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Abstract— An efficient lightweight forward static slicing tool is 
presented.  The tool is implemented on top of srcML, an XML 
representation of source code.  The approach does not compute 
the full program dependence graph but instead dependency in-
formation is computed as needed while computing the slice on a 
variable.  The result is a list of line numbers, dependent varia-
bles, aliases, and function calls that are part of the slice for a giv-
en variable.  The tool produces the slice for all variables in a sys-
tem.  The approach is highly scalable and can generate the slices 
for all variables of the Linux kernel in less than 15 minutes. A 
demonstration video is at: https://youtu.be/McvFUVSGg-g  

Index Terms—static forward program slicing, srcML 

I. INTRODUCTION 
Program slicing is a widely used method for understanding 

and detecting the impact of changes to software.  The idea is 
fairly simple; given a variable and the location of that variable 
in a program, tell me what other parts of the program are af-
fected by this variable.  Unfortunately, there are not any open-
source slicing tools available that are scalable to large systems.  
While some free versions of commercial tools are available for 
academic use they are limited on the size of code base that can 
be analyzed.  For example, the free version of CodeSurfer will 
not slice programs over 200KLOC.   

The concept of program slicing was originally identified by 
Weiser [16, 17] as a debugging aid.  He defined the slice as an 
executable program that preserved the behavior of the original 
program.  Weiser’s algorithm traces the data and control de-
pendencies by solving data-flow equations for determining the 
direct and indirect relevant variables and statements.  Since that 
time, a large number of different slicing techniques have been 
proposed and implemented. These techniques are broadly dis-
tinguished according to the type of slices; static versus dynamic 
[14, 18], closure versus executable [18], inter-procedural versus 
intra-procedural [6, 8], and forward versus backward [9, 18]. 

Program slicing is typically based on the notion of a Pro-
gram Dependence Graph (PDG) [12] or one of its variants, e.g., 
a System Dependence Graph (SDG) [10].  Unfortunately, 
building the PDG/SDG is quite costly in terms of computation-
al time and space.  As such, slicing approaches generally do not 
scale well and while there are some (costly) workarounds, gen-
erating slices for a very large system can often take days of 
computing time.  Additionally, many tools are strictly limited 
to an upper bound on the size of the program they can slice. 

The tool presented here, srcSlice, addresses this limitation 
by eliminating the time and effort needed to build the entire 
PDG.  In short, it combines a text-based approach, similar to 

Cordy [5], with a lightweight static analysis infrastructure that 
only computes dependence information as needed (aka on-the-
fly) while computing the slice for each variable in the program.  
The slicing process is performed using the srcML [3, 4] format 
for source code.  The srcML format provides direct access to 
abstract syntactic information to support static analysis.  While 
this lightweight approach will generally never match the com-
pleteness of generating a PDG/SDG and performing deep 
pointer analysis, it does provide an accurate approximation of a 
program slice in an extremely short time.   We found up to four 
orders of magnitude increase in speed for large systems com-
pared to a full PDG approach [1, 2]. 

A very fast and scalable, yet slightly less accurate, slicing 
tool is useful for a number of reasons.  Developers can estimate 
the impact of a change to a large system within minutes versus 
hours/days.  This is very important for planning the implemen-
tation of new features and understanding how a change is relat-
ed to other parts of the system.  Additionally, we feel a fast 
slicing approach could open up new avenues of research in 
metrics and mining of histories based on slicing.  That is, slic-
ing can now be conducted on very large systems and on entire 
version histories in very practical time frames.  This opens the 
door to a number of experiments and empirical investigations 
previously too costly to undertake. 

II. THE SRCSLICE TOOL 
The srcSlice tool implements a forward, static slicing tech-

nique.  Complete details of the slicing algorithm used is given 
in [1, 2].  The tool is enabled by the srcML [3, 4] infrastructure.    
srcML augments source code with abstract syntactic infor-
mation.  This syntactic information is used to identify program 
dependencies as needed when computing the slice.  

