
srcSlice: A Tool for Efficient Static Forward Slicing
Christian D. Newman1, Tessandra Sage1, Michael L. Collard2, Hakam W. Alomari3, Jonathan I. Maletic1

1Department of Computer Science
Kent State University

Kent, Ohio USA
{cnewman, jmaletic}@kent.edu

2Department of Computer Science
The University of Akron

Akron, Ohio USA
collard@uakron.edu

3Department of Computer Science and
Software Engineering

Miami University
Oxford, Ohio, USA

alomarhw@miamioh.edu

Abstract— An efficient lightweight forward static slicing tool is
presented. The tool is implemented on top of srcML, an XML
representation of source code. The approach does not compute
the full program dependence graph but instead dependency in-
formation is computed as needed while computing the slice on a
variable. The result is a list of line numbers, dependent varia-
bles, aliases, and function calls that are part of the slice for a giv-
en variable. The tool produces the slice for all variables in a sys-
tem. The approach is highly scalable and can generate the slices
for all variables of the Linux kernel in less than 15 minutes. A
demonstration video is at: https://youtu.be/McvFUVSGg-g

Index Terms—static forward program slicing, srcML

I. INTRODUCTION
Program slicing is a widely used method for understanding

and detecting the impact of changes to software. The idea is
fairly simple; given a variable and the location of that variable
in a program, tell me what other parts of the program are af-
fected by this variable. Unfortunately, there are not any open-
source slicing tools available that are scalable to large systems.
While some free versions of commercial tools are available for
academic use they are limited on the size of code base that can
be analyzed. For example, the free version of CodeSurfer will
not slice programs over 200KLOC.

The concept of program slicing was originally identified by
Weiser [16, 17] as a debugging aid. He defined the slice as an
executable program that preserved the behavior of the original
program. Weiser’s algorithm traces the data and control de-
pendencies by solving data-flow equations for determining the
direct and indirect relevant variables and statements. Since that
time, a large number of different slicing techniques have been
proposed and implemented. These techniques are broadly dis-
tinguished according to the type of slices; static versus dynamic
[14, 18], closure versus executable [18], inter-procedural versus
intra-procedural [6, 8], and forward versus backward [9, 18].

Program slicing is typically based on the notion of a Pro-
gram Dependence Graph (PDG) [12] or one of its variants, e.g.,
a System Dependence Graph (SDG) [10]. Unfortunately,
building the PDG/SDG is quite costly in terms of computation-
al time and space. As such, slicing approaches generally do not
scale well and while there are some (costly) workarounds, gen-
erating slices for a very large system can often take days of
computing time. Additionally, many tools are strictly limited
to an upper bound on the size of the program they can slice.

The tool presented here, srcSlice, addresses this limitation
by eliminating the time and effort needed to build the entire
PDG. In short, it combines a text-based approach, similar to

Cordy [5], with a lightweight static analysis infrastructure that
only computes dependence information as needed (aka on-the-
fly) while computing the slice for each variable in the program.
The slicing process is performed using the srcML [3, 4] format
for source code. The srcML format provides direct access to
abstract syntactic information to support static analysis. While
this lightweight approach will generally never match the com-
pleteness of generating a PDG/SDG and performing deep
pointer analysis, it does provide an accurate approximation of a
program slice in an extremely short time. We found up to four
orders of magnitude increase in speed for large systems com-
pared to a full PDG approach [1, 2].

A very fast and scalable, yet slightly less accurate, slicing
tool is useful for a number of reasons. Developers can estimate
the impact of a change to a large system within minutes versus
hours/days. This is very important for planning the implemen-
tation of new features and understanding how a change is relat-
ed to other parts of the system. Additionally, we feel a fast
slicing approach could open up new avenues of research in
metrics and mining of histories based on slicing. That is, slic-
ing can now be conducted on very large systems and on entire
version histories in very practical time frames. This opens the
door to a number of experiments and empirical investigations
previously too costly to undertake.

