

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TEFSE/GCT’07, March 22-23, 2007, Lexington, KY, USA.
Copyright 2007 ACM ISBN 1-59593-6017/03/07...$5.00

Software Repositories: A Source for Traceability Links
Huzefa Kagdi and Jonathan I. Maletic

Department of Computer Science
Kent State University

Kent Ohio 44242

{hkagdi, jmaletic}@cs.kent.edu

ABSTRACT
This paper analyzes six open source projects in order to assess
software repositories, such as those managed by Subversion, as a
source for uncovering/discovering traceability links between
different types of software artifacts. Our finding suggests that
software repositories store a variety of artifacts that are central to
open source development and use. Furthermore, a heuristic-based
approach that uses sequential-pattern mining is presented. This
approach analyzes commits in a version history to mine for highly
frequent co-occurring changes to different artifacts (e.g., source
code and documentation). The hypothesis is if different types of
artifacts are committed together frequently then there is a high
probability that they have a traceability link between them.
Examples of mined traceability links from our preliminary
experimentation on mining KDE (K Desktop Environment)
repositories are presented.

Categories and Subject Descriptors
D.2.7. [Software Engineering]: Distribution, Maintenance, and
Enhancement – documentation, enhancement, extensibility,
version control.

General Terms
Management, Measurement, Documentation,

Keywords
Traceability, Link Recovery, Mining Software Repositories.

1. INTRODUCTION
Recovery of traceability links has been a subject of investigation
for many years within the software engineering community [18,
29]. Various techniques have been proposed to assist in the
recovery/discovery of traceability links in existing software
systems [29]. However, many approaches suffer from many false
positives, suggesting a link when none should exist [4, 23, 24].

Approaches to recovering traceability links normally analyze only
a single snapshot (i.e., current version) of a software system to
infer links between two or more artifacts. The research presented
here to recover links takes a different approach and examines
multiple versions of the software artifacts, stored in software
repositories (e.g., CVS and Subversion). The premise is that
artifacts of different types (e.g., src.cpp and help.html) co-changed
in the past potentially have a traceability link between them.

Towards achieving our goal, a set of prerequisite questions needs
to be answered: What are the different types of artifacts? Are
different kinds of artifacts typically committed together? How
many of them are typically committed together? In this paper we
investigate the above questions on software repositories of six
open source systems. We also present, an approach based on
sequential-pattern mining to uncover/discover traceability links
from frequently occurring co-changes.

The rest of the paper is organized as follows: Section 2 provides
an overview of current state in traceability for open source
projects. Section 3 details on our effort on mining traceability
links between different types of artifacts from software
repositories. Section 4 is a brief discussion on addressing
challenges in traceability research. Section 5 presents related
work and finally we conclude in Section 6.

2. OPEN SOURCE AND TRACEABILITY
Scacchi et al. [26] observed that requirements elicitation, analysis,
and specification of open source system are very different from
the traditional approaches (e.g., use of mathematical logic,
descriptive schemes, and UML design models) in software
engineering. Their requirements are typically implied by
discourse of project participants, and after implementation
assertions. Different types of informal sources (termed as
software informalisms) form collective requirements and
documentation of an open source project. This includes software
repositories, communications, HowTo guides, and traditional
system documents (e.g., man pages). One particular type of
requirements that is a common feature in many open source
projects is the ability to support extension mechanisms with
various programming languages and architecture (e.g., a python
binding to the KDE libraries). Due to the distributed collaborative
nature of open-development, software repositories comprise the
primary location of various project artifacts along with the
primary means of coordination and archival.

Source-control systems, bug-tracking systems, and archived
communications are the main sources used in free and open source
software development. Source-control systems are primarily used

for managing evolution of source code artifacts (i.e., files). Bug
or issue tracking systems are used to manage the reporting and
resolution of requests such as defects, bugs, faults, and feature
enhancements. They include priority and severity assignment for
a request, and discussion of possible solutions for resolution. For
example, Bugzilla (a widely used system in the open source
development community) is used to manage the life cycle of a
request and allows “free-form” textual description and discussion
of a request. Archived communications such as email,
newsgroups, discussion forums, and instant messages store
discussions between project participants, making them sources for
information including change rationales. It is not uncommon to
have a number of mailing lists for a variety of different purposes.

These repositories vary in their usage, information content, and
storage format. The bug/issue tracking repositories and emails
can be seen as a source for requirements and corrective-
maintenance requests of an open source system. Source-control
repositories can be seen as a source of implementation artifacts.
However, these repositories are managed and operated (for the
most part) in isolation and have no explicit direct relationship with
each other. For example, no explicit information is typically
maintained between a particular bug in the bug-tracking system
and the corresponding source code changes in the source-control
repositories that fixed it.

