row/column bus(es) or hypercube
- Broadcast / reduction network

Illiac IV Architectural Overview

CU (control unit) +
64 PUs (processing units)

- PU = 64-bit PE (processing element) + PEM (PE memory)
- CU operates on scalars, PEs operate on vector-aligned arrays (A[1] on PE 1, A[2] on PE2, etc.)
- All PEs execute the instruction broadcast by the CU, if they are in active mode
- Each PE can perform various arithmetic and logical instructions on data in 64-bit, 32-bit, and 8-bit formats
- Each PEM contains 2048 64-bit words

Data routed between PEs various ways
■ I/O is handled by a separate Burroughs B6500 computer (stack architecture)

Illiac IV History

- First massively parallel (SIMD) computer
- Sponsored by DARPA, built by various companies, assembled by Burroughs, under the direction of Daniel Slotnick at the University of Illinois
- Plan was for 256 PEs, in 4 quadrants of 64 PEs, but only one quadrant was built
- Used at NASA Ames Research Center in mid-1970s

Illiac IV Routing and I/O

- Data routing
- CU bus -instructions or data can be fetched from a PEM and sent to the CU
- CDB (Common Data Bus) - broadcasts information from CU to all PEs
- PE Routing network - 2D torus
- Laser memory
- 1 Tb write-once read-only laser memory
- Thin film of metal on a polyester sheet, on a rotating drum

■ DFS (Disk File System)

- $1 \mathrm{~Gb}, 128$ heads (one per track)

■ ARPA network link (50 Kbps)

- Illiac IV was a network resource available to other members of the ARPA network

Cray-1 History

■ First famous vector (not SIMD) processor
■ In January 1978 there were only 12 non-Cray-1 vector processors worldwide:

- Illiac IV, TI ASC (7 installations), CDC STAR 100 (4 installations)

Fall 2005, MIMD

Cray-1 Vector Operations

- Vector arithmetic
- 8 vector registers, each holding a 64element vector (64 64-bit words)
- Arithmetic and logical instructions operate on 3 vector registers
- Vector $C=$ vector $A+$ vector B
- Decode the instruction once, then pipeline the load, add, store operations
- Vector chaining
- Multiple functional units
- 12 pipelined functional units in 4 groups: address, scalar, vector, and floating point
- Scalar add $=3$ cycles, vector add $=3$ cycles, floating-point add $=6$ cycles, floating-point multiply $=7$ cycles, reciprocal approximation $=14$ cycles
- Use pipelining with data forwarding to bypass vector registers and send result of one functional unit to input of another

Fall 2005, MIMD

Thinking Machines Corporation's Connection Machine CM-2

■ Distributed-memory SIMD (bit-serial)
■ Thinking Machines Corp. founded 1983

- CM-1, 1986 (1000 MIPS, 4K processors)
- CM-2, 1987 (2500 MFLOPS, 64K...)
- Programs run on one of 4 Front-End Processors, which issue instructions to the Parallel Processing Unit (PE array)
- Control flow and scalar operations run on Front-End Processors, while parallel operations run on the PPU
- A 4×4 crossbar switch (Nexus) connects the 4 Front-Ends to 4 sections of the PPU
- Each PPU section is controlled by a Sequencer (control unit), which receives assembly language instructions and broadcasts micro-instructions to each processor in that PPU section
- Freon is pumped through a stainless steel tube inside an aluminum casing

CM-2 Nodes / Processors

■ CM-2 constructed of "nodes", each with:

- 32 processors (implemented by 2 custom processor chips), 2 floating-point accelerator chips, and memory chips
- 2 processor chips (each 16 processors)
- Contains ALU, flag registers, etc.
- Contains NEWS interface, router interface, and I/O interface
- 16 processors are connected in a 4×4 mesh to their $\mathrm{N}, \mathrm{E}, \mathrm{W}$, and S neighbors
- 2 floating-point accelerator chips
- First chip is interface, second is FP execution unit
- RAM memory
- 64Kbits, bit addressable