II. THE SRCSLICE TOOL
The srcSlice tool implements a forward, static slicing tech-

nique. Complete details of the slicing algorithm used is given
in [1, 2]. The tool is enabled by the srcML [3, 4] infrastructure.
srcML augments source code with abstract syntactic infor-
mation. This syntactic information is used to identify program
dependencies as needed when computing the slice.

Given a system (in the srcML format), srcSlice gathers data
about every file, function, and variable throughout the system;
storing it all in a three-tier dictionary. Unlike other slicing
techniques, it does not rely fully on pre-computed data and
control dependencies. Instead, as the code is analyzed, srcSlice
selectively computes what is required while keeping track of
just enough context to determine the dependencies. Because of
this, srcSlice is very memory efficient, with its dominating
memory footprint coming from storing data in the dictionary.

A slice profile for all variables is computed line by line as
variables are encountered. After all slice profiles are comput-
ed, a single pass through all the profiles is done to take into
account dependent variables, function calls, control-flow edges,
and direct pointer aliasing to generate the final slices.

a.	 1.	 int	fun(int	z){	
	 2.	 				z++;	
	 3.	 				return	z;	
	 4.	 }	
	 5.	 void	foo(int	&x,	int	*y){	
	 6.	 				fun(x);	
	 7.	 				y++;	
	 8.	 }	
	 9.	 int	main(){	
	 10.	 				int	abc	=	0;	
	 11.	 				int	i	=	1;	
	 12.	 				while	(i<=10){	
	 13.	 								foo(abc,	&i);	
	 14.	 				}	
	 15.	 				std::cout<<"i:"<<i<<"abc:"<<abc<<std::endl;	
	 16.	 				std::cout<<fun(i);	
	 17.	 				abc=abc+i;	
	 18.	 }
b. Slice Profile(abc): def={10,17}, use={1,2,5,6,13,15}

slines={1,2,5,7,10,13,15,17}, dvars={abc}, pointers={},
cfuncs={fun{1},foo{1}}
Slice Profile(i): def={11}, use={1,2,5,7,12,13,15,16,17},
slines={1,2,5,7,11,12,13,15,16,17}, dvars={abc}, pointers={},
cfuncs={fun{1}, foo{2}}

 Slice Profile(z): def={1}, use={2}, slines={1,2}, dvars={},
pointers={}, cfuncs={}

 Slice Profile(y): def={5}, use={7}, slines={5,7}, dvars={},
pointers={i}, cfuncs={}

 Slice Profile(x): def={5}, use={1,2,6}, slines={1,2,5,6},
dvars={}, pointers={abc}, cfuncs={fun{1}}

Figure 1 (a) Sample source code, (b) System dictionary with all slice profiles
for the source code in (a).

A. Slice Profile
The slice profile for an identifier contains all data gathered

about that identifier during the slicing process. The following is
a list of that information:
• File, function, and type, variable names – what

file/function the variable is in and what type.
• Def – what line a variable was defined or redefined on

(this can be declaration, definition, or assignment. Def
keeps track of when a variable’s value changes). Def is
used to differentiate between variables with the same name
but in differing scopes.

• Use – what line a variable is used on. This refers to a vari-
able’s value being used in some computation with no mod-
ification to the variable’s value. The combination of def
and use can be used to construct def-use chains.

• Slines – all lines that a variable was defined or used on.
This is the union between def and use.

• Cfunctions - a list of functions called using the slicing var-
iable.

• Dvariables - a list of variables that are data dependent on
the slice variable.

• Pointers - a list of aliases of the slicing variable. The ele-
ments of this list are variables to which the slicing variable
is a pointer. We are unable to do full pointer resolution,
however, quite a bit can be statically calculated.

An example of a slice computed by srcSlice on a small pro-
gram is given in Figure 1. The first portion of the figure (a)
presents a small program constructed to show how srcSlice
computes the profile. The second part of the figure (b) is the
slice profile for the program in (a).