Few efforts have been made to infer and then utilize traceability
links between artifacts in bug repositories and source code
artifacts via Mining Software Repositories (MSR). Canfora et al.
[5] used the bug descriptions and the CVS commit messages for
the purpose of change predictions. Their approach provides a set
of files (at line level of granularity) that are likely to change given
only the textual description of a new bug (or feature). An
information-retrieval method is used to index the changed files in
the CVS repositories with the textual description of past bug
reports in the Bugzilla repository and the CVS commit messages.
A bug report is linked to a CVS commit (i.e., a set of changed
files) based on the explicit bug identifier found (a common
practice in open source development) in that commit message
(e.g., bug id 30,000). Sliwerski et al. [28] used a combination of
information in the CVS log file (commits) and Bugzilla to study
fix-inducing changes. Fix-inducing changes are the changes that
introduced new changes to fix an earlier reported problem.
Regular-expression matching on the commit messages and text
descriptions in Bugzilla along with heuristics are used to
determine the CVS deltas that are related to a change that fixes a
bug. Cubranic et al. [9, 10] describes a tool, namely Hipikat, to
assist new developers (not necessarily novice) on a project, in
performing their current task(s). Various artifacts (e.g., source
code, emails, and bug reports) produced in the project are
integrated to form a repository of explicit information – project
memory. A vector-based IR method is used to draw the similarity
between artifacts. Heuristics are used to form other relationships
between artifacts (e.g., requests in Bugzilla are related to the files
in CVS by matching bug-id in the commit messages). Hipikat
recommends artifacts from the project memory that may hold
relevance to a task at hand. A developer may ask for the relevant
artifacts via an explicit query, or the tool can do so automatically
based on the current context (e.g., based on the currently open
document(s) in the developer’s workspace).

In summary, existing MSR approaches have focused on
uncovering traceability links between requests in bug-tracking

systems and source code. While these are important efforts, they
cover only a part of the broad spectrum of documents found in
open source development.

3. DIFFERENT ARTIFACTS AND
UNCOVERING THEIR TRACEABILITY

Our research interest is in uncovering traceability between source
code and other documents such as those reported by Scacchi et al.
[26]. This includes:

• User documents (e.g., HTML, XML/docbook, LaTeX
and Doxygen)

• Build management documents (automake, cmake, and
makefile),

• HowTo guides (e.g., FAQs),

• Release and distribution documents (e.g., ChangeLogs,
whatsNew, REAME, and INSTALL guide)

• Progress monitoring (TODO and STATUS)

• Extensible mechanisms (e.g., Python, Ruby, and Pearl
bindings for an API)

A sustainable success of an open source project from both
development and end use perspectives depends to a large extent
on how well they maintain these documents. For example, an
application that frequently fails to compile or with very little
installation help could have a diminishing effect on the user base.
It is important that these documents be kept in alignment with the
current state of the source code. Therefore, traceability between
them is of desirable interest and value. Accounting these
documents along with the requests in bug-tracking systems is a
major step towards achieving the complete picture of traceability
to source code in the context of open source development.

We now must address a couple of questions. Where are these
documents found? How do we uncover the traceability links
between them and the source code? Our study (refer Section 3.2)
shows that these documents are stored and managed in software
repositories along with source code. Change-sets in which they
are found along with source code are a valuable source for
uncovering traceability links between them. We first describe
how change-sets are stored and represented in software
repositories to help facilitate following discussion of our mining
approach for traceability links.

3.1. Change-sets in Software Repositories
Source code repositories store metadata such as user-IDs,
timestamps, and commit comments in addition to the source code
artifacts and their differences across versions. This metadata
explains the why, who, and when dimensions of a source code
change. Modern source-control systems, such as Subversion,
preserve the grouping of several changes in multiple files to a
single change-set as performed by a committer. Version-number
assignment and metadata are associated at the change-set level and
recorded as an atomic commit.

Figure 1 shows a log entry from the Subversion repository of
kdelibs (a part of KDE repository). A log entry corresponds to a
single commit operation. Subversion’s log entries include the
dimensions author, date, and paths involved in a change-set. In
this case, the changes in the files khtml_part.cpp and loader.h are

committed together by the developer kling on the date/time 2005-
07-25T17:46:20.434104Z. The revision number 438663 is
assigned to the entire change-set (and not to each file that is
changed as is the case with some version-control systems such as
CVS). Additionally, a text message describing the change entered
by the developer is also recorded. Note that the order in which the
files appear in the log entry is not necessarily the order in which
they were changed. Clearly, a single log entry alone is insufficient
to give the temporal ordering in which files were changed.
However, there is a temporal order between change-sets. Change-
sets with greater revision numbers occur after those with lesser
revision numbers. Therefore, we can utilize the ordering of
change-sets to determine the ordering of changes between
different files. In the rest of the paper we use the term change-sets
for the log entries or commits in Subversion repositories.

Figure 1. A Snippet of kdelibs Subversion Log

A number of approaches in the MSR community [15, 21, 32, 35]
have utilized change-sets from versions-control systems to
uncover evolutionary patterns or co-changes in source code.
Similar approach could be adopted to uncover traceability links
between source code and other types of documents. However, for
such an approach to work well, it is necessary to determine if this
characteristic is exhibited in software repositories (and to what
extent).

Table 1. Six open source systems analyzed for different types
of artifacts in change-sets.