Given a system (in the srcML format), srcSlice gathers data 
about every file, function, and variable throughout the system; 
storing it all in a three-tier dictionary.  Unlike other slicing 
techniques, it does not rely fully on pre-computed data and 
control dependencies.  Instead, as the code is analyzed, srcSlice 
selectively computes what is required while keeping track of 
just enough context to determine the dependencies.  Because of 
this, srcSlice is very memory efficient, with its dominating 
memory footprint coming from storing data in the dictionary.   

A slice profile for all variables is computed line by line as 
variables are encountered.  After all slice profiles are comput-
ed, a single pass through all the profiles is done to take into 
account dependent variables, function calls, control-flow edges, 
and direct pointer aliasing to generate the final slices.  



a.	 1.	 int	fun(int	z){	
	 2.	 				z++;	
	 3.	 				return	z;	
	 4.	 }	
	 5.	 void	foo(int	&x,	int	*y){	
	 6.	 				fun(x);	
	 7.	 				y++;	
	 8.	 }	
	 9.	 int	main(){	
	 10.	 				int	abc	=	0;	
	 11.	 				int	i	=	1;	
	 12.	 				while	(i<=10){	
	 13.	 								foo(abc,	&i);	
	 14.	 				}	
	 15.	 				std::cout<<"i:"<<i<<"abc:"<<abc<<std::endl;	
	 16.	 				std::cout<<fun(i);	
	 17.	 				abc=abc+i;	
	 18.	 } 
b. Slice Profile(abc): def={10,17}, use={1,2,5,6,13,15} 

slines={1,2,5,7,10,13,15,17}, dvars={abc}, pointers={}, 
cfuncs={fun{1},foo{1}}  
Slice Profile(i): def={11}, use={1,2,5,7,12,13,15,16,17}, 
slines={1,2,5,7,11,12,13,15,16,17}, dvars={abc}, pointers={}, 
cfuncs={fun{1}, foo{2}} 

 Slice Profile(z): def={1}, use={2}, slines={1,2}, dvars={}, 
pointers={},  cfuncs={} 

 Slice Profile(y): def={5}, use={7}, slines={5,7}, dvars={}, 
pointers={i}, cfuncs={} 

 Slice Profile(x): def={5}, use={1,2,6}, slines={1,2,5,6}, 
dvars={}, pointers={abc}, cfuncs={fun{1}} 

Figure 1 (a) Sample source code, (b) System dictionary with all slice profiles 
for the source code in (a). 

A. Slice Profile 
The slice profile for an identifier contains all data gathered 

about that identifier during the slicing process. The following is 
a list of that information: 
• File, function, and type, variable names – what 

file/function the variable is in and what type. 
• Def – what line a variable was defined or redefined on 

(this can be declaration, definition, or assignment. Def 
keeps track of when a variable’s value changes). Def is 
used to differentiate between variables with the same name 
but in differing scopes. 

• Use – what line a variable is used on. This refers to a vari-
able’s value being used in some computation with no mod-
ification to the variable’s value. The combination of def 
and use can be used to construct def-use chains. 

• Slines – all lines that a variable was defined or used on. 
This is the union between def and use. 

• Cfunctions - a list of functions called using the slicing var-
iable.  

• Dvariables - a list of variables that are data dependent on 
the slice variable.  

• Pointers - a list of aliases of the slicing variable. The ele-
ments of this list are variables to which the slicing variable 
is a pointer. We are unable to do full pointer resolution, 
however, quite a bit can be statically calculated. 

An example of a slice computed by srcSlice on a small pro-
gram is given in Figure 1.  The first portion of the figure (a) 
presents a small program constructed to show how srcSlice 
computes the profile. The second part of the figure (b) is the 
slice profile for the program in (a). 

We see that the variable i is defined at line 11 and has uses 
in the ‘main’, ‘fun’ and ‘foo’ functions.  That is, an inter-
procedural slice is computed.  The only variable dependent on i 
is the variable abc at line 17.  Simple pointer analysis is also 
done as can be seen in the profiles for variables y and x. 

