
Refactoring  
 

Software Engineering  
Kent State University

Mathematics: Factor
● fac·tor

– One of two or more quantities that divides a
given quantity without a remainder, e.g., 2 and 3
are factors of 6; a and b are factors of ab

● fac·tor·ing
– To determine or indicate explicitly the factors of

SE: Factoring
● fac·tor

– The individual items that combined together form
a complete software system:

● identifiers
● contents of function
● contents of classes and place in inheritance hierarchy

● fac·tor·ing
– Determining the items, at design time, that make

up a software system

Refactoring
● Process of changing a software system in

such a way that it does not alter the external
behavior of the code, yet improves its
internal structure [Fowler'99]

● A program restructuring operation to support
the design, evolution, and reuse of object
oriented frameworks that preserve the
behavioral aspects of the program
[Opdyke'92]

Specifics
● Source to source transformation
● Remain inside the same language,  

e.g., C++ to C++
● Does not change the programs behavior –

according to a test suite
● Originally designed for object-oriented

languages, but can also be applied to non-
object oriented language features, i.e.,
functions

Levels of Software Changes
● High Level -

– Features to be added to a system
– e.g., New a new menu, or menu item

● Intermediate Level
– Change design (factoring)
– e.g., Move a member function

● Low Level
– Change lines of code
– e.g., Changes in (a least) two classes

Relationship to Design
● Not the same as “cleaning up code”

– May cause changes to behavioral aspects
– Changes often made in a small context or to

entire program
● Core practice in agile (XP) methodologies
● Views design as an evolving process
● Strong testing support to preserve behavioral

aspects

Some Example Refactorings
● Introduce Explaining Variable
● Rename Method
● Move Method
● Pull-up Method
● Change Value to Reference
● Remove Parameter
● Extract Hierarchy

Why: Design Preservation
● Code changes often lead to a loss of the

original design
● Loss of design is cumulative:

– Difficulties in design comprehension ->
– Difficulties in preserving design ->
– More rapid decay of design

● Refactoring improves the design of existing
code

Why: Comprehension
● Developers are most concerned with getting

the program to work, not about future
developers

● Refactoring makes existing code more
readable

● Increases comprehension of existing code,
leading higher levels of code comprehension

● Often applied in stages

Why: Debugging
● Improved program comprehension leads to

easier debugging
● Increased readability leads to the discovery

of possible errors
● Understanding gained during debugging can

be put back into the code

Why: Faster Programming
● Counterintuitive argument made by Fowler
● Good design is essential for rapid

development
● Poor design allows for quick progress, but

soon slows the process down
– Spend time debugging
– Changes take longer as you understand the

system and find duplicate code

When?
● Adding Functionality

– Comprehension of existing program
– Preparation for addition

● Debugging
– Comprehension of existing program

● Code Review
– Preparation for suggestions to other

programmers
– Stimulates other ideas

Refactoring Catalog
● Collected by Fowler Refactoring: Improving

the Design of Existing Code [1999]
● Refactoring entry composed of:

– Name
– Summary
– Motivation
– Mechanics
– Examples

● Based on Java

Categories
● Composing Methods

– Creating methods out of inlined code
● Moving Features Between Objects

– Changing of decisions regarding where to put
responsibilities

● Organizing Data
– Make working with data easier

More Categories
● Simplifying Conditional Expressions
● Making Method Calls Simpler

– Creating more straightforward interfaces
● Dealing with Generalization

– Moving methods around within hierarchies
● Big Refactorings

– Refactoring for larger purposes

Composing Methods
● Extract Method
● Inline Method
● Inline Temp
● Replace Temp with Query
● Introduce Explaining Variables
● Split Temporary Variable
● Remove Assignments to Parameters
● Replace Method with Method Object
● Substitute Algorithm

Remove Assignments to Parameters

int discount (int inputVal, int quantity, int yearToDate)
{
 if (inputVal > 50) inputVal -= 2;
 ...

int discount (int inputVal, int quantity, int yearToDate)
{
 int result = inputVal;
 if (inputVal > 50) result -= 2;
 ...

Inline Temporary

basePrice = anOrder.basePrice;
return (basePrice > 1000);

return anOrder.basePrice > 1000;

Moving Object Features
● Move Method
● Move Field
● Extract Class
● Inline Class
● Hide Delegate
● Remove Middle Man
● Introduce Foreign Method
● Introduce Local Extension

Organizing Data
● Self Encapsulate Field
● Replace Data Value with Object
● Change Value to Reference
● Change Reference to Value
● Replace Array with Object
● Duplicate Observed Data
● Change Unidirectional Association to Bidirectional
● Change Bidirectional Association to Unidirectional

More Organizing Data
● Replace Magic Number with Symbolic Constant
● Encapsulate Field
● Encapsulate Collection
● Replace Record with Data Class
● Replace Type Code with Class
● Replace Type Code with Subclasses
● Replace Type Code with State/Strategy
● Replace Subclass with Fields

Simplifying Conditional
● Decompose Conditional
● Consolidate Conditional Expression
● Consolidate Duplicate Conditional Fragments
● Remove Control Flag
● Replace Nested Conditional with Guard Clauses
● Replace Conditional with Polymorphism
● Introduce Null Object
● Introduce Assertion