System Period
Total

Change
-sets

Sample
Change-

sets
Apache-

httpd
[2005-05-01
2007-01-05) 833 84

GCC [2001-01-01
2007-01-05) 13507 1351

jEdit [2001-01-01
2007-01-05) 2074 208

Kdelibs [2005-05-01
2007-01-05) 10339 10334

Koffice [2005-05-01
2007-01-05) 11767 1177

Python [2001-01-01
2007-01-05) 3622 363

3.2. Analyses of Change-sets for File Types
In order to establish whether different types of documents are
committed in the same change-set six open source systems are
examined. These systems cover a number of application domains
and are primarily written in C, C++, and Java. Apache httpd is a
web server, jEdit is an editor, GCC is a compiler, koffice is an
office-applications suite, kdelibs is a core library for KDE (K
Desktop Environment), and Python is a programming language.
All these projects use Subversion for managing their repositories.
Change-sets committed in periods between one and six years were
considered. In some cases only recent history of about a year and
half was considered to mitigate the influence of “old” changes that
may be irrelevant for the current state of the system and its further
evolution. We selected 10% of these change-sets via random
sampling. These sampled change-sets were analyzed for the
number of different types of artifacts in them.

Figure 2 shows the frequency distribution of the number of
different file types with regards to the number of change-sets in
the change-set samples. These file types include the ones
discussed in Section 3. Our analysis indicates that a substantial
proportion of change-sets contain two or more file types in these
systems. Change-sets with a fewer number of different file types
occur more frequently than those with a larger number of different
file types.

Figure 2. Histogram of the number of different file types with
regards to the number of change-sets (i.e., commits) in the six
open source systems. It shows two or more file types
substantially co-occur in the change-sets in all these systems.

Table 2 provides some descriptive statistics of the sampled
change-sets. The proportions of the change-sets with two or more
file types (column Proportion) are between 28% and 62%. The
sample means (column Mean) and standard deviations (column
SD) are also given. Both these measures show that on average a
change-set contains more than one file type, and as high as three
file types. The standard deviations indicate that change-sets with
a number of different file types also appear. We performed an
outlier analysis via Inter Quartile Range (IQR) computation to
determine the change-sets that deviate from a typically “normal”
case (an outlier). That is, they contain a large number of different
types than what is typically observed. The limits on the number of
different types in a change-set beyond which it can be considered

<?xml version="1.0" encoding="utf-8"?>
<log>
 <log entry revision="438663">
 <author>kling</author>
 <date>2005-07-25T17:46:20.434104Z</date>
 <paths>
 <path action="M">khtml_part.cpp</path>
 <path action="M">loader.h</path>
 </paths>
 <msg>
 Do pixmap notifications when
 running ad filters.
 </msg>
 </log entry>
</log>

as a suspect for an outlier are also determined from the samples
(Column Outlier Cut-off). This analysis suggests that a change-set
with the maximum range [3, 6] can well be the “normal” case.

To give an indication as to how well the statistics on the samples
represent parametric means of all the change-set (i.e., within and
beyond the history period considered for selecting the samples) in
these projects, we provide the confidence intervals (column CI)
for estimating the overall means. The confidence intervals were
computed with the confidence level of 95%. That is, we can say
with 95% confidence that the mean of all the change-sets in a
project will be within the given bounds. As can be seen, the
bounds do not vary much the overall mean from the sample means
for all the six systems.

The analysis presented in this section shows that there are change-
sets with more than one document type in software repositories.
Utilizing this information to infer potential traceability link
between them is a two-fold issue: 1) Is the presence of different
types of documents in the same (and single) commit enough to
infer the traceability links between them? 2) How do we account
for related documents with potential traceability links committed
in a series of multiple change-sets? We now present a heuristic-
based approach that uses data mining methodology that addresses
theses issues.

Table 2. Statistics of the change-sets analyzed for different
types of files in six open source systems

System Proportion Mean SD Outlier
Cut-off CI

Apache-
httpd 34% 1.821 3.0858 3.5 ±0.6599
GCC 32% 2.532 1.6547 4.5 ±0.0882
jEdit 62% 2.212 1.3489 6.0 ±0.1833

kdelibs 33% 1.487 1.0689 3.5 ±0.0652
koffice 45% 1.793 1.6448 3.5 ±0.0934
Python 28% 1.441 0.9065 3.5 ±0.0933

3.3. Mining Ordered Patterns
Our approach is to analyze sets of files that frequently co-occur in
change-sets by applying a frequent-pattern mining technique (i.e.,
sequential pattern mining). We refer to such a set of files as a
change pattern. These change patterns are then analyzed to
uncover patterns that contain source code files and other types of
files (e.g., makefiles, TODO, change logs, HTML/XML/docbook).
We refer to such a pattern as traceability pattern. Our hypothesis
is that if two files, of different types, co-change with a high
frequency than there is a potential traceability link between them.

