An Introduction to
eXtreme Programming

Jonathan I. Maletic, Ph.D.
<SDML>
Department of Computer Science
Kent State University

Introduction

« Extreme Programming (XP) is a (very)
lightweight incremental software development

process.

« Itinvolves a high-degree of discipline from the
development team

 Popularized by K. Beck (late 90°s)

» Comprised of 12 core practices

« Most novel aspect of XP (as a process) is the use
of pair programming

J. Maletic Kent State University

DILBERT | SCOTT ADAMS

il AMD THE SECOND
TASK 15 DUE ON THE

HOLI DO T MAKE i
i| FreTeenTH oF

I CAM LRITE A
PATCH THAT INSERTS
N

SCHEDULE ONE NEW MONTHS
PERSON TO L FLOOPUARY .
TAGRS AT THE THE TIMELINE

o oot

DILBERT | SCOTT ADAMS

LERE GOING TO TRY
ING CALLED

THE NELJ SYSTEM 15
SOMETHINI A MINUTE OLD AND
:!;LIEEME PROGRAM-

I ALREADY HATE
EVERYONE

FOR FORTY HOURS
A LEEK.

J. Maletic Kent State University

Motivational Principles

Rapid feedback — from customer

Assume simplicity — keep designs simple
Incremental change — small changes keep
things manageable

Embracing change — keep your options
open

Quality work — strive for high quality
products

J. Maletic Kent State University




XP Core Practices

* Planning « Collective Code

+ Small Releases Ownership

* System Metaphor + Continuous
Integration

 Simple Design
 Continuous Testing
« Refactoring

« Pair Programming

¢ 40-Hour Work Week
¢ On-site Customer
¢ Coding Standards

J. Maletic Kent State University

The Planning Game

« Business (customers) and development
(programmers) cooperate to produce the
maximum business value as rapidly as
possible.

 The planning game happens at various
scales, but the basic rules are pretty much
the same.

J. Maletic Kent State University

Planning Rules

 Business comes up with a list of desired features
for the system. Each feature is written out as a
User Story, which gives the feature a name, and
describes, broadly, what is required.

» Development estimates how much effort each
story will take, and how much effort the team can
produce in a given time interval (an iteration).

« Business then decides which stories to implement
in what order, as well as when and how often to
produce a production releases of the system.

J. Maletic Kent State University

DILBERT | SCOTT ADAMS
EXTREME PROGRAMMING
1 CANT GIVE ¥OU

ALL OF THESE
FEATURES IN THE
FIRST VERSION

OMAY, HERL S A
BTORY: YOU GIVE
ME OF MY
FEATURES OR TLL
RUIN YOUR LTFE.

DILBERT | SCOTT ADAMS
EXTREME PROGRAMMING

THE OF YOU WILL
BE h%i-kl\-‘.l'ﬂNﬁ
TEAM.

43 8 S S esre Rpagmem, e

J. Maletic Kent State University




Small Releases

« Start with the smallest useful feature set.

* Release early and often, adding a few
features each time.

« Each iteration ends in a release.

J. Maletic Kent State University 9

System Metaphor

 Each project has an organizing metaphor,
which provides an easy to remember
naming convention.

* The names should be derived from the
vocabulary of the problem and solution
domains

J. Maletic Kent State University 10

Simple Design

 Always use the simplest possible design
that gets the job done.

 The requirements will change tomorrow, so
only do what's needed to meet today's
requirements.

* Uses the fewest number of classes and
methods

J. Maletic Kent State University 11

Continuous Testing

 Before programmers add a feature, they
write a test for it. When the suite runs, the
job is done.

e Tests in XP come in two basic flavors.
— Unit Tests
— Acceptance Tests

J. Maletic Kent State University 12




Unit Testing

* Unit Tests are automated tests written by
the developers to test functionality as they
write it.

 Each unit test typically tests only a single
class, or a small cluster of classes.

« Unit tests are typically written using a unit
testing framework (e.g., JUNIT, ParaSoft).

J. Maletic Kent State University 13

Acceptance Testing

» Acceptance Tests (Functional Tests) are specified by the
customer to test that the overall system is functioning as
specified. They typically test the entire system, or some
large part.

» When all the acceptance tests pass for a given user story,
that story is considered complete.

» At the very least, an acceptance test could consist of a
script of user interface actions and expected results that a
human can run.

« Ideally acceptance tests should be automated, either using
a unit testing framework, or a separate acceptance testing
framework.

J. Maletic Kent State University 14

Refactoring

« Refactor out any duplicate code generated
in a coding session.

* You can do this with confidence that you
didn't break anything because you have the
tests.

* Refactoring- Improving the Design of Existing
Code, by M. Fowler, 1999 Addison-Wesley

J. Maletic Kent State University 15

Example of Refactoring

Remove Assignments to Parameters

int discount (int inputval, int quantity, int yearToDate)

if (inputval > 50) inputval -= 2;
int discount (int inputval, int quantity, int yearToDate)

int result = inputval;
if (inputval > 50) result -= 2;

J. Maletic Kent State University 16




Pair Programming

« All production code is written by two
programmers sitting at one machine.

« Essentially, all code is reviewed as it is
written.

» Helm - keyboard and mouse doing
implementation

* Tactician — Thinking about the implications
and possible problems

J. Maletic Kent State University 17

Experiences using Pair Programming

 Reported productivity person month [r. sensen]

— Single programmer 77 source lines (historical
base line)

— Pair programming 175 source lines

» Cockburn & Williams —
— Development costs are an additional 15%
— Resulting code has about 15% fewer defects

J. Maletic Kent State University 18

Collective Code Ownership

 No single person "owns" a module.

» Any developer is expect to be able to work
on any part of the code base at any time.

 Improvement of existing code can happen at
anytime by any pair

J. Maletic Kent State University 19

Continuous Integration

« All changes are integrated into the code
base at least daily.

e The tests have to run 100% both before
and after integration.

J. Maletic Kent State University 20




40-Hour Work Week

» Programmers go home on time. In crunch
mode, up to one week of overtime is
allowed.

» Multiple consecutive weeks of overtime are
treated as a sign that something is very
wrong with the process.

J. Maletic Kent State University 21

On-site Customer

» Development team has continuous access to
a real live customer, that is, someone who
will actually be using the system.

» For commercial software with lots of
customers, a customer proxy (usually the
product manager) is used instead.

J. Maletic Kent State University 22

Coding Standards

 Everyone codes to the same standards.

« Ideally, you shouldn't be able to tell by
looking at it who on the team has touched a
specific piece of code.

J. Maletic Kent State University 23

Scalability (Team Size)

« XP works well with teams up to 12-15
developers.

« It tends to degrade with teams sizes past 20

» Work has been done in splitting large
projects/teams into smaller groups and
applying XP within each group.

J. Maletic Kent State University 24




Environment

» Programmers must be located physically
close, often in the same room and desk.

Iterations typically last 1-3 weeks. Teams

will typically use the same duration for all
iterations.

» Tests are written before the code is written.

End of iteration delivers a working system

J. Maletic Kent State University

References and Resources

« Extreme Programming Explained, Kent Beck,
2000, Addison Wesley

e There are a number of XP books by AWL (e.g.,
XP Installed, XP Explored, and XP Exaggerated)

« www.jera.com/techinfo/xpfag.html
e Www.extremeprogramming.org/

e www.xprogramming.com/

e Www.pairprogramming.com/

J. Maletic Kent State University 26