We see that the variable i is defined at line 11 and has uses
in the ‘main’, ‘fun’ and ‘foo’ functions. That is, an inter-
procedural slice is computed. The only variable dependent on i
is the variable abc at line 17. Simple pointer analysis is also
done as can be seen in the profiles for variables y and x.

B. Output
srcSlice produces a system dictionary of all the slice pro-

files of all variables. It is three-tiered and consists of three
maps. On the first level is a map from files to functions, on the
second level is a map from functions to variable names, and on
the third level is a map from variable names to slice profiles.

Figure 2 is an example of srcSlice’s output. In the future,
we plan to support other formats and allow for the user to query
the internal dictionary constructed by srcSlice directly. For
now, srcSlice provides an easy-to-parse format.

file,fcn/mthd name,slice variable,def{1,2,…,n},
use{1,2,…,n},dvars{a,b,…,z},pointers{ptra,ptrb,…,ptr
z},cfuncs{func1{1,2,…,n},func2{1,2,…,n}}

Figure 2 The output format of srcSlice.

If we insert the slice profiles from the code in Figure 1 into
the format described above, we get the following:
srcslicetest.cpp,main,i,def{11},use{1,2,5,
7,12,13,15,16,17},dvars{abc},pointers{},cf
uncs{fun{1},foo{2}}
srcslicetest.cpp,main,abc,def{10,17},use{1
,2,5,6,13,15},dvars{},pointers{},cfuncs{fu
n{1},foo{1}}
srcslicetest.cpp,fun,z,def{1},use{2},dvars
{},pointers{},cfuncs{}
srcslicetest.cpp,foo,y,def{5},use{7},dvars
{},pointers{i},cfuncs{}
srcslicetest.cpp,foo,x,def{5},use{1,2,6},d
vars{},pointers{abc},cfuncs{fun{1}}

Notice that, due to the non-nested nature of the output for-

mat, file names will be repeated for every function and variable
they contain and function names will be repeated for every
variable they contain; this is seen in the fact that
srcslicetest.cpp is repeated for every entry. A typical use case
of srcSlice is to see what areas a modification to a variable may
impact. For example, a name change, type change, value
change, etc. Using the output from srcSlice, the user needs
only parse it into a data structure and then check the def/use
sets for each that variable they are interested. This informs
them of exactly what lines in the system will potentially see
some change in behavior due to a modification of the variable.

TABLE I. RESULTS OF SRCSLICE APPLIED TO MULTIPLE SYSTEMS WITH THE
SIZE OF THE SYSTEM, THE NUMBER OF VARIABLES FOUND, AND THE

EXECUTION TIME FOR THE SRCSLICE TOOL.

System Size (LOC) Variables Execution
Time

Linux Kernel-
4.06

~13,000,000 ~1,918,000 7 min

Blender-2.68 ~1,300,000 ~265,000 70 sec
Inkscape-0-.91 ~410,000 ~74,000 18 sec

C. Computing the slice
Given the information computed in the slice profile, we

now explain how the final slice is calculated. The slice of a
variable is more than just the impact it has on the scope to
which it is local. For this reason, srcSlice uses data contained
in Cfunctions and Pointers to calculate indirect and inter-
procedural slice information. To do this, srcSlice records
whether a given variable is an alias. When this variable is used,
srcSlice determines what it most recently recorded as aliasing
(the most recent variable the pointer is pointed to) and then
updates the slice profile for the variable being pointed at (so
use, def, Cfunctions, etc., are all updated to reflect usages
through the alias). In this way, it unions together slice profiles
for alias variables and the variables the alias is pointing. Our
approach is conservative about handling aliases and only un-
ions when absolutely certain.

