
Static Program Analysis
Part I of IV

Automated Static Analysis

• A static analyzer is a software tool for source code
text processing

• They parse the program text and try to discover
potentially erroneous conditions and bring these to
the attention of the V&V/Testing team

• Very effective as an aid to inspections.
• A supplement to but not a replacement for  

inspections

Types of Static Analysis Checks
Fault Type Static Analysis Check

Data • Variables used before initialization
• Variables declared but never used
• Variables assigned twice but never used

between assignments
• Possible array bound violations
• Undeclared variables

Control • Unreachable code
• Unconditional branches into loops

I/O • Variables output twice with no intervening
assignment

Interface • Parameter type mismatches
• Parameter number mismatches
• Non-usage of results of functions
• Uncalled functions

Storage management • Unassigned pointers
• Pointer arithmetic

Static Models of the Source Code
• Low level

– Source code text

• Intermediate level
– Symbol table
– Parse tree

• High level
– Control flow
– Data flow
– Program Dependency Graph

• Design Level
– Class diagram
– Sequence diagram

Intermediate

representation

Starting Point for Static Analysis

Parsing, lexical analysis
Source

program

Code generation,
optimization

Target code

Code execution

•Analyze intermediate
 representation, perform additional
 analysis on the results
•Use this information for the
 applications

Intermediate Representation

• Parse (derivation) Tree & Symbol Table
• Concrete Parse Tree

– Concrete (derivation) tree shows structure and is
language-specific issues

– Parse tree represents concrete syntax
• Abstract Syntax Tree/Graph (AST)/(ASG)

– Abstract Syntax Tree shows only structure
– Represents abstract syntax

AST vs Parse Tree

 Example
1. a := b + c

2. a = b + c;

• Grammar for 1
• stmtlist ! stmt | stmt stmtlist
• stmt ! assign | if-then | …
• assign ! ident “:=“ ident binop ident
• binop ! “+” | “-” | …

• Grammar for 2
• stmtlist ! stmt “;” | stmt”;” stmtlist
• stmt ! assign | if-then | …
• assign ! ident “=“ ident binop ident
• binop ! “+” | “-” | …

Parse Trees

 Example
1. a := b + c
2. a = b + c;

stmt

stmtlist

ident

assign

a

ident“:=“ binop

cb

ident

“+”

stmt

stmtlist

ident

assign

a

ident“=“ binop

cb

ident

“+”

“;”

Parse Tree for 1 Parse Tree for 2

AST

 Example
1. a := b + c
2. a = b + c;

Abstract syntax tree for 1 and 2

assign

a add

b c

Intermediate to High level

• Given
– Source code
– AST
– Symbol table

• One can construct
– Call graphs
– Control flow graph
– Data flow
– Slices

Control Flow Analysis (CF)

Procedure AVG
S1 count = 0
S2 fread(fptr, n)
S3 while (not EOF) do
S4 if (n < 0)
S5 return (error)
 else
S6 nums[count] = n
S7 count ++
 endif
S8 fread(fptr, n)
 endwhile
S9 avg = mean(nums,count)
S10 return(avg)

S1

S2

S3

S4

S5 S6

S7

S8

S9

S10

entry

exit

F

T

F

T

Computing Control Flow

• Basic blocks can be identified in the AST
• Basic blocks are straight line sequence of

statements with no branches in or out.
• A basic block may or may not be “maximal”
• For compiler optimizations, maximal basic blocks

are desirable
• For software engineering tasks, basic blocks that

represent one source code statement are often used

Computing Control Flow

Procedure AVG
S1 count = 0
S2 fread(fptr, n)
S3 while (not EOF) do
S4 if (n < 0)
S5 return (error)
 else
S6 nums[count] = n
S7 count ++
 endif
S8 fread(fptr, n)
 endwhile
S9 avg = mean(nums,count)
S10 return(avg)

S1

S2

S3

S4

S5 S6

S7

S8

S9

S10

entry

exit

F

T

F

T

Procedure Trivial
S1 read (n)
S2 switch (n)
 case 1:
S3 write (“one”)
 break
 case 2:
S4 write (“two”)
 case 3:
S5 write (“three”)
 break
 default
S6 write (“Other”)
 endswitch
end Trivial

S1

S2

S3 S4 S5 S6

entry

exit

Computing Control Flow

Procedure Trivial
S1 read (n)
S2 switch (n)
 case 1:
S3 write (“one”)
 break
 case 2:
S4 write (“two”)
 case 3:
S5 write (“three”)
 break
 default
S6 write (“Other”)
 endswitch
end Trivial

S1

S2

S3 S4 S5 S6

entry

exit

Computing Control Flow