Software is inherently structured with dependencies among its
entities such as call, control, and data dependencies. The task of
performing a software change is either planned (e.g., a standard
refactoring or a fix for a documented bug), unplanned activity
(e.g., fixing an unforeseen side effect due to a change), or a
combination of both. A typical planned change is implemented in
small increments with the goal of maintaining the overall system
in a coherent state (e.g., preserve the build or compile-able state,
change source code and documentation in separate steps). These
incremental changes corresponding to the change-sets are
implicitly ordered. However, such is the nature of software that
an extremely well planned change may lead to further

unanticipated changes. It is not uncommon to have a bug-fix that
introduces a multitude of additional bugs. Often such bugs are
discovered only after a fix is committed to a repository and tested
by other contributors. Nonetheless, in any case there is a temporal
ordering between various change-sets.

Preservation of a change-set as an atomic commit in software
repository gives the ability to iterate through the change history at
the change-set level (i.e., “undo” at the change-set level rather
than the individual file level). This encourages the practice of
committing a set of related changes in a single logical change – a
standard Subversion policy of the KDE project. However, the
granularity and composition of a change-set may vary across
tasks, developers, and projects. For example, consider a
refactoring task that requires a series of steps such as extract
method, move method, and so forth. A change-set may correspond
to each elementary step or the entire refactoring. In other cases,
changes to source code and related documents may be committed
at different times even though they represent the same logical
change. Therefore, a single high-level change may be completed
over multiple change-sets.

In order to mine larger or more complete patterns we need to
consider changes that spread over a sequence of change-sets.
However, the changes-sets corresponding to such changes are
rarely explicit (at least not directly recorded in the software
repositories or clearly documented). Notice that the change-sets
stored as atomic commits in software repositories are serialized.
The order in which log entries appear in the log files is at the
discretion of a version-control system. Two unrelated change-sets
committed approximately at the same time may appear next to
each other. Therefore, treating successive change-sets in the
software repositories as related to a single high-level change may
be meaningless.

In our approach we use three heuristics to group change-sets.
Each heuristic takes a set of change-sets and forms groups of
“related” change-sets. From the discussion in Section 3.1, there is
a temporal relationship between change-sets. Therefore, each
group formed by heuristics is actually a sequence of change-sets.
We employ sequential-pattern mining to uncover ordered change
patterns from the groups formed by a grouping heuristic. The
transactions are the groups (i.e., sequence of change-sets) and the
items are the files. The ordered patterns discovered by sequential-
pattern mining are the sequences of files (actually a sequence of
sets of files) that are found common in at least a user-specified
number of groups (i.e., minimum support).

In general an ordered pattern is composed of elements. Each
element is composed of unordered items. The ordering of
elements imposes a partial order on the items. For example, the
ordered pattern {f1, f2}→{f3, f4}→{f5} is composed of three
elements and five items. It indicates that the element {f1, f2}
happens before the element {f3, f4} and the element {f3, f4}
happens before the element {f5}. However, the happens-before
relation between items f3 and f4 is unknown in the element {f3,
f4}. In the context of ordered change patterns, an element in an
ordered pattern corresponds to a subset of files changed in a
change-set and an item in an element corresponds to a file.
Therefore, files in the same element of an ordered pattern indicate
files that are likely to change in the same change-set, whereas files
in the different elements of an ordered pattern indicate files that
are likely to change in different change-sets in the specified order.

For the sake of brevity, ordered change patterns are referred as
ordered patterns for the remainder of this discussion.

The support of an ordered pattern is the number of groups in
which it occurs. An ordered pattern indicates that if any of its
constituent files are found in a change-set then the rest of the files
are also likely to occur in the same or different change-set as per
their ordering in the pattern. Therefore, an ordered pattern in the
context of a software repository could mean a set of files that are
likely to be committed in the same revision before a set of files
committed in the previous revision.

3.4. Change-set Grouping Heuristics
We present a number of heuristics for grouping related change-
sets formed from version history metadata found in software
repositories (i.e., developer, time, and changed files). These
heuristics can be considered similar to the fixed and sliding
window techniques [15, 17, 35]. These techniques are used to
group changed files into a single change-set typically applied to
CVS repositories as they lose the atomicity of original change-
sets. Our heuristics combine change-sets into groups in order to
account for related changes committed across multiple change-
sets.

3.4.1. Time Interval
This grouping heuristic is based on the premise that the change-
sets committed during a given time-interval are related, and
change-sets committed outside this interval are unrelated. All the
change-sets committed in a given time duration are placed in a
single group. The number of groups is equal to the number of
time intervals over which the change-sets were committed. This
heuristic covers related change-sets that are committed by
different developers but during the same time interval. The
ordered patterns found using this heuristic implies that if a file is
modified in a particular pattern on a given day, the following (or
preceding) files are likely to be modified on the same day.

For example, the pattern {khtml_part.h} → {ChangeLog} was
found from mining the change-sets in the KDE Subversion
repository (under kdelibs/khtml/) committed between May 2005
and December 2005. In this case, a group in this case was formed
for the change-sets committed in one calendar day. This pattern is
found to occur in five groups. On each of these five days, the file
khtml_part.h was in a change-set that was committed before the
change-set in which the file ChangeLog was committed. This is a
traceability pattern showing that changes are documented after an
interface file is changed. The pattern

{kdeedu/kalzium/src/kalzium.cpp, kdeedu/kalzium/src/pse.cpp} →
{kdesdk/doc/scripts/kdesvn-build/index.docbook}

is another example pattern that occur in change-sets committed in
each of five different days. This pattern shows that the
documentation is updated after performing changes to the source
code. However, the order in which the two source code files were
changed cannot be determined (i.e., a partially ordered pattern).