In much the same way, inter-procedural slice information is
gathered by using the list of functions called using the slicing
variable (Cfunctions). When a variable is used as an argument
to a call, srcSlice records the name of function called and the
position of the variable in the argument list. We use data about
the functions gathered by srcSlice to then compute how the
value of the called variable is used within the call. The slice
profile is updated with data about uses within the called func-
tion. Once all of this is complete, a more detailed view of
where each variable is defined/modified and used is obtained.

It is worth noting that the def and use containers allow

srcSlice to compute which definition of a variable corresponds
to which uses of a variable through merely comparing line
numbers. This means that def-use chains can easily be com-
puted by merely comparing which lines in the use-vector fall
between lines in the def-vector. While srcSlice does not ex-
plicitly compute these on its own, computing them given the
information srcSlice provides is quite straightforward.

III. IMPLEMENTATION & PERFORMANCE
srcSlice uses the srcML format and is implemented as a

SAX parser. The particular implementation of SAX parser is a
C++ wrapper around libxml2’s SAX interface called srcSAX;
it was made specifically to support building tools that use
srcML. Since SAX parsers store no data about previously seen
tags, they are very memory and operation efficient. To take
full advantage of this feature of SAX, we have worked to store
as little data as possible and minimize repetition. As a result,
srcSlice is very fast. On the largest system we present here
(see Table I), the Linux Kernel, srcSlice clocks in at about
274K identifiers per minute. On Blender, srcSlice ran at 240K
identifiers per minute. However, the Linux Kernel had about 7
times the number of identifiers as Blender, so there is not quite
a 1:1 ratio between the number of variables and the size in-
crease of code. Despite this, the ratio between the speed of
execution for srcSlice on Linux and Blender is negligible.
Even accounting for a higher number of identifiers per line on
Blender, srcSlice scales extremely well and we continue to look
for ways to increase srcSlice’s speed.

IV. COMPARISON TO CODESURFER
In a previous study [1, 2] srcSlice’s accuracy is compared

with CodeSurfer, a heavyweight slicing tool from Gram-
maTech (www.grammatech.com). The results of this paper
show that srcSlice has reasonable accuracy given its speed and
relatively lightweight approach to slicing. We will summarize
the results in this paper and encourage interested readers to

examine the full paper for more
information.

 Table II presents the results
of running CodeSurfer and
srcSlice. It presents the size of
all systems from the perspective
of both LOC and SLOC in the
size column, then in the Slice
Size column it presents the num-
ber of lines in each slice, the line
size relative to LOC (%), and the
safety margin (SM), which is the
size of the resultant slice divided
by the size of the intersected
slice. CodeSurfer produced a
maximum SM of 8.18% and a
minimum of 1.31%. srcSlice
produced a maximum of 1.67%
and a minimum of 1%. The slice
size produced by srcSlice is con-
sistently closer to the intersected

TABLE II. INTERSECTED SLICE OVER 13 FILES FROM ENSCRIPT-1.6.5, WHERE (%) IN THE CODESURFER (CS) AND
SRCSLICE (SS) COLUMNS IS THE SLICE SIZE RELATIVE TO LOC, (%) IN THE INTERSECTION COLUMN IS THE

INTERSECTED SLICE RELATIVE TO BOTH TOOLS SLICE SIZE, (SM) IS THE RELATIVE SAFETY MARGIN FOR A SLICE.

enscript-1.6.5 Size Slice Size Intersection
LOC SLOC CodeSurfer (CS) srcSlice (sS) Lines CS