B. Output 
srcSlice produces a system dictionary of all the slice pro-

files of all variables.  It is three-tiered and consists of three 
maps.  On the first level is a map from files to functions, on the 
second level is a map from functions to variable names, and on 
the third level is a map from variable names to slice profiles.  

Figure 2 is an example of srcSlice’s output.  In the future, 
we plan to support other formats and allow for the user to query 
the internal dictionary constructed by srcSlice directly. For 
now, srcSlice provides an easy-to-parse format. 

 
file,fcn/mthd name,slice variable,def{1,2,…,n}, 
use{1,2,…,n},dvars{a,b,…,z},pointers{ptra,ptrb,…,ptr
z},cfuncs{func1{1,2,…,n},func2{1,2,…,n}}  

Figure 2 The output format of srcSlice. 

If we insert the slice profiles from the code in Figure 1 into 
the format described above, we get the following: 
srcslicetest.cpp,main,i,def{11},use{1,2,5,
7,12,13,15,16,17},dvars{abc},pointers{},cf
uncs{fun{1},foo{2}} 
srcslicetest.cpp,main,abc,def{10,17},use{1
,2,5,6,13,15},dvars{},pointers{},cfuncs{fu
n{1},foo{1}} 
srcslicetest.cpp,fun,z,def{1},use{2},dvars
{},pointers{},cfuncs{} 
srcslicetest.cpp,foo,y,def{5},use{7},dvars
{},pointers{i},cfuncs{} 
srcslicetest.cpp,foo,x,def{5},use{1,2,6},d
vars{},pointers{abc},cfuncs{fun{1}}  

 
Notice that, due to the non-nested nature of the output for-

mat, file names will be repeated for every function and variable 
they contain and function names will be repeated for every 
variable they contain; this is seen in the fact that 
srcslicetest.cpp is repeated for every entry.  A typical use case 
of srcSlice is to see what areas a modification to a variable may 
impact. For example, a name change, type change, value 
change, etc.  Using the output from srcSlice, the user needs 
only parse it into a data structure and then check the def/use 
sets for each that variable they are interested. This informs 
them of exactly what lines in the system will potentially see 
some change in behavior due to a modification of the variable.  

 



TABLE I. RESULTS OF SRCSLICE APPLIED TO MULTIPLE SYSTEMS WITH THE 
SIZE OF THE SYSTEM, THE NUMBER OF VARIABLES FOUND, AND THE 

EXECUTION TIME FOR THE SRCSLICE TOOL. 

System Size (LOC) Variables Execution 
Time 

Linux Kernel- 
4.06 

~13,000,000 ~1,918,000 7 min 

Blender-2.68 ~1,300,000 ~265,000 70 sec 
Inkscape-0-.91 ~410,000 ~74,000 18 sec 

C. Computing the slice 
Given the information computed in the slice profile, we 

now explain how the final slice is calculated.  The slice of a 
variable is more than just the impact it has on the scope to 
which it is local.  For this reason, srcSlice uses data contained 
in Cfunctions and Pointers to calculate indirect and inter-
procedural slice information.  To do this, srcSlice records 
whether a given variable is an alias. When this variable is used, 
srcSlice determines what it most recently recorded as aliasing 
(the most recent variable the pointer is pointed to) and then 
updates the slice profile for the variable being pointed at (so 
use, def, Cfunctions, etc., are all updated to reflect usages 
through the alias).  In this way, it unions together slice profiles 
for alias variables and the variables the alias is pointing. Our 
approach is conservative about handling aliases and only un-
ions when absolutely certain. 

In much the same way, inter-procedural slice information is 
gathered by using the list of functions called using the slicing 
variable (Cfunctions).  When a variable is used as an argument 
to a call, srcSlice records the name of function called and the 
position of the variable in the argument list.  We use data about 
the functions gathered by srcSlice to then compute how the 
value of the called variable is used within the call.  The slice 
profile is updated with data about uses within the called func-
tion.  Once all of this is complete, a more detailed view of 
where each variable is defined/modified and used is obtained. 