3.4.2. Committer
This heuristic is based on the premise that the change-sets
committed by the same developer are related and the change-sets
committed by different committers are unrelated. This defines an
order on the change-sets by a committer. Therefore, all the

change-sets committed by a given committer are placed in a single
group.

The number of groups is equal to the number of unique
committers. This heuristic covers related change-sets that are
committed in different time intervals but by the same author. The
ordered pattern found using this heuristic implies that if a file is
modified in a pattern by a committer, the following (or preceding)
files are likely to be modified by the same committer.

The pattern {khtml_part.h}→{ChangeLog} was found from
mining the change-sets in the KDE Subversion repository
committed between May 2005 and December 2005. A group in
this case was formed for the change-sets committed by the same
developer. This pattern is found to occur in five groups. In the
case of each committer, the file kdelibs/khtml/khtml_part.h was in
a change-set that was committed before the change-set in which
the file kdelibs/khtml/ChangeLog was committed. The same
pattern was found by grouping change-sets by the heuristic Time
interval (see Section 3.4.1). This further strengthens that this is a
change dependency between these artifacts and not an unrelated
dependency due to a development practice of a developer or
unusual changes made during a particular day. The pattern

{kdeedu/kalzium/src/kalziumtip.cpp} →
{kdeedu/kalzium/src/detailinfodlg.cpp} →

{kdeedu/kalzium/src/Makefile.am} →
{kdeedu/kalzium/src/kalzium.cpp, kdeedu/kalzium/src/kalzium.h}

is another example pattern that is found in the change-sets
committed by five developers. This pattern shows that a build file
is updated both before and after changing the source code.

3.4.3. Committer + Time Interval
 This heuristic is based on the premise that the change-sets
committed by a committer in the same time are related, and the
change-sets committed by the same or different committers in
different time intervals are unrelated. This defines an order on the
change-sets by a committer. Therefore, all the change-sets
committed by the same committer within the same time interval
are placed in a single group. The number of groups is equal to the
number of unique committers and time interval combinations.
This heuristic restricts related change-sets to the change-sets
committed by an author in a time period. The ordered pattern
found using this heuristic implies that if a file is modified in a
pattern by a committer the following (or preceding) files are likely
to be modified by the same committer in the same time interval.

For example, the pattern {TODO}→{pse.cpp} was found from
mining the change-sets in the KDE Subversion repository
committed between May 2005 and December 2005. A group in
this case was formed for the change-sets committed by the same
developer on the same calendar day. This pattern is found to
occur in ten groups. In each combination of committer and day,
the file kdeedu/kalzium/TODO was in a change-set that was
committed before the change-set in which the file
kdeedu/kalzium/src/pse.cpp was committed. The pattern

{kdeedu/kalzium/src/kalziumui.rc} → {kdeedu/kalzium/src/pse.h,
kdeedu/kalzium/src/pse.cpp}

is another example pattern that is found in the change-sets
committed by seven different committer-day combination. This

pattern shows that a particular user-interface file is changed before
modifying the code.

3.5. Frequent Pattern-Mining Tool
We have developed a sequential pattern-mining tool, namely
sqminer, that is based on the Sequential Pattern Discovery
Algorithm (SPADE) [33] which utilizes an efficient enumeration
of ordered patterns based on common-prefix subsequences and
division of search space using equivalence classes. Additionally,
it utilizes a vertical input-transaction format (i.e., a set of
transactions for each file vs. a set of transactions consisting of
files) for efficiency.

To help prune the number of candidate patterns produced by the
mining techniques, patterns with redundant information are
eliminated. A pattern that is frequent means that all possible
patterns formed from the subsets of its files are also frequent. The
support of a pattern is always less than or equal to the subset
patterns. A common pruning mechanism used in frequent-pattern
mining is to eliminate all the subset patterns that have the same
support of the corresponding larger pattern. Such subset patterns
are only used with other larger patterns and not in isolation.
Therefore, they give redundant information that may be of very
little meaning. As a result, only disjoint patterns (i.e., patterns
with no common files) that subsume all subsets of patterns with
the same or higher support are retained. Such patterns are known
as closed patterns. Our tool produces only closed patterns.

Frequent-pattern mining algorithms typically report the support of
a pattern but not the transactions in which it occurs. Our tool
records the transactions in which a pattern is found. For
uncovering both unordered and ordered change patterns, we use
the same underlying mining algorithm. The tool sqminer can also
be used for frequent itemset mining. In this case the transactions
are formed with no ordering information of items. The
configuration parameters of sqminer include support, maximum
number of items in a pattern, mining of sequence (association)
rules, and output in both a flat-file and XML format. For further
detail on the XML output format of the ordered patterns and rules,
we refer to [21].