%
sS
% File Name Lines % SM Lines % SM

src/psgen.c 2860 1993 1351 67.8 1.75 863 43.3 1.12 771 57.1 89.3
src/util.c 2156 1623 1227 75.6 1.48 853 52.6 1.03 827 67.4 97.0
src/main.c 2660 1406 1178 83.8 1.59 768 54.6 1.04 739 62.7 96.2
src/mkafmmap.c 250 153 92 60.1 2.04 45 29.4 1.00 45 48.9 100.0
afmlib/strhash.c 386 268 145 54.1 1.36 145 54.1 1.36 107 73.8 73.8
afmlib/afmparse.c 1017 759 636 83.8 2.05 313 41.2 1.01 310 48.7 99.0
states/ex.c 2378 1536 813 52.9 3.35 279 18.2 1.15 243 29.9 87.1
states/gram.c 2408 1607 433 26.9 2.41 301 18.7 1.67 180 41.6 59.8
afmlib/afm.c 824 590 468 79.3 1.31 357 60.5 1.00 357 76.3 100.0
afmlib/afmtest.c 184 113 67 59.3 1.60 42 37.2 1.00 42 62.7 100.0
afmlib/deffont.c 379 323 311 96.3 8.18 38 11.8 1.00 38 12.2 100.0
afmlib/e_88594.c 284 261 190 72.8 0 0.0 0 0.0 0.0
afmlib/e_mac.c 284 261 219 83.9 0 0.0 0 0.0 0.0
Total 16070 10893 7130 4004 3659
Average 1236 838 548 69.0 2.47 308 32.4 1.13 281 52.8 91.1
Min 184 113 67 26.9 1.31 0 11.8 1 0 12.2 59.8
Max 2860 1993 1351 96.3 8.18 863 60.5 1.67 827 76.3 100

slice. Thus srcSlice found the smallest slice that both slicers
agreed on as being a proper slice of the given systems.

V. USING SRCSLICE
The srcSlice tool is a command-line tool that is run on the

srcML format of a source code file(s). There is a bit of extra
data that srcSlice requires from srcML, however. By default,
srcML does not include the position of names in its output. In
order for srcSlice to work, we need line positions. To turn line
positions on in srcML, simply use the position option:

srcml file.cpp –-position
To run srcSlice on the Linux kernel, the command is:

srcslice linux-4.0.6.cpp.xml > slices.dict
where linux-4.0.6.cpp.xml is the srcML format of the Linux
Kernel and slices.dict is the desired output file. By default,
srcSlice outputs to stdout. You can download srcML and
srcSlice from www.srcML.org. Instructions for installing
along with documentation are also available at this site.

VI. RELATED WORK
We focus on slicing approaches directly related to srcSlice.

We refer readers interested in PDG-based slicing approaches a
number of surveys on [13, 14, 18]. Gallagher et al [7] pro-
posed the definition of decomposition slicing as a maintenance
aid in order to capture all the computation related to a given
slicing variable. The decomposition-slicing definition is used
by Tonella [15] to construct a concept lattice of decomposition
slices. A lightweight-slicing approach for object-oriented pro-
grams using dynamic and static analysis, called dependence-
cache slicing, is proposed in [11]. In the context of maintain-
ing large-scale systems, another lightweight maintenance tool,
called TuringTool, was proposed by Cordy et al [5] and was
designed to support several maintenance.

srcSlice is distinguished from this work in multiple ways.
The method used is not PDG based and there is no graph to
traverse or data-flow equations to be solved. Only on-the-fly
information is retrieved as needed. Unlike most of the others
we compute the slice for every variable in the program includ-
ing local and global. As new variables are encountered they
are added to the slice profile.

VII. CONCLUSIONS AND FUTURE WORK
There are several features of srcSlice that the current re-

lease does not contain. We intend to slowly roll these extra
features out as they are tested. We would like the ability to
directly query srcSlice’s map instead of having to parse the
output. We also want to add the ability for users to create their
own output formats to be more interoperable with other tools.
In terms of what data srcSlice is able to obtain, we intend to
add the ability to record how objects’ member functions and
variables are being used on a per-object basis. We also are
working to improve accuracy of pointer aliasing. While point-
er-analysis is difficult, much information can be gleaned stati-
cally. Currently, srcSlice is built for C/C++. The srcML for-
mat, however, additionally supports Java, and C# and we in-
tend to have srcSlice support those languages in the future.