It is worth noting that the def and use containers allow 

srcSlice to compute which definition of a variable corresponds 
to which uses of a variable through merely comparing line 
numbers.  This means that def-use chains can easily be com-
puted by merely comparing which lines in the use-vector fall 
between lines in the def-vector.  While srcSlice does not ex-
plicitly compute these on its own, computing them given the 
information srcSlice provides is quite straightforward. 

III. IMPLEMENTATION & PERFORMANCE 
srcSlice uses the srcML format and is implemented as a 

SAX parser. The particular implementation of SAX parser is a 
C++ wrapper around libxml2’s SAX interface called srcSAX; 
it was made specifically to support building tools that use 
srcML.  Since SAX parsers store no data about previously seen 
tags, they are very memory and operation efficient.  To take 
full advantage of this feature of SAX, we have worked to store 
as little data as possible and minimize repetition.  As a result, 
srcSlice is very fast.  On the largest system we present here 
(see Table I), the Linux Kernel, srcSlice clocks in at about 
274K identifiers per minute.  On Blender, srcSlice ran at 240K 
identifiers per minute.  However, the Linux Kernel had about 7 
times the number of identifiers as Blender, so there is not quite 
a 1:1 ratio between the number of variables and the size in-
crease of code.  Despite this, the ratio between the speed of 
execution for srcSlice on Linux and Blender is negligible.  
Even accounting for a higher number of identifiers per line on 
Blender, srcSlice scales extremely well and we continue to look 
for ways to increase srcSlice’s speed. 

IV. COMPARISON TO CODESURFER 
In a previous study [1, 2] srcSlice’s accuracy is compared 

with CodeSurfer, a heavyweight slicing tool from Gram-
maTech (www.grammatech.com).  The results of this paper 
show that srcSlice has reasonable accuracy given its speed and 
relatively lightweight approach to slicing.  We will summarize 
the results in this paper and encourage interested readers to 

examine the full paper for more 
information. 

 Table II presents the results 
of running CodeSurfer and 
srcSlice.  It presents the size of 
all systems from the perspective 
of both LOC and SLOC in the 
size column, then in the Slice 
Size column it presents the num-
ber of lines in each slice, the line 
size relative to LOC (%), and the 
safety margin (SM), which is the 
size of the resultant slice divided 
by the size of the intersected 
slice. CodeSurfer produced a 
maximum SM of 8.18% and a 
minimum of 1.31%. srcSlice 
produced a maximum of 1.67% 
and a minimum of 1%. The slice 
size produced by srcSlice is con-
sistently closer to the intersected 

TABLE II. INTERSECTED SLICE OVER 13 FILES FROM ENSCRIPT-1.6.5, WHERE (%) IN THE CODESURFER (CS) AND 
SRCSLICE (SS) COLUMNS IS THE SLICE SIZE RELATIVE TO LOC, (%) IN THE INTERSECTION COLUMN IS THE 

INTERSECTED SLICE RELATIVE TO BOTH TOOLS SLICE SIZE, (SM) IS THE RELATIVE SAFETY MARGIN FOR A SLICE. 

enscript-1.6.5 Size Slice Size Intersection 
LOC SLOC CodeSurfer (CS) srcSlice (sS) Lines CS  

