CS 412/512

Final Project

Due: Sunday, March 22 (hard deadline)
Max Points: 100
I. OVERVIEW

In the final project, you will work on a number of SIMD programming problems with an increasing degree of difficulty. You will starting with a simple introductory problem in which you will use the ClearSpeed SIMD Board to execute queries to retrieve and modify data in a car lot data base. In subsequent problems, you will develop some basic components of a simple air traffic control system.

You will turn in the source code for the all the problems in a tar file, called yourname.tar (replace yourname with your family name), that contains a separate subdirectory for each problem. Each subdirectory should contain a makefile to build the executable. You should test your code with both the ClearSpeed simulator as well as on the board.
IF you have any questions about these two problems, please send email to Mike Yuan myuan@cs.kent.edu and copy Professor Johnnie Baker jbaker@cs.kent.edu and me.
I. INTRODUCTORY PROBLEM: CAR LOT DATABASE

You will be provided with a headstart file, carlot.tar, which contains the following files:

· asc.cn

· asc.h

· carlot.h
· carlot_next.cn

The two header files, asc.h and carlot.h, will need to be included in your program. The file asc.cn contains implementations of some important associative functions that you will for all the problems in the final project (see the file ASCFunctionsImplementations.pdf for a description of the associative functions implemented). The fourth file, carlot_next.cn, provides examples of solutions similar to the functions you will need to implement for Problem 1.

For further reference refer to the “Introductory Programming Manual”. It is probably the best one for beginning Cn programmers. A more advanced ClearSpeed Cn programming guide is Chapter 11 in the “SDK Reference Manual”, which provides more detailed information. You are free to use any of the ClearSpeed reference manuals or instruction slides.

I.1 REQUIREMENTS
You will write a program my_carlot.cn that answers the following questions / performs the following tasks. These questions are based on the carlot database, which is generated by a call to the “poly struct Cars carlot(poly struct Cars car)” function defined in carlot.h (see carlot_next.cn for how to generate the database).

.

(1) Print the first car lot list generated by the carlot.h program under the heading of “Original Car Lot”.

(2) Starting with the above data base, change the color of the first 1992 car to ‘R’ and the color of the third 1992 car to ‘L’. Afterwards, print out the resulting car lot list under the heading of “Second Car Lot”

(3) Starting with the second car lot data base, make the following changes: If there is any 1992 car’s color is ‘R’, change all of the onlot status of 1992 cars to ‘0’. Afterwards, print the resulting car lot list under the heading of “Third Car Lot”

(4) Starting with the third car lot, if there is no 1991 car whose color is ‘A’, change all of the onlot status of 1991 cars to ‘0’. Afterwards, print out the resulting list under the heading of “Fourth Car Lot”.
(5) Compute and print a message giving the number of cars satisfying the following conditions: latest model Ford cars that are red and on the lot. Use the initial car lot.
(6) Modify above program to compute and print a message giving the number of cars satisfying the following conditions: oldest model Toyota cars that are black and on the lot. Use the initial car lot.
(7) Locate and count the number of black cars that are on the initial car lot. If there are more than 3 black cars, change the color of the newest two cars to blue. Use the initial car lot and print the resulting car lot under the heading of “Fifth Car Lot”
II. PROBLEM: GENERATION OF AIR TRAFFIC DATA (ATC PART A)
This involves setting up an initial environment for generating and moving air traffic. The solution to this part will be needed in subsequent parts of this project.
Consider the 2-D airspace, and the X and Y axis, as shown, with the origin, (0,0), at its center.
[image: image1]

.

The range X is +/- 128 nautical miles (nm), and Y range is also +/- 128 nm. Note that Numbers in this range can be represented using a 7 digit binary number and a sign bit.

Flights are generated in processors by giving each flight a random starting point in the square and a random velocity (see the ClearSpeed SDK documentation on how to generate random numbers). The velocity can be represented by the distances dx and dy the plane travels in an 0.5 second time period. Target velocities should be between 30 knots (nautical miles per hour) and 600 knots using an average of 250 knots.

X and Y can be fixed point numbers with fractional part representing the accuracy of the system. If we use 8 bits as the fraction part of the number we have accuracy to less than 30 ft.

