
1

iTrace: Overcoming the Limitations of
Short Code Examples in Eye Tracking Experiments

Bonita Sharif
Department of Computer Science and Information Systems

Youngstown State University
Youngstown, Ohio, USA 44555

Phone: +1 330-941-1769
Fax: + 1 330-941-2284

bsharif@ysu.edu

Jonathan I. Maletic
Department of Computer Science

Kent State University
Kent, Ohio, USA 44242
Phone: +1 330-672-9039

Fax: +1 330-941-2284
jmaletic@kent.edu

Abstract— Eye trackers are being used by software engineering

researchers to study how developers work. In this technical
briefing, we give an overview of eye tracking and how it can help
researchers to conduct their own studies. Eye tracking studies
are done on a single screen of text and there is no support for
scrolling or switching between files. This scenario is impractical
to study developers as they actually work on large software
artifacts. To overcome this an Eclipse plugin, iTrace, is
introduced that monitors developers eye movements even in the
presence of scrolling and file switching within an IDE. In
addition, it automatically maps the eye gaze to source code
elements. Existing work using iTrace is presented followed by a
scenario of how to setup and run an eye tracking study. Data
filtering, data cleaning, and data analysis are also discussed.

Index Terms— eye tracking, program comprehension.

I. OBJECTIVE
The objective of this technical briefing is to introduce

researchers and practitioners to a software tool, iTrace [1], that
greatly expands the ability to conduct eye tracking studies on
realistically sized source code examples. Currently, eye
tracking studies on software are very limited in terms of the
types of stimulus that can be presented to a study subject. Eye
trackers and the related support software does not allow for
scrolling or switching between windows. Thus, studies are
designed using only short segments of code that can fit on the
screen (i.e., approximately 30 lines of code or less on a
standard 24 inch display).

This limitation makes it quite difficult to study how
professional programmers read, understand, and examine the
software systems that evolve and maintain on a daily basis.
Any non-trivial software system involves hundreds of files and
many thousands of lines of code. Hence, for researchers to
understand how professional developers work, we must be able
to conduct eye tracking studies in the same type of
environment and on the same scale of software that they ply
their trade.

The technical briefing outlines the types of new
investigations that can be conducted using iTrace and how the
technology can be leveraged.

iTrace1 is an Eclipse plugin that incorporates implicit eye
tracking on software artifacts such as source code, test cases,

1 See http://seresl.csis.ysu.edu/iTrace

bug reports or stack overflow posts. iTrace is designed to
alleviate the problems associated with conducting studies on
small code snippets. It is now possible to conduct realistic
studies consisting of hundreds of source files and not be
limited to a single static view. The tool coordinates the eye
tracker and supports the switching between files and scrolling
within a file. The current implementation handles gazes at the
statement level for Java source code, text files including
HTML and XML files and various Eclipse UI elements. It is
designed such that it is easy to write new handlers for different
file types and other software artifacts to collect fine-grained
data at the statement level.

The three main tasks of iTrace are as follows. First, it
captures a developer’s gaze from an eye tracker. Second, it
determines which UI element that gaze falls on and finally,
processes this information towards some functional goal. The
goal is dependent on each researcher’s purpose for using iTrace.
iTrace was first used in our study [2, 3] to understand how
developers try to fix bugs in an open source system.

II. PRESENTERS’ EXPERIENCE
The authors started investigating how eye tracking

technology can be applied to software engineering in 2006.
They have been regularly publishing papers on this topic since
2007. Maletic co-organized a half day working session on eye
tracking at ICPC 2009 [4]. Additionally, Maletic has
organized a number of tutorials/technical briefings on srcML2
(i.e., ICSE 2015, MUD 2015, and ICSME 2014, Shonan Japan
2016). Sharif presented a 30 minute invited talk [5] at
SEmotion 2016 on how iTrace can be used to determine
developer emotion.

The authors also recently published a short invited
contribution in IEEE Software [6] outlining how iTrace can be
used to support studies of actual programmers. We now outline
other work published by the presenters related to eye tracking.

Kevic et al. conducted an eye tracking study on three bug
fix tasks. They found that developers focus on small parts of
methods that are often related to data flow. When it comes to
switches between methods, they found that developers rarely
follow call graph links and mostly switch to the elements in
close proximity of the method within the class [2, 3] . This is

2 srcML is an infrastructure for the exploration, analysis, and

manipulation of source code. See www.srcML.org.

2

the only previous eye-tracking study done in a realistic
environment namely, iTrace.

Sharif et al. [7] replicated a study by Uwano et al. [8]
showing that scan time (time taken to first read through the
entire code snippet) plays an important role in defect detection
time and visual effort required to review source code.
Moreover, experts tend to focus on defects more, while novices
watch lines in a more dispersed way.

Busjahn et al. [9] show that experts read code in a less
linear fashion than novices. Eye tracking studies have also
been done by the authors to gauge the effectiveness of
identifier style [10, 11]. Results indicate a significant
improvement in time and lower visual effort with the
underscore style. However, expert programmers appear to not
be impacted greatly by style.

III. OUTLINE
The technical briefing will be outlined as follows.

Time Slot Description
5 minutes Introduction to eye tracking and current

limitations
10 minutes Introduction to iTrace

Studies using iTrace
10 minutes How to setup an eye tracking study

Data filtering, cleaning, analysis
Short iTrace demo

5 minutes Q & A

IV. AUDIO-VISUAL REQUIREMENTS
This briefing will require a projector and a screen. We will

bring a laptop and a portable eye tracker to illustrate how
iTrace works. The larger eye tracking equipment is somewhat
difficult to move and set up for a short presentation.