MIMD Overview

MIMDs in the 1980s and 1990s

- Distributed-memory multicomputers
- Thinking Machines CM-5
- IBM SP2
- Distributed-memory multicomputers with hardware to look like shared-memory - nCUBE 3
- NUMA shared-memory multiprocessors
- Cray T3D
- Silicon Graphics POWER \& Origin
- General characteristics
- 100s of powerful commercial RISC PEs
- Wide variation in PE interconnect network
- Broadcast / reduction / synch network

CM-2 Interconnect

- Broadcast and reduction network
- Broadcast, Spread (scatter)
- Reduction (e.g., bitwise OR, maximum, sum), Scan (e.g., collect cumulative results over sequence of processors such as parallel prefix)
- Sort elements

■ NEWS grid can be used for nearestneighbor communication

- Communication in multiple dimensions: $256 \times 256,1024 \times 64,8 \times 8192,64 \times 32 \times 32$, $16 \times 16 \times 16 \times 16,8 \times 8 \times 4 \times 8 \times 8 \times 4$

■ The 16-processor chips are also linked by a 12-dimensional hypercube

- Good for long-distance point-to-point communication

12
Fall 2005, MIMD

Thinking Machines CM-5 Overview

■ Distributed-memory MIMD multicomputer

- SIMD or MIMD operation

■ Configurable with up to 16,384 processing nodes and 512 GB of memory

- Divided into partitions, each managed by a control processor
- Processing nodes use SPARC CPUs

CM-5 Partitions / Control Processors

- Processing nodes may be divided into (communicating) partitions, and are supervised by a control processor
- Control processor broadcasts blocks of instructions to the processing nodes
- SIMD operation: control processor broadcasts instructions and nodes are closely synchronized
- MIMD operation: nodes fetch instructions independently and synchronize only as required by the algorithm

Control processors in general

- Schedule user tasks, allocate resources, service I/O requests, accounting, etc.
- In a small system, one control processor may play a number of roles
- In a large system, control processors are often dedicated to particular tasks (partition manager, I/O cont. proc., etc.)

CM-5 Nodes and Interconnection

- Processing nodes
- SPARC CPU (running at 22 MIPS)
- 8-32 MB of memory
- (Optional) 4 vector processing units

■ Each control processor and processing node connects to two networks

- Control Network - for operations that involve all nodes at once
- Broadcast, reduction (including parallel prefix), barrier synchronization
- Optimized for fast response \& low latency
- Data Network - for bulk data transfers between specific source and destination
- 4-ary hypertree
- Provides point-to-point communication for tens of thousands of items simultaneously
- Special cases for nearest neighbor
- Optimized for high bandwidth

IBM SP2 Overview

Distributed-memory MIMD multicomputer
Scalable POWERparallel 1 (SP1)
Scalable POWERparallel 2 (SP2)

- RS/6000 workstation plus 4-128 POWER2 processors
- POWER2 processors used IBM's in RS 6000 workstations, compatible with existing software

SP2 System Architecture

■ RS/6000 as system console
SP2 runs various combinations of serial, parallel, interactive, and batch jobs

- Partition between types can be changed
- High nodes - interactive nodes for code development and job submission
- Thin nodes - compute nodes
- Wide nodes - configured as servers, with extra memory, storage devices, etc.

■ A system "frame" contains 16 thin processor or 8 wide processor nodes

- Includes redundant power supplies, nodes are hot swappable within frame
- Includes a high-performance switch for low-latency, high-bandwidth communication

SP2 Processors and Interconnection

- POWER2 processor

- RISC processor, load-store architecture, various versions from 20 to 62.5 MHz
- Comprised of 8 semi-custom chips: Instruction Cache, 4 Data Cache, Fixed-Point Unit, Floating-Point Unit, and Storage Control Unit

■ Interconnection network

- Routing
- Packet switched = each packet may take a different route
- Cut-through $=$ if output is free, starts sending without buffering first
- Wormhole routing = buffer on subpacket basis if buffering is necessary
- Multistage High Performance Switch (HPS) network, scalable via extra stages to keep bw to each processor constant
- Guaranteed fairness of message delivery

nCUBE 3 Overview

■ Distributed-memory MIMD multicomputer (with hardware to make it look like shared-memory multiprocessor)