REFERENCES
[1] Alomari, H. W., Collard, M. L., and Maletic, J. I., " A Very
Efficient and Scalable Forward Static Slicing Approach", IEEE
International Working Conference on Reverse Engineering
(WCRE'12), October 15-18, 2012, pp. 425-434.
[2] Alomari, H. W., Collard, M. L., Maletic, J. I., Alhindawi, N., and
Meqdadi, O., "srcSlice: Very Efficient and Scalable Forward Static
Slicing", Journal of Software: Evolution and Process, vol. 26, no. 11,
Nov. 2014, pp. 931-961.
[3] Collard, M. L., Decker, M., and Maletic, J. I., "Lightweight
Transformation and Fact Extraction with the srcML Toolkit", IEEE
International Working Conference on Source Code Analysis and
Manipulation (SCAM’11), Sept 25-26 2011, pp. 10 pages.
[4] Collard, M. L., Maletic, J. I., and Robinson, B. P., "A Lightweight
Transformational Approach to Support Large Scale Adaptive
Changes", in International Conference on Software Maintenance
(ICSM '10), 2010, pp. 1-10.
[5] Cordy, J. R., Eliot, N. L., and Robertson, M. G., "TuringTool: A
User Interface to Aid in the Software Maintenance Task", IEEE TSE,
vol. 16, no. 3, 1990, pp. 294-301.
[6] Gallagher, K. and Binkley, D. W., "Program Slicing", in Frontiers
of Software Maintenance (FoSM '08), 2008, pp. 58-67.
[7] Gallagher, K. B. and Lyle, J. R., "Using Program Slicing in
Software Maintenance", IEEE TSE, vol. 17, 1991, pp. 751-761.
[8] Horwitz, S., Reps, T., and Binkley, D., "Interprocedural Slicing
using Dependence Graphs", ACM SIGPLAN Notices, vol. 23, no. 7,
1988, pp. 35-46.
[9] Kumar, S. and Horwitz, S., "Better Slicing of Programs with
Jumps and Switches", International Conference on Fundamental
Approaches to Software Engineering (FASE '02), 2002, pp. 96-112
[10] Liang, D. and Harrold, M. J., "Slicing Objects Using System
Dependence Graphs", International Conference on Software
Maintenance (ICSM '98), 1998, pp. 358-367.
[11] Ohata, F., Hirose, K., Fujii, M., and Inoue, K., "A Slicing
Method for Object-Oriented Programs Using Lightweight Dynamic
Information", Asia-Pacific on Software Engineering Conference
(APSEC '01), 2001, pp. 273-283.
[12] Ottenstein, K. J. and Ottenstein, L. M., "The Program
Dependence Graph in a Software Development Environment", ACM
SIGSOFT Software Eng Notes, vol. 9, no. 3, 1984, pp. 177-184.
[13] Silva, J., "A Vocabulary of Program Slicing-based Techniques",
ACM Comput. Surv., vol. 44, no. 3, 2012, pp. 1-41.
[14] Tip, F., "A Survey of Program Slicing Techniques", Journal of
Programming Language, vol. 3, 1995, pp. 121-189.
[15] Tonella, P., "Using a Concept Lattice of Decomposition Slices
for Program Understanding and Impact Analysis", IEEE TSE, vol. 29,
no. 6, 2003, pp. 495-509.
[16] Weiser, M., Program Slices: Formal, Psychological, and
Practical Investigations of an Automatic Program Abstraction
Method. PhD Thesis, U of Michigan, Ph.D. Dissertation, 1979.
[17] Weiser, M., "Program Slicing", International Conference on
Software Engineering (ICSE '81), 1981, pp. 439-449.
[18] Xu, B., Qian, J., Zhang, X., Wu, Z., and Chen, L., "A Brief
Survey of Program Slicing", ACM SIGSOFT Software Engineering
Notes, vol. 30, no. 2, 2005, pp. 1-36.