V. TARGET AUDIENCE AND ATTENDEE
BACKGROUND

The target audience is the software engineering researcher
who is interested to understand how eye tracking works for
software engineering studies. The typical attendee would be
interested in how they could use eye tracking for their own
purposes. This could also attract industry professionals
interested in understanding how their developers actually use
the IDE.

No prior knowledge of eye tracking is required. Some
knowledge of conducting empirical studies with humans is a
plus but not required.

VI. PRESENTERS’ BIOGRAPHIES
Bonita Sharif, Ph.D. is an Assistant Professor in the

Department of Computer Science at Youngstown State
University, Youngstown, Ohio USA. Prior to this position, she
was an adjunct Assistant Professor at Ohio University. She
received her Ph.D. in 2010 and MS in 2003 in Computer
Science from Kent State University, U.S.A and B.S. in
Computer Science from Cyprus College, Nicosia Cyprus. Her
research interests are in eye tracking related to software

engineering, empirical software engineering, software
traceability, and software visualization to support maintenance
of large systems. She has authored over 30 refereed
publications. She serves on numerous program committees
including ICSME, VISSOFT, SANER and ICPC. She is
serving as general chair of VISSOFT 2016 and ETRA 2018
and served as program chair for VISSOFT 2014 and OCWIC
2017. Sharif is also a recent recipient of the NSF CAREER
award.

Jonathan I. Maletic, Ph.D. is Professor in the Department of
Computer Science at Kent State University, Kent Ohio USA.
He received the Ph.D. and M.S., both in Computer Science,
from Wayne State University in 1995 and 1989 respectively.
He received the B.S. in Computer Science in 1986 from The
University of Michigan-Flint. His research interests are
centered on software evolution, with a focus on the
comprehension, analysis, manipulation, transformation, reverse
engineering, traceability, and visualization of large-scale
software systems. Prof. Maletic has authored over 115
refereed publications and two of his publications have received
Most Influential Paper Awards. Prof. Maletic is regularly
funded by the US National Science Foundation (NSF) and
regularly serves on numerous program committees. He was
program chair of ICPC 2016 and of ICSM 2012. Prof. Maletic
has graduated 14 doctoral students, 12 of whom hold an
academic position.

ACKNOWLEDGMENTS
This work is supported in part by a grant from the US

National Science Foundation CCF 15-53573.

REFERENCES
[1] T. Shaffer, J. Wise, B. Walters, S. Müller, M. Falcone,

and B. Sharif., "iTrace: Enabling Eye Tracking on
Software Artifacts Within the IDE to Support Software
Engineering Tasks," in 10th Joint Meeting of the
European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE), Tool Track,
Bergamo, Italy, 2015, pp. 954-957.

[2] K. Kevic, B. Walters, T. Shaffer, B. Sharif, D. Shepherd,
and T. Fritz, "Tracing Software Developers’ Eyes and
Interactions for Change Tasks," in ESEC/FSE 2015,
Bergamo, Italy, 2015, pp. 202-213.

[3] K. Kevic, B. Walters, T. Shaffer, B. Sharif, D. Shepherd,
and T. Fritz, "Eye Gaze and Interaction Context for
Change Tasks - Observations and Potential," Journal of
Systems and Software, p. in press, 2016.

[4] Y. G. Guéhéneuc, Kagdi, H., Maletic, J., "Working
Session: Using Eye-Tracking to Understand Program
Comprehension," in 6th IEEE International Conference
on Program Comprehension (ICPC'09), Vancouver, BC,
Canada, 2009, pp. 278-279.

[5] J. Wise, B. Prox, B. Clark, and B. Sharif, "Towards an
emotionally aware development environment: invited
talk," in 1st International Workshop on Emotion

3

Awareness in Software Engineering (SEmotion), Austin,
TX, 2016, pp. 26-27.

[6] B. Sharif, T. Shaffer, J. Wise, and J. I. Maletic. (2016,
May-June 2016) Tracking Developers' Eyes in the IDE.
IEEE Software. 105-108.

[7] B. Sharif, M. Falcone, and J. I. Maletic, "An eye-tracking
study on the role of scan time in finding source code
defects," in the Symposium on Eye Tracking Research
and Applications (ETRA), New York, NY, USA,, 2012,
pp. 381-384.

[8] H. Uwano, M. Nakamura, A. Monden, and K.-i.
Matsumoto, "Analyzing individual performance of source
code review using reviewers' eye movement," in the 2006
symposium on Eye tracking research & applications
(ETRA), New York, NY, USA, 2006, pp. 133-140.

[9] T. Busjahn, R. Bednarik, A. Begel, M. E. Crosby, J.
Paterson, C. Schulte, B. Sharif et al., "Eye Movements in
Code Reading: Relaxing the Linear Order," in 23rd
International Conference on Program Comprehension
(ICPC), Florence, Italy, 2015, pp. 255-265

[10] B. Sharif and J. I. Maletic, "An eye tracking study on
camelcase and under score identifier styles.," in the 2010
IEEE 18th International Conference on Program
Comprehension (ICPC), Washington, DC, USA, 2010,
pp. 196-205.

[11] D. Binkley, M. Davis, D. Lawrie, J. I. Maletic, C.
Morrell, and B. Sharif, "The impact of identifier style on
effort and comprehension," Empir. Software Eng., vol.
18, pp. 219–276, 2013.