- If access is attempted to a virtual memory page marked as "non-resident", the system will generate messages to transfer that page to the local node
nCUBE 3 could have 8-65,536 processors and up to 65 TB memory
- Can be partitioned into "subcubes"

■ Multiple programming paradigms: SPMD, inter-subcube processing, client/server
nCUBE 3 Processor and Interconnect

- Processor
- 64-bit custom processor
- $0.6 \mu \mathrm{~m}$, 3-layer CMOS, 2.7 million transistors, $50 \mathrm{MHz}, 16 \mathrm{~KB}$ data cache, 16 KB instruction cache, 100 MFLOPS
- ALU, FPU, virtual memory management unit, caches, SDRAM controller, 18-port message router, and 16 DMA channels
- ALU for integer operations, FPU for floating point operations
- Argument against off-the-shelf processor: shared memory, vector floating-point units, aggressive caches are necessary in workstation market but superfluous here
- Interconnect
- Hypercube interconnect
- Wormhole routing + adaptive routing around blocked or faulty nodes

nCUBE 3 I/O

ParaChannel I/O array

- Separate network of nCUBE processors
- 8 computational nodes connect directly to one ParaChannel node
- ParaChannel nodes can connect to RAID mass storage, SCSI disks, etc.
- One I/O array can be connected to more than 400 disks

MediaCUBE Overview

- For delivery of interactive video to client devices over a network (from LAN-based training to video-on-demand to homes)
- MediaCUBE $30=270$ 1.5 Mbps data streams, 750 hours of content
- MediaCUBE $3000=20,000 \& 55,000$

Cray T3D Overview

■ NUMA shared-memory MIMD multiprocessor

- Each processor has a local memory, but the memory is globally addressable

■ DEC Alpha 21064 processors arranged into a virtual 3D torus (hence the name)

- 32-2048 processors, 512MB-128GB of memory
- Parallel vector processor (Cray Y-MP / C90) used as host computer, runs the scalar / vector parts of the program
- 3D torus is virtual, includes redundant nodes

32

Fall 2005, MIMD

T3D Nodes and Interconnection

- Node contains 2 PEs; each PE contains:
- DEC Alpha 21064 microprocessor
- $150 \mathrm{MHz}, 64$ bits, 8 KB L1 I\&D caches
- Support for L2 cache, not used in favor of improving latency to main memory
- 16-64 MB of local DRAM
- Access local memory: latency 87-253ns
- Access remote memory: $1-2 \mu \mathrm{~s}$ ($\sim 8 \mathrm{x}$)
- Alpha has 43 bits of virtual address space, only 32 bits for physical address space - external registers in node provide 5 more bits for 37 bit phys. addr.
- 3D torus connections PE nodes and I/O gateways
- Dimension-order routing: when a message leaves a node, it first travels in the X dimension, then Y , then Z

Silicon Graphics POWER CHALLENGEarray Overview

■ ccNUMA shared-memory MIMD
■ "Small" supercomputers

- POWER CHALLENGE - up to 144 MIPS R8000 processors or 288 MISP R1000 processors, with up to 128 GB memory and 28 TB of disk
- POWERnode system - shared-memory multiprocessor of up to 18 MIPS R8000 processors or 36 MIPS R1000 processors, with up to 16 GB of memory

■ POWER CHALLENGEarray consists of up to 8 POWER CHALLENGE or POWERnode systems

- Programs that fit within a POWERnode can use the shared-memory model
- Larger program can span POWERnodes

Silicon Graphics Origin 2000 Overview

- ccNUMA shared-memory MIMD
- SGI says they supply 95% of ccNUMA systems worldwide

■ Various models, 2-128 MIPS R10000 processors, 16 GB - 1 TB memor

- Processing node board contains two R10000 processors, part of the shared memory, directory for cache coherence, plus node and I/O interface

■ File serving, data mining, media serving, highperformance computing