4. TRACEABILITY CHALLENGES
We believe that our approach provides at least partial answers to a
subset of the many grand challenges identified in the area of
traceability research [1]. Our approach is based on the
evolutionary information (i.e., actual changes) recorded in the
software repositories. The traceability links recovered could be
used as a validation mechanism for traditional approaches (in
addition to manual efforts). Therefore, versions history can be a
useful source for establishing benchmarks in traceability (L-GC2).

Software repositories are managed by versions-control systems
that are integrated in modern development environments (e.g.,
Eclipse and KDevelop). We believe that our approach can
seamlessly operate with such tools to uncover and enforce
traceability links before or after a change is committed (e.g., as a
pre-hook or post-hook monitor). This directly addresses the issue
of tools that support incremental traceability recovery and
integration with other development tools (C-GC2).

The approach that is based on evolutionary couplings, such as
ours, can be used to a certain extent in establishing dependencies
between artifacts without even analyzing their actual contents.

This provides a starting point (minimally) in uncovering possible
traceability links across heterogeneous document types including
those that are semi-structured, binaries, and graphics files (C-GC3
and E-GC3.2).

5. RELATED WORK
There are two distinct areas of research that are directly related to
the work presented here, namely mining software repositories and
traceability-link recovery.

We briefly discuss a few early approaches utilizing information
found in source code repositories maintained by tools such as CVS
and Subversion with a focus on co-changes and analysis.
Zimmerman et al [34, 35] used CVS logs for detecting
evolutionary coupling between source code entities. They
employed sliding window heuristics to estimate the atomic
commits (change-sets). Association-rules based on itemset
mining were formed from the change-sets and used for change-
prediction. Yang et al [32] used a similar technique for
identifying files that frequently change together. Gall et al [15]
used window-based heuristics on CVS logs for uncovering logical
couplings and change patterns, and German et al [16] for studying
characteristics of different types of changes. Hassan et al [19]
analyzed CVS logs for software-change prediction.

The work presented in this paper is closely related to the works by
Zimmermann et al [34, 35] and Canfora et al [5]. However our
work has important distinctions. Zimmermann et al [34, 35]
focused on uncovering source-code-to-source-code change
dependencies using itemset mining. They considered only the
files committed together in a single change-set (approximated via
sliding-window technique). Our focus is on uncovering
traceability links between source code and other types of artifacts
(note that we also uncover source-code-to-source-code change
dependencies). We also consider files committed over a sequence
of change-sets (and not just a single change-set). We use
sequential-pattern mining to uncover the ordering information of
committed files (and not just unordered sets of files). Yang et al
[32] used a similar technique as Zimmermann et al [34, 35] for
identifying files that frequently change together. Canfora et al [5]
work is based on the textual similarity of different bug reports
(and commit messages) in the change history. An information-
retrieval method is used to index the changed files in the CVS
repositories with the textual description of past bug reports in the
Bugzilla repository and the CVS commit messages. Our work is
based on a common set of files that is changed multiple times in
the change history. As such, their work is dependent on the
“quality” of the textual description. Additionally, they are only
able to find traceability between bugs/features and source code
files for those bugs/features entered in the bug-tracking system.
However, we found that there are many instances in large open
source projects (e.g., KDE) where a feature/bug is implemented
without a corresponding entry in the bug-tracking system. Our
approach handles such situations.

Spanoudakis and Zisman conducted a comprehensive study of
various methods for link recovery in [29]. These methods utilize
such things as information retrieval, test-cases, and design
patterns. Antoniol et al. [2] recover links between source code
and documentation using a probabilistic and a vector space IR
models. Marcus and Maletic [24] use another IR technique
namely, Latent Semantic Indexing (LSI) to recover links from
documentation to source code on the same set of case studies done

by Antoniol et al with better precision. A number of other
researchers [11, 12, 20, 22, 23, 27, 31] have also applied IR
methods for traceability link recovery. The results of these studies
demonstrate the usefulness of IR methods for link recovery;
however the approaches do not consider, or depend on, multiple
versions of a software system to construct the links. In one of the
rare studies that examined multiple versions, Antoniol et al. [3]
establish traceability links between software releases of an object
oriented system to determine inconsistencies. However, their work
only looks at two versions at a time.

Egyed takes a scenario based semi-automated approach to uncover
traceability information between software artifacts [13, 14]. Test
cases are used to generate trace information produced during
program execution. Spanoudakis and Zisman [30, 36] use
heuristics for automatic generation of traceability links between
requirements and the UML object model as well as between
different parts of a requirements document. Cleland- Huang et al.
[6-8] propose an event based traceability approach in establishing
traceability links between requirements and performance models
using an event-notifier design pattern. Murphy et al. [25]
introduce software reflexion models to automatically identify links
between high level models and source code.