% 
sS 
% File Name Lines % SM Lines % SM 

src/psgen.c 2860 1993 1351 67.8 1.75 863 43.3 1.12 771 57.1 89.3 
src/util.c 2156 1623 1227 75.6 1.48 853 52.6 1.03 827 67.4 97.0 
src/main.c 2660 1406 1178 83.8 1.59 768 54.6 1.04 739 62.7 96.2 
src/mkafmmap.c 250 153 92 60.1 2.04 45 29.4 1.00 45 48.9 100.0 
afmlib/strhash.c 386 268 145 54.1 1.36 145 54.1 1.36 107 73.8 73.8 
afmlib/afmparse.c 1017 759 636 83.8 2.05 313 41.2 1.01 310 48.7 99.0 
states/ex.c 2378 1536 813 52.9 3.35 279 18.2 1.15 243 29.9 87.1 
states/gram.c 2408 1607 433 26.9 2.41 301 18.7 1.67 180 41.6 59.8 
afmlib/afm.c 824 590 468 79.3 1.31 357 60.5 1.00 357 76.3 100.0 
afmlib/afmtest.c 184 113 67 59.3 1.60 42 37.2 1.00 42 62.7 100.0 
afmlib/deffont.c 379 323 311 96.3 8.18 38 11.8 1.00 38 12.2 100.0 
afmlib/e_88594.c 284 261 190 72.8  0 0.0   0  0.0 0.0 
afmlib/e_mac.c 284 261 219 83.9   0 0.0   0  0.0 0.0 
Total 16070 10893 7130     4004     3659     
Average 1236 838 548 69.0 2.47 308 32.4 1.13 281 52.8 91.1 
Min 184 113 67 26.9 1.31 0 11.8 1 0 12.2 59.8 
Max 2860 1993 1351 96.3 8.18 863 60.5 1.67 827 76.3 100 

 

 



slice. Thus srcSlice found the smallest slice that both slicers 
agreed on as being a proper slice of the given systems. 

V. USING SRCSLICE 
The srcSlice tool is a command-line tool that is run on the 

srcML format of a source code file(s).  There is a bit of extra 
data that srcSlice requires from srcML, however.  By default, 
srcML does not include the position of names in its output.  In 
order for srcSlice to work, we need line positions.  To turn line 
positions on in srcML, simply use the position option:  

srcml file.cpp –-position 
To run srcSlice on the Linux kernel, the command is:   

srcslice linux-4.0.6.cpp.xml > slices.dict 
where linux-4.0.6.cpp.xml is the srcML format of the Linux 
Kernel and slices.dict is the desired output file.  By default, 
srcSlice outputs to stdout.  You can download srcML and 
srcSlice from www.srcML.org.  Instructions for installing 
along with documentation are also available at this site. 

VI. RELATED WORK 
We focus on slicing approaches directly related to srcSlice.  

We refer readers interested in PDG-based slicing approaches a 
number of surveys on [13, 14, 18].  Gallagher et al [7] pro-
posed the definition of decomposition slicing as a maintenance 
aid in order to capture all the computation related to a given 
slicing variable. The decomposition-slicing definition is used 
by Tonella [15] to construct a concept lattice of decomposition 
slices.  A lightweight-slicing approach for object-oriented pro-
grams using dynamic and static analysis, called dependence-
cache slicing, is proposed in [11].  In the context of maintain-
ing large-scale systems, another lightweight maintenance tool, 
called TuringTool, was proposed by Cordy et al [5] and was 
designed to support several maintenance.  

srcSlice is distinguished from this work in multiple ways.  
The method used is not PDG based and there is no graph to 
traverse or data-flow equations to be solved.  Only on-the-fly 
information is retrieved as needed.  Unlike most of the others 
we compute the slice for every variable in the program includ-
ing local and global.  As new variables are encountered they 
are added to the slice profile.   

VII. CONCLUSIONS AND FUTURE WORK 
There are several features of srcSlice that the current re-

lease does not contain. We intend to slowly roll these extra 
features out as they are tested.  We would like the ability to 
directly query srcSlice’s map instead of having to parse the 
output.  We also want to add the ability for users to create their 
own output formats to be more interoperable with other tools.  
In terms of what data srcSlice is able to obtain, we intend to 
add the ability to record how objects’ member functions and 
variables are being used on a per-object basis.  We also are 
working to improve accuracy of pointer aliasing.  While point-
er-analysis is difficult, much information can be gleaned stati-
cally. Currently, srcSlice is built for C/C++.  The srcML for-
mat, however, additionally supports Java, and C# and we in-
tend to have srcSlice support those languages in the future. 
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