
Software Testing

Part 2 of 4

• Can reveal the presence of errors NOT their
absence

• A successful test is a test which discovers one
or more errors

• The only validation technique for non-functional
requirements

• Should be used in conjunction with static  
verification to provide full V&V coverage

Program Testing

Execution Based Testing

“Program testing can be a very effective
way to show the presents of bugs but is
hopelessly inadequate for showing their
absence”

[Dijkstra]

Behavioral Properties

• Correctness - does it satisfy its output
specification?

• Utility - are the user’s needs met
• Reliability - frequency of the product failure.

– How long to repair it?
– How lone to repair results of failure?

• Robustness - How crash proof in an alien
environment?
– Does it inform the user what is wrong?

• Performance - response time, memory usage,
run time, etc.

• Defect testing and debugging are distinct  
processes

• Verification and validation is concerned with
establishing the existence of defects in a
program

• Debugging is concerned with locating and  
repairing these errors

• Debugging involves formulating a hypothesis  
about program behavior then testing these  
hypotheses to find the system error

Testing and Debugging

The Debugging Process

Locate
error

Design
error repair

Repair
error

Re-test
program

Test
results Specification Test

cases

Testing Phases

Component
testing

Integration
testing

Software developer Independent testing team

Testing Phases

• Component testing
– Testing of individual program components
– Usually the responsibility of the component developer

(except sometimes for critical systems)
– Tests are derived from the developer’s experience

• Integration testing
– Testing of groups of components integrated to create a

system or sub-system
– The responsibility of an independent testing team
– Tests are based on a system specification

• Only exhaustive testing can show a program is  
free from defects. However, exhaustive testing  
is impossible

• Tests should exercise a system's capabilities  
rather than its components

• Testing old capabilities is more important than  
testing new capabilities

• Testing typical situations is more important than  
boundary value cases

Testing Priorities

• Test data Inputs which have been devised
to test the system

• Test cases Inputs to test the system and
the predicted outputs from these inputs if
the system operates according to its
specification

Test Data and Test Cases

Development of test cases

• Test cases and test scenarios comprise much
of a software systems testware.

• Black box test cases are developed by domain
analysis and examination of the system
requirements and specification.

• Glass box test cases are developed by
examining the behavior of the source code.

The Defect Testing Process

Design test
cases

Prepare test
data

Run program
with test data

Compare results
to test cases

Test
cases

Test
data

Test
results

Test
reports

Methods of Testing

• Test to specification:
– Black box,
– Data driven
– Functional testing
– Code is ignored: only use specification document

to develop test cases
• Test to code:

– Glass box/White box
– Logic driven testing
– Ignore specification and only examine the code.

Guaranteeing a Program Correct?

• This is called the Halting Problem (in general)

• Write a program to test if any given program is
correct. The output is correct or incorrect.

• Test this program on itself.
• If output is incorrect, then how do you know

the output is correct?