6. CONCLUSIONS AND FUTURE WORK
We empirically analyzed six open source projects to make the
case for software repositories as a potential source for uncovering
traceability links between various types of software artifacts. This
includes source code from/to user documentation traceability
links. A heuristic based approach that uses frequent-pattern
mining is presented as one such effort. An uncovered ordered
pattern gives a traceability link between multiple documents with
the ordering information implying the potential directionality.
Our work compounded with the existing approaches in uncovering
traceability between requests in bug repositories and source code
expands the horizons of traceability research via mining software
repositories and overall generally. While the discussion here may
seem restricted to the open source development, we believe that
our approach is equally applicable in any other development
methodology that exhibits different types of artifacts in the same
change-sets.

In future we plan to evaluate the “goodness” of our approach. The
general evaluation methodology will be to first mine a portion of
the version history for traceability patterns. Then mine a later part
of the version history and see how accurately the prior traceability
patterns hold. Additional heuristics for grouping related change-
sets such as textual similarity of commit messages are also
investigated. Also, we are working on recovering fine-grained
traceability link (e.g., at class and method levels) by leveraging
srcML infrastructure and standard differencing tools (e.g., diff).

7. REFERENCES
[1] Antoniol, G., Berenbach, B., Eyged, A., Ferguson, S.,

Maletic, J., and Zisman, A. Problem Statements and Grand
Challenges. Center of Excellence for Traceability,
Lexington, KY September, 10 2006.

[2] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and
Merlo, E. Recovering Traceability Links between Code and
Documentation. IEEE Transactions on Software
Engineering, 28, 10 (October 2002), 970-983.

[3] Antoniol, G., Canfora, G., and Lucia, A. D. Maintaining
Traceability During Object-Oriented Software Evolution: A
Case Study in Proceedings of 15th IEEE International
Conference on Software Maintenance (ICSM) (August,
1999), 211-219.

[4] Antoniol, G., Canfora, G., Lucia, A. D., and Merlo, E.
Recovering Code to Documentation Links in Object-
oriented Systems in Proceedings of 6th IEEE Working
Conference on Reverse Engineering (Atlanta, Georgia,
October 1999, 1999), 136-144.

[5] Canfora, G. and Cerulo, L. Impact Analysis by Mining
Software and Change Request Repositories in Proceedings
of 11th IEEE International Symposium on Software Metrics
(METRICS'05) (Como, Italy, September, 19-22 2005), 29-
37.

[6] Cleland-Huang, J., Chang, C. K., Sethi, G., Javvaji, K., Hu,
H., and Xia, J. Automating Speculative Queries through
Event-Based Requirements Traceability in Proceedings of
IEEE Joint International Conference on Requirements
Engineering (RE) (Sept, 2002), 289-296.

[7] Cleland-Huang, J. and Chang, K. C. Supporting Event
Based Traceability through High-Level Recognition of
Change Events in Proceedings of 26th Annual International
Computer Software and Applications Conference (Oxford,
England, Aug, 2002), 595-600.

[8] Cleland-Huang, J., Settimi, R., BenKhadra, O., Berezhan,
E., and Christina, S. Goal Centric Traceability for Managing
Non-Functional Requirements in Proceedings of
International Conference on Software Engineering (ICSE)
(St Louis, USA, May, 2005), 362-371.

[9] Cubranic, D. and Murphy, G. C. Hipikat: Recommending
Pertinent Software Development Artifacts in Proceedings of
25th International Conference on Software Engineering
(ICSE'03) (Portland, Oregon, May 6-8, 2003), 408-418.

[10] Cubranic, D., Murphy, G. C., Singer, J., and Booth, K. S.
Hipikat: A Project Memory for Software Development.
IEEE Transactions on Software Engineering, 31, 6 (2005),
446-465.

[11] DeLucia, A., Fasano, F., Oliveto, R., and Tortora, G.
Enhancing an Artefact Management System with
Traceability Recovery Features in Proceedings of 20th IEEE
International Conference on Software Maintenance
(Chicago, Illinois, September, 2004), 306-315.

[12] DeLucia, A., Fasano, F., Oliveto, R., and Tortora, G. Can
Information Retrieval Techniques Effectively Support
Traceability Link Recovery? in Proceedings of 14th IEEE
International Conference on Program Comprehension
(ICPC'06) (Athens, Greece, June 14-16 2006), 307-316.

[13] Egyed, A. A Scenario-Driven Approach to Traceability in
Proceedings of 23rd International Conference on Software
Engineering (ICSE) (Toronto, Canada, May, 2001), 123-
132.

[14] Egyed, A. A Scenario-Driven Approach to Trace
Dependency Analysis. IEEE Transactions on Software
Engineering, 29, 2 (2004), 116-132.

[15] Gall, H., Hajek, K., and Jazayeri, M. Detection of Logical
Coupling Based on Product Release History in Proceedings
of 14th IEEE International Conference on Software
Maintenance (ICSM'98) (Bethesda, Maryland, November,
16-20, 1998), 190-199.

[16] German, D. M. An Empirical Study of Fine-Grained
Software Modifications in Proceedings of 20th IEEE
International Conference on Software Maintenance
(ICSM'04) (Chicago, Illinois, September, 11-17, 2004), 316-
325.

