
Software Configuration
Management

Kent State University

Prof. Jonathan Maletic

1

SCM
• Software Configuration Management involves:

• Revision control (version control) and change
management

• Build and release management (diff and patch)

• Process and environment management

• Facilitate teamwork and collaboration

• Issue/Defect tracking

2

Change Management
• Version Control Systems (VCS): git, mercurial, svn, perforce,

MS Team Foundation, cvs, rcs

• VCS help developers manage changes made to files (source
code, documentation, build files, etc.)

• A revision number is given to each new version (or revision)
of a file or set of files

• A commit defines the set of files associated with a new
version

• VCS manage the revisions for searching and roll back

3

Why use Version Control

• Software is really complex and constantly changing.

• Software that compiled and passed tests yesterday may
fail today.

• Which change broke the system? Without VCS this is a
guessing game.

• VCS records what changes are made, when the change
was made, and who made the change - maintains a
complete history of changes made to a system

4

Uses of VCS
• You are working on fixing a bug or adding a new feature

• Can not do this on the “production code” (master copy) -
the code that compiles, runs, and passes all the tests

• VCS allows developers to make changes over multiple
days on their local copy without modifying the master
copy

• After the bug is fixed or feature completed the developer
can commit their work to the master copy

5

Collaboration
• You modify the code in file foo, get it working

• Your team mate modifies the code in file foo and gets it
working

• You combine both version and it doesn’t work

• Something in one of the versions broke the other

• Merging can also be supported by VCS

• Version control is essential for coordination of multiple
developers

6

Other Benefits
• Provides a complete time machine for the project - able

to roll back to any previous version or examine changes
made in the past

• Allows for multiple different variant of the same project -
stand alone app, web version, iPhone version, etc

• Greatly simplifies concurrent development and merging of
different changes

• Helps define the development workflow and process

7

Critical Tool

• Version control systems are a critical component in the
software engineering process

• Version control systems along with other components of
configuration management and team management
directly support the quality goal of the project

• By not adopting and correctly using a version control
system your project is most likely doomed

8

How VCS Work

• Versioning at file level

• Text files - diff can be used to determine what changed.
This works at the character level (line or word)

• Binary files - at the file level only

• No understanding of syntax or programming language

9

Types of VCS
• There are basically two types of version control systems

• Centralized: svn, cvs, rcs

• rcs use file locking

• svn, cvs use version merging (with diff)

• Distributed: git, mercurial

• git uses version merging

10

Lock vs Merge
• Locking - one developer locks file and only they can modify the file

(lock and modify)

• Advantage is that there is no merging problems

• Disadvantage is that it slows down development by not allowing
others to work on the file (hence they are rarely used anymore)

• Merging has no restrictions on access (copy and modify)

• Advantage is developers can work in parallel

• Disadvantage is that there will be merging problems

11

Centralized Model

12

Subversion (svn)
• Subversion uses a centralized repository to store the main copy

• Developers check out a copy of this repo locally on their machine.
Changes can be made to this local copy.

• Developers than commit their changes to the main copy

• Other developers must be informed of these changes and either do
an update to their local copy or delay the merging process to a later
time

• Merge conflicts become a difficult issue to resolve properly

• One sequential sequence of version numbers

13

svn Workflow

• Update a local working copy

• Perform changes to a local copy of the repo

• Commit changes to central repo

• Need network access to the central server

• Merging is difficult, branching tends to create problems

14

Distributed Model

15

Git
• Git is a distributed version control system (peer-to-peer)

• Git supports the process of branching

• A master branch is maintained - this is the working
production code branch

• Developers clone or branch the master as a local copy

• Changes can be pushed into the master. Changes can also
be pulled into other developers local copy

• No one sequence of version numbers

16

Git Workflow
• Versions are identified by a SHA1 id (160 bit Hex decimal number)

- Secure Hash Algorithm - gives a unique id. Records changes not
versions

• Each local copy is a full fledged repo that can be worked on
without a network connection

• Developers clones a repo and make changes, then pushes to
others using the repo. Tracks merge data

• Advantage: fast, flexible, multiuser, very powerful

• Disadvantage: Complex and difficult to learn (over 160 commands)

17

18

