Software Testing

Part 4 of 4



Path Testing

The objective of path testing is to ensure that the
set of test cases is such that each path through
the program is executed at least once

The starting point for path testing is a program
flow graph that shows nodes representing
program decisions and arcs representing the
flow of control

Statements with conditions are therefore nodes
in the flow graph



Program Flow Graphs

Describes the program control flow. Each branch
IS shown as a separate path and loops are
shown by arrows looping back to the loop
condition node

Used as a basis for computing the cyclomatic
complexity

Cyclomatic complexity = Number of edges -
Number of nodes +2



Cyclomatic Complexity

The number of tests to test all control
statements equals the cyclomatic complexity

Cyclomatic complexity equals number of
conditions in a program

Useful if used with care. Does not imply
adequacy of testing

Although all paths are executed, all
combinations of paths are not executed



a Binary Search Flow Graph

bottom > top while bottom <= top




Independent Paths

1,2,3,8,9
1,2,3,4,6, 7,2
1,2,3,4,5, 7,2
1,2,3,4,6,7,2,8,9

Test cases should be derived so that all of
these paths are executed

A dynamic program analyzer may be used
to check that paths have been executed




Feasibility

« Pure black box testing (specification) is
realistically impossible because there are (in
general) too many test cases to consider.

« Pure testing to code requires a test of every
possible path in a flow chart. This is also (in
general) infeasible. Also every path does not
guarantee correctness.

* Normally, a combination of Black box and Glass
box testing is done.



Integration Testing

Tests complete systems or subsystems
composed of integrated components

Integration testing should be black-box testing
with tests derived from the specification

Main difficulty is localising errors

Incremental integration testing reduces this
problem



Incremental integration testing

3

0OEOE



Approaches to Integration Testing

Top-down testing

— Start with high-level system and integrate from the
top-down replacing individual components by stubs

where appropriate
Bottom-up testing
— Integrate individual components in levels until the
complete system is created
In practice, most integration involves a
combination of these strategies



Top-down Testing

Testing
Level 1 sequenceﬁ Level 1 >
Level 2 Level 2 Level 2 Level 2
Level 2
stubs
Level 3

stubs



Bottom-up Testing

2299

Level N Level N Le Vel N Level N Level N Testing
sequence
Test \\ \\

dnvers L/evelN 1 LevelN 1 ‘LevelN 1 ' v

Test
dnvers




Software Testing Metrics

Defects rates
Errors rates
Number of errors

Number of errors found per person hours
expended

Measured by:

— Individual, module, during development

Errors should be categorized by origin, type,
cost



More Metrics

 Direct measures - cost, effort, LOC, etc.

 Indirect Measures - functionality, quality,
complexity, reliability, maintainability

 Size Oriented:
— Lines of code - LOC
— Effort - person months
— errors/KLOC
— defects/KLOC
— cost/KLOC



Proofs of Correctness

Assertions, preconditions, post conditions, and
Invariants are used

Assertion — something that is true at a particular
point in the program

Pre conditions must be true before something is
executed

Post conditions are true after something has
executed

Invariants are always true with a give scope
(e.g., construct, loop, ADT)



Logical Properties

* Assertions describe the logical properties
which hold at each statement in a program

 Assertions can be added to each line to
describe the program

 Utilize a formal approach (e.g., first order
predicate calculus, Z, spec#, etc.)



Example

//PRE: n in {1,2,3..}
int k, s;
int y[n];
k=0;
//ASSERT: k==
s=0;
//ASSERT: s==0 && k==
//LOOP INV: (k<=n) && (s==y[0]+y[1l]+.+y[k-1])
While (k<n)
{
//ASSERT: (k<n) && (s==y[0]+y[1l]+.+y[k-1])
s=s+y[k];
//ASSERT: (k<n) && (s==y[0]+y[1l]+.+y[k])
k=k+1;
//ASSERT: (k<=n) && (s==y[0]+y[1l]+.+y[k-1])
}
//POST: (k==n) && (s==y[0]+y[l]+.+y[n-1])



Proving the Program

* Prove correct based on the loop invariant
« Use induction

 Basis:
— Before loop is entered
— k=0 and s=0 therefore
- s=y[0-1]=y[-1]=0
— Also k<=n since nin {1,2,3,...}



Using Induction

* |Inductive Hypothesis
— Assume for some k>=0,

— s = y[0]+y[1]+...y[n-2]+y[n-1]
— when ever n<=k

* |Inductive step show s = y[0]+y[1]+...y[n-2]+y[n-1]
s true for k+1
— s = y[0]+y[1]+...+y[k+1-2]+y[k+1-1]

— 8 = y[O]+y[1]+...+y[k-1]+y[K]
— 8 = (Y[O]+y[1]+...+y[k-1]) + y[K] Q.E.D




Proving can be Problematic

Mathematical proofs (as complex and error prone as
coding)

Need tool support for theorem proving

Leavenworth ‘70 did an informal proof of correctness of a
simple text justification program. (Claims it's correct!)

London ‘71 found four faults, then did a formal proof.
(Claims it's now correct!)

Goodenough and Gerhar ‘75 found three more faults.

Testing would have found these errors without much
difficulty



Automated Testing Tools

» Code analysis tools

« Static analysis
— No execution

* Dynamic analysis
— Execution based



Static Analysis

Code analyzers: syntax, fault prone

Structure checker
— Generates structure graph from the components with
logical flow checked for structural flaws (dead code)

Data analyzer — data structure review. Conflicts
In data definitions and usages

Sequence checker — checks for proper
sequences of events (open file before modify)



Dynamic Analysis

* Program monitors record snapshot of the
state of the system and watch program
behaviors

 List number of times a component is called
(profiler)

« Path, statement, branch coverage
« Examine memory and variable information



Test Execution Tools

« Capture and replay
— Tools capture keystrokes, input and responses while
tests are run
— Verify fault is fixed by running same test cases

 Subs and drivers

« Generate stubs and drivers for integration testing
— Set appropriate state variables, simulate key board
Input, compare actual to expected
— Track paths of execution, reset variables to prepare for
next test, interact with other tools



Test Execution Tools

* Automated testing environments

* Test case generators
— Structural test case generators based on
source code — path or branch coverage
— Data flow