[17] German, D. M. Mining CVS Repositories, the SoftChange
Experience in Proceedings of 1st International Workshop on
Mining Software Repositories (MSR'04) (Edinburph,
Scotland, 2004), 17-21.

[18] Gotel, O. C. Z. and Finkelstein, A. C. W. An Analysis of the
Requirements Traceability Problem in Proceedings of 1st
IEEE International Conference on Requirments Engineering
(Colorado Springs, April, 1993), 94-101.

[19] Hassan, A. E. and Holt, R. C. Predicting Change
Propagation in Software Systems in Proceedings of 20th
IEEE International Conference on Software Maintenance
(ICSM'04) (Chicago, Illinios, September, 11-17, 2004), 284-
293.

[20] Hayes, J. H., Dekhtyar, A., and Osborne, J. Improving
Requirements Tracing via Information Retrieval in
Proceedings of 11th IEEE International Requirements
Engineering Conference (RE) (Washington, D.C, USA,
September, 2003), 138-147.

[21] Kagdi, H., Yusuf, S., and Maletic, J. I. Mining Sequences of
Changed-files from Version Histories in Proceedings of 3rd
International Workshop on Mining Software Repositories
(MSR'06) (Shanghai, China, May 22-23, 2006, 2006), 47-
53.

[22] Lormans, M. and Van Deursen, A. Reconstructing
Requirements Coverage Views from Design and Test using
Traceability Recovery via LSI in Proceedings of 3rd ACM
International Workshop on Traceability in Emerging Forms
Of Software Engineering (Long Beach, California, USA,
Nov 8th, 2005), 37-42.

[23] Lormans, M. and Van Duersen, A. Can LSI help
Reconstructing Requirements Traceability in Design and
Test? in Proceedings of Conference on Software
Maintenance and Reengineering (CSMR'06) (March, 2006),
47-56.

[24] Marcus, A. and Maletic, J. I. Recovering Documentation-to-
Source-Code Traceability Links using Latent Semantic
Indexing in Proceedings of 25th IEEE/ACM International
Conference on Software Engineering (ICSE'03) (Portland,
OR, May 3-10, 2003), 125-137.

[25] Murphy, G. C., Notkin, D., and Sullivan, K. Software
Reflexion Models: Bridging the Gap between Source and
High-Level Models in Proceedings of 3rd ACM Symposium

on Foundations of Software Engineering (New York, NY,
October, 1995), 18-28.

[26] Scacchi, W. Understanding the Requirements for
Developing Open Source Software Systems. IEE
Proceedings--Software, 149, 1 (February 2002), 24-39.

[27] Settimi, R., Cleland-Huang, J., Khadra, O. B., Mody, J.,
Lukasik, W., and DePalma, C. Supporting Software
Evolution through Dynamically Retrieving Traces to UML
Artifacts in Proceedings of 7th International Workshop on
Principles of Software Evolution (IWPSE) (Kyoto, Japan,
Sept 6-7, 2004), 49-54.

[28] Sliwerski, J., Zimmermann, T., and Zeller, A. When do
changes induce fixes? in Proceedings of 2nd International
Workshop on Mining Software Repositories (MSR'05) (St.
Louis, Missouri May 17, 2005), 24-28.

[29] Spanoudakis, G. and Zisman, A., "Software Traceability: A
Roadmap", in Handbook of Software Engineering and
Knowledge Engineering, Chang, S. K., Ed. World Scientific
Publishing Co, 2005, pp. 395-428.

[30] Spanoudakis, G., Zisman, A., Perez-Minana, E., and Krause,
P. Rule-based generation of requirements traceability
relations. The Journal of Systems and Software, 72, 2004
(2004), 105-127.

[31] Sundaram, S. K., Hayes, J. H., and Dekhtyar, A. Baselines
in Requirements Tracing in Proceedings of Predictor models
in software engineering (PROMISE'05) (St. Louis,
Missouri, USA, 2004), 1-6.

[32] Ying, A. T. T., Murphy, G. C., Ng, R., and Chu-Carroll, M.
C. Predicting Source Code Changes by Mining Change
History. IEEE Transactions on Software Engineering, 30, 9
(September 2004), 574-586

[33] Zaki, M. J. SPADE: An Efficient Algorithm for Mining
Frequent Sequences. Machine Learning, 42, 1-2 (January
2001), 31 - 60.

[34] Zimmermann, T., Weißgerber, P., Diehl, S., and Zeller, A.
Mining Version Histories to Guide Software Changes in
Proceedings of 26th International Conference on Software
Engineering (ICSE'04) (2004), 563-572.

[35] Zimmermann, T., Zeller, A., Weißgerber, P., and Diehl, S.
Mining Version Histories to Guide Software Changes. IEEE
Transactions on Software Engineering, 31, 6 (2005), 429-
445.

[36] Zisman, A., Spanoudakis, G., Perez-Minana, E., and Krause,
P. Tracing Software Requirements Artifacts in Proceedings
of 2003 International Conference on Software Engineering
Research and Practice (SERP'03) (Las Vegas, Nevada,
USA, 2003), 448-455.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