 The next thing we must do is convert the velocity from knots to distance travelled every 0.5 second period in the X and Y directions. To do this, determine for each plane, the change dx in X and the change dy in Y each half second, so that X + dx, and Y + dy are the new position of each plane every 0.5 seconds. This can be used to continue each flight (in the same direction and at the same speed) in our space indefinitely.

What happens when a plane reaches an edge of the box in our space? If we are using fixed point number system with a sign bit, then when the X or Y component reaches the 128 mile value at an edge of the box, the plane re-enters our space at the position produced by switching the sign of both the X and Y coordinates. The departure and re-entry points are symmetric with the origin and are on opposite sides of our space.

Observe that each plane continues to move in the same direction throughout its flight. Later, we could add a turn component randomly to some tracks so they would turn inside our space.

At a later point, this same algorithm could be used to produce radar reports by adding some random noise to each “next” position and sending it to our radar correlation system for tracking.

II.1 REQUIREMENTS
Write a program, atc_1.cn, that generates one plane per PE and performs the actions described above. Implement a function that prints the positions of all the plane and produce (you should implement a “rate limiter”, i.e., only ouput the positions of all the planes n times per second) (we will provide you with some information on how to measure time on the SIMD board in class).
III. PROBLEM: GENERATION OF AIR TRAFFIC DATA (ATC PART B)
This project is an extension of Part A and will use the solution to Part A to create an initial environment to test ATC tasks. In Part B, a “Correlation and Location” task will be created and tested using the initial environment.

The “Correlation and Location” task uses software and techniques developed in Part A. In addition, you will need to randomly generate an altitude for each plane between 3000-6000 feet. Each plane will remain at the same height, unless instructed to change its altitude. A “track” is a record that keeps track of all the information about a plane. We use a track to represent the plane as described below.
You need to create a vector data structure in each processor to store the flight information for its track. This data structure will have the same organization and location in each processor’s memory. You will need the current velocity information (i.e., dx and dy, as defined in Project 1). You will need to store the current location (x0, y0) of the track. Other information that you need to keep for the track should be stored here.

Initially, you will need to compute and store the projected next location of the track. This will be (x1,y1) where x1= x0 + dx and y1= y0 + dy. You also need to add some random noise to generate next location as follows: First generate a random variable r, where 0≤ r ≤ 1 and let x2 = x1 + (r*nm)/5, where nm is one nautical mile. Then generate another random variable s, where 0≤ s ≤ 1 and let y2 = y1 + (s*nm)/5. Then location (x2, y2) from each processor will be used as a radar sighting for an arbitrary plane.

Next, each radar point in turn is tested to see if it correlates with any track. To correlate with a track, a radar must lie in a box that is 1 nm on each side with the track (xo,yo) at its center. If two tracks match the same radar, then the radar will be discarded. If one track matches the radar, then this radar location is recorded in the track’s flight information and a radar match (initially set to 0) is set to 1, indicating that a radar match has been found. If a second radar match is found that matches the same track, then radar match is set to -1, indicating that radar information for this round will be discarded. After all radar values have been processed, all tracks with radar match set to 1 will reset current location to radar location in the plane’s flight record. Otherwise, current location will be set to next location. This task must be done in less than 0.5 of a second.

III.1 REQUIREMENTS
Create a program, atc_2.cn, that initially uses the solution to Part A to create, for each processor, an independent airplane location and velocity. Additionally, a data structure should be created in each processor to store all needed information for the one plane that it will manage. This data structure will be expanded in the future, as needed, to hold whatever information needs to be stored about this plane. (Eventually, it will contain all of the flight plan information as well as other information that needs to be stored about this plane during the fight.) In addition, this program will call Task 1 at the beginning of every half second for 8 seconds. At the end of 8 seconds, this cycle repeats. Write this program so that this cycle can be continued for a fixed number of cycles (e.g., 10).
III. INCREASE THE NUMBER OF PLANES (ATC PART C)

Part A and B of the problem limit the number of planes to the number of PE’s on the SIMD board. In the last part of the project, you will enhance the program by supporting a number of planes that is greater than the number of available PE’s.
III.1 REQUIREMENTS
Turn in a program, atc_3.cn, that performs the same tasks as the solution to Part B, but supports multiple planes per PE.

