
1

An Introduction to
eXtreme Programming

Jonathan I. Maletic, Ph.D.
<SDML>

Department of Computer Science
Kent State University

J. Maletic Kent State University 2

Introduction

• Extreme Programming (XP) is a (very)
lightweight incremental software development
process.

• It involves a high-degree of discipline from the
development team

• Popularized by K. Beck (late 90’s)
• Comprised of 12 core practices
• Most novel aspect of XP (as a process) is the use

of pair programming

J. Maletic Kent State University 3 J. Maletic Kent State University 4

Motivational Principles

• Rapid feedback – from customer
• Assume simplicity – keep designs simple
• Incremental change – small changes keep

things manageable
• Embracing change – keep your options

open
• Quality work – strive for high quality

products

2

J. Maletic Kent State University 5

XP Core Practices

• Planning
• Small Releases
• System Metaphor
• Simple Design
• Continuous Testing
• Refactoring
• Pair Programming

• Collective Code
Ownership

• Continuous
Integration

• 40-Hour Work Week
• On-site Customer
• Coding Standards

J. Maletic Kent State University 6

The Planning Game

• Business (customers) and development
(programmers) cooperate to produce the
maximum business value as rapidly as
possible.

• The planning game happens at various
scales, but the basic rules are pretty much
the same.

J. Maletic Kent State University 7

Planning Rules

• Business comes up with a list of desired features
for the system. Each feature is written out as a
User Story, which gives the feature a name, and
describes, broadly, what is required.

• Development estimates how much effort each
story will take, and how much effort the team can
produce in a given time interval (an iteration).

• Business then decides which stories to implement
in what order, as well as when and how often to
produce a production releases of the system.

J. Maletic Kent State University 8

3

J. Maletic Kent State University 9

Small Releases

• Start with the smallest useful feature set.
• Release early and often, adding a few

features each time.
• Each iteration ends in a release.

J. Maletic Kent State University 10

System Metaphor

• Each project has an organizing metaphor,
which provides an easy to remember
naming convention.

• The names should be derived from the
vocabulary of the problem and solution
domains

J. Maletic Kent State University 11

Simple Design

• Always use the simplest possible design
that gets the job done.

• The requirements will change tomorrow, so
only do what's needed to meet today's
requirements.

• Uses the fewest number of classes and
methods

J. Maletic Kent State University 12

Continuous Testing

• Before programmers add a feature, they
write a test for it. When the suite runs, the
job is done.

• Tests in XP come in two basic flavors.
– Unit Tests
– Acceptance Tests

4

J. Maletic Kent State University 13

Unit Testing

• Unit Tests are automated tests written by
the developers to test functionality as they
write it.

• Each unit test typically tests only a single
class, or a small cluster of classes.

• Unit tests are typically written using a unit
testing framework (e.g., JUNIT, ParaSoft).

J. Maletic Kent State University 14

Acceptance Testing
• Acceptance Tests (Functional Tests) are specified by the

customer to test that the overall system is functioning as
specified. They typically test the entire system, or some
large part.

• When all the acceptance tests pass for a given user story,
that story is considered complete.

• At the very least, an acceptance test could consist of a
script of user interface actions and expected results that a
human can run.

• Ideally acceptance tests should be automated, either using
a unit testing framework, or a separate acceptance testing
framework.

J. Maletic Kent State University 15

Refactoring

• Refactor out any duplicate code generated
in a coding session.

• You can do this with confidence that you
didn't break anything because you have the
tests.

• Refactoring- Improving the Design of Existing
Code, by M. Fowler, 1999 Addison-Wesley

J. Maletic Kent State University 16

Example of Refactoring
Remove Assignments to Parameters

int discount (int inputVal, int quantity, int yearToDate)
{

if (inputVal > 50) inputVal -= 2;
...

int discount (int inputVal, int quantity, int yearToDate)
{

int result = inputVal;
if (inputVal > 50) result -= 2;
...

5

J. Maletic Kent State University 17

Pair Programming

• All production code is written by two
programmers sitting at one machine.

• Essentially, all code is reviewed as it is
written.

• Helm – keyboard and mouse doing
implementation

• Tactician – Thinking about the implications
and possible problems

J. Maletic Kent State University 18

Experiences using Pair Programming

• Reported productivity person month [R. Jensen]

– Single programmer 77 source lines (historical
base line)

– Pair programming 175 source lines

• Cockburn & Williams –
– Development costs are an additional 15%
– Resulting code has about 15% fewer defects

J. Maletic Kent State University 19

Collective Code Ownership

• No single person "owns" a module.
• Any developer is expect to be able to work

on any part of the code base at any time.
• Improvement of existing code can happen at

anytime by any pair

J. Maletic Kent State University 20

Continuous Integration

• All changes are integrated into the code
base at least daily.

• The tests have to run 100% both before
and after integration.

6

J. Maletic Kent State University 21

40-Hour Work Week

• Programmers go home on time. In crunch
mode, up to one week of overtime is
allowed.

• Multiple consecutive weeks of overtime are
treated as a sign that something is very
wrong with the process.

J. Maletic Kent State University 22

On-site Customer

• Development team has continuous access to
a real live customer, that is, someone who
will actually be using the system.

• For commercial software with lots of
customers, a customer proxy (usually the
product manager) is used instead.

J. Maletic Kent State University 23

Coding Standards

• Everyone codes to the same standards.
• Ideally, you shouldn't be able to tell by

looking at it who on the team has touched a
specific piece of code.

J. Maletic Kent State University 24

Scalability (Team Size)

• XP works well with teams up to 12-15
developers.

• It tends to degrade with teams sizes past 20
• Work has been done in splitting large

projects/teams into smaller groups and
applying XP within each group.

7

J. Maletic Kent State University 25

Environment

• Programmers must be located physically
close, often in the same room and desk.

• Iterations typically last 1-3 weeks. Teams
will typically use the same duration for all
iterations.

• Tests are written before the code is written.
• End of iteration delivers a working system

J. Maletic Kent State University 26

References and Resources

• Extreme Programming Explained, Kent Beck,
2000, Addison Wesley

• There are a number of XP books by AWL (e.g.,
XP Installed, XP Explored, and XP Exaggerated)

• www.jera.com/techinfo/xpfaq.html
• www.extremeprogramming.org/
• www.xprogramming.com/
• www.pairprogramming.com/