Decompose Conditional

if (date.before (SUMMER_START) || date.after(SUMMER_END))
 charge = quantity * _winterRate + _winterServiceCharge;
else
 charge = quantity * _summerRate;

if (notSummer(date))
 charge = winterCharge(quantity);
else
 charge = summerCharge(quantity);

Remove Control Flag

for (const_iterator<person> p = people.begin();
 p != people.end(); ++p) {
 if (!found) {
 if (p == "Don") {
 sendAlert();
 found = true;
 }

for (const_iterator<person> p = people.begin();
 p != people.end(); ++p) {
 if (p == "Don") {
 sendAlert();
 break;
 }

Simplifying Method Calls
● Rename Method
● Add Parameter
● Remove Parameter
● Separate Query from Modifier
● Parameterize Method
● Replace Parameter with Explicit Methods
● Preserve Whole Object
● Replace Parameter with Method

Simplifying Method Calls
● Introduce Parameter Object
● Remove Setting Method
● Hide Method
● Replace Constructor with Factory Method
● Encapsulate Downcast
● Replace Error Code with Exception
● Replace Exception with Test

Dealing with Generalization
● Pull Up Field
● Pull Up Method
● Pull Up Constructor Body
● Push Down Method
● Push Down Field
● Extract Subclass
● Extract Superclass
● Extract Interface

Dealing with Generalization
● Collapse Hierarchy
● Form Template Method
● Replace Inheritance with Delegation
● Replace Delegation with Inheritance

Example: Push Down Method

Example: Extract Subclass

Example: Extract Interface

Big Refactorings
● Tease Apart Inheritance

– Split an inheritance hierarchy that is doing two
jobs at once

● Convert Procedural Design to Objects
● Separate Domain from Presentation

– GUI classes that contain domain logic
● Extract Hierarchy

– Create a hierarchy of classes from a single class
where the single class contains many conditional
statements

Convert Procedural Design
● Take each record type and turn it into a dumb data

object with accessors
● Take all procedural code and put it into a single

class
● Take each long method and apply Extract Method

and the related factorings to break it down. As you
break down the procedures use Move Method to
move each one to the appropriate dumb data class

● Continue until all behavior is removed from the
original class

Example

Extract Method
● Create a new method, and name it after the

intention of the method (name it by what it
does, not by how it does it)

● Copy the extracted code from the source
method into the new target method

● Scan the extracted code for references to
any variables that are local in scope to the
source method

Extract Method - scope
● See whether any temporary variables are used only

within this extracted code. If so, declare them in
the target method as temporary variables

● Look to see whether any local-scope variable are
modified by the existing code (See Split Temporary
Variable and Replace Temp with Query)

● Pass into the target method as parameters local
scope variables that are read from the extracted
code

Extract Method - cleanup
● Compile when you have dealt with all the

locally-scoped variables
● Replace the extracted code in the source

method with a call to the target method
● Compile and test

Code Smells
● A symptom in code of a possible deeper

problem
● Not bugs or errors
● Not technically incorrect
● Problems that are good candidates to be

refactored to improve comprehensibility and
longer term maintainability

Some Code Smells
● Duplicated code: identical or very similar

code exists in more than one location.
● Long method: a method, function, or

procedure that has grown too large.
● Large class: a class that has grown too

large, aka god class
● Too many parameters: a long list of

parameters in a procedure or function make
readability and code quality worse

More Smells
● Feature Envy: a class that uses methods of

another class excessively.
● Inappropriate Intimacy: a class that has

dependencies on implementation details of
another class.

● Refused Bequest: a class that overrides a
method of a base class in such a way that
the contract of the base class is not honored
by the derived class.

And More
● Lazy Class: a class that does too little
● Contrived Complexity: forced usage of overly

complicated design patterns where simpler design
would suffice

● Excessively Long Identifiers: naming
conventions to provide disambiguation that should
be implicit in the software architecture/design

● Excessively Short Identifiers: the name of a
variable should reflect its function unless the
function is obvious.

And Some More Smells
● Excessive Use of Literals: should be coded

as named constants, to improve readability
and remove magic numbers

● Ubercallback: a callback that is trying to do
everything

● Complex Conditionals: branches that check
many unrelated conditions and conner cases

Refactoring Tools
● Visual Studio
● Eclipse - plugins

Challenges
● Preservation of documentary structure

(comments, white space etc.)
● PreProcessed code (C, C++, etc.)
● Integration with test suite
● Discovery of possible refactorings
● Creation of task-specific refactorings

Limitations
● Tentative list due to lack of experience
● Database

– Database schema must be isolated, or schema
evolution must be allowed

● Changing Published Interfaces
– Interfaces where you do not control all of the

source code that uses the interface
– Must support both old and new interfaces
– Don't publish interfaces unless you have to

Design Patterns vs Refactoring
● Source

– Design Patterns: Discovered in source designs
– Refactorings: Discovered in informal version

histories of source code
● Provides standard names

– Design Patterns: GOF
– Refactorings: Fowler's Catalog

Patterns vs Refactoring
● Provides Mechanics

– Design Patterns: Static program structure
– Refactorings: Algorithmic changes

● Simple to Complex
– Design Patterns: Complex patterns are a

combination of simpler patterns
– Refactorings: Complex refactorings are a

combination of simpler refactorings

Resources
● Refactoring - Martin Fowler

● refactoring.com

http://refactoring.com

