

A Tool to Support Knowledge Based Software Maintenance: The Software Service
Bay

Jonathan I. Maletic

Robert G. Reynolds

Computer Science Department

Wayne State University
431 State Hall

Detroit, MI 48202

Abstract: A software maintenance methodology,
The Software Service Bay, is introduced. This
methodology is analogous to the automotive
service bay which employs a number of experts
for particular maintenance problems. Problems
in maintenance are reformulated so they may be
solved with current AI tools and technologies.

 1. Introduction.

Software Maintenance costs are undeniably the
major cost in the life time of any evolving
software system. The cost of maintenance is
dependent on the application domain, system
age, hardware stability, and development
environment [10,14]. Normally maintenance
costs are between two and four times the costs of
development, but can be as high as 130 times
development costs [4]. Much of the work done
to reduce the cost of maintenance is to invest in
the production of software development
methodologies used to construct large software
systems. The key assumption here is if a system
is constructed with maintenance in mind, then
actual maintenance will be easier and therefore
less costly. Even though this work is improving
the quality of software and reducing the cost of
maintenance, there still exists difficult and costly
problems related to maintenance [10]. Little
work has focused on the actual maintenance
phase and how to make it more efficient to do
maintenance on, even, a well constructed
software system [6]. Much of the difficulty in
doing maintenance on a software system is that

the maintenance is being done in an environment
intended for the development, and not for the
maintenance of software.

1.1. An Environment for Software
Maintenance.

What is Maintenance? Maintenance is a term
used to refer to changes made to a software
system after the system has been delivered to the
user [7]. Maintenance is performed for a variety
of reasons including: correcting errors, design
improvements, platform changes, interface
changes, database changes, system
enhancements, etc. These involve exceedingly
different types of problem solving activities. For
example, correcting errors (bug fixes) and
system enhancements certainly cannot be
categorized as the same type of problem solving
activity. Even so, both of these activities are
viewed as Software Maintenance. In general,
software maintenance problem solving is
commonly defined as one of four distinct types
[10]:

• Corrective
• Perfective
• Adaptive
• Preventive/ Preservation

Corrective maintenance is the correction of error
or bugs found in the software system. Perfective
Maintenance are those changes to the system
designed to improve its current performance.
Adaptive maintenance relates to program

modifications done in response to changes in the
runtime environment of the software system.
The terms perfective, adaptive, and corrective
were originally used by Swanson [15].
Preventive maintenance is done to improve the
future maintainability of the software system
[10]. This type of maintenance is also refereed
to as preservation of the software system [5],
where preservation involves using development
resources to improve an aging system that often
has a poor design and is therefore hard to
maintain.

Perfective
65%

Corrective
17%

Adaptive
18%

Figure 1.1. Maintenance
Types and Distribution.

Others
??%

Of the four types of maintenance, perfective
maintenance is cited as the most frequently
occurring (see figure 1.1) type of maintenance
[10,8,14,12] and preventive maintenance is
rarely done. However, it is assumed that a good
software development methodology implicitly
deals with this issue. Corrective and adaptive
maintenance are done much less frequently than
perfective maintenance. This is a particular
problem since the maintenance activity is taking
place in a software development environment.
Therefore corrective maintenance can be done
easily in a development environment due to the
fact that debugging is a typical part of the
development process. Generally many tools
exist within a development environment to find
and fix bugs. Tools intended to assist in the

other types of maintenance are rarely (if ever)
included in a development environment.

Each of the four types of maintenance problem
solving require different goals, methods, and
expertise employed to solve problems within
their respective domains. Software Development
environments do not reflect these differences in
their support of the maintenance process. An
environment focused on doing overall
maintenance problem solving is needed to help
in reducing the costs and problems encountered
during maintenance of large software systems.

Before an environment focused on maintenance
is described, a methodology must be defined that
governs the realization of such an environment.
To give perspective to such a methodology, a
survey of current maintenance methodologies is
presented in the following section.

1.2. Maintenance Methodology Trends.

Much of the literature pertaining to maintenance
deals with the design of maintainable software,
the cost of maintenance, and the organizational
management of the maintenance task
[10,8,7,14,12]. The concept of a comprehensive
maintenance problem solving methodology is
noticeably absent in the literature dealing with
maintenance and software engineering even
though the need is apparent [9,13]. The general
principle used to deal with the huge maintenance
problem is to build more maintainable software.
Maintainable software supposedly has qualities
that allow it to be modified, understood, and
adapted more easily. That is, a software system
built with the a priori knowledge that it will be
enhanced, adapted, or debugged will be easier to
maintain. This view is based in common sense,
and this approach has made great strides in
reducing the cost of the maintenance of such
systems [3].

The current informal frameworks and
methodologies for maintenance are described as
modifications of widely used software

development methodologies [2] (i.e., waterfall
model, spiral model, etc.) or guidelines for the
maintenance process given varying amounts of
system documentation [10]. These frameworks
and guidelines still view maintenance as a one
part of the development process and not as a
separate methodology.

The following section introduces a formal
methodology that focuses on maintenance as the
central principle and not just as one of the
development phases of the software life cycle.
The methodology proposed in this paper is called
the Software Service Bay. It is motivated by an
analogy with the automotive service bay in
which there is a different set of tools, problem
solving knowledge, and problem solver, for each
type of maintenance problem concerning a
vehicle.

1.3. The Software Service Bay Methodology.

The Software Service Bay Methodology is akin
to the concept of the automotive service bay at
one's corner automotive service station. A car is
taken in for service because of one or another
reason, the engine is running poorly, a drive train
problem, a brake problem, or routine/preventive
maintenance. In the automotive service bay,
with each of these maintenance problems goes a
special set of tools and a specialized mechanic
trained in the particular maintenance problem.
The Software Service Bay Methodology works
in much the same way. If a software component
no longer meets the needs of the user (e.g.,
specification change, platform change,
uncovered bug) then the component is sent in for
"service". But, instead of the typical
maintenance methodology, which is generally
little more then a modified software
development methodology, the Service Bay
Methodology supports a host of special tools and
experts in each of the maintenance types. Doing
software maintenance within a software
development methodology is analogous to doing
automotive service on the shoulder of the
highway instead of at the service station. The

place where the vehicle broke down generally is
not conducive to the support of any maintenance
problem solving activities and in general is a
harmful environment to do such activities.

The maintenance problem solving process within
the Software Service Bay Methodology involves
the following phases:

1) Pose specific maintenance problem(s).
2) Determine service rational or general
maintenance type.
3) Acquire specific domain knowledge.
4) Develop maintenance strategies and
plans.
5) Implement strategies and plans.
6) Validate solution.

These phases are performed in the order given
but may cycle back to a previous phase if
necessary, such as when the solution is
invalidated by the final phase. Each of these
phases are now be described in more detail.

1.3.1. Pose Specific Maintenance Problem(s).

This phase encompasses defining the specific
problems needed to be solved within the specific
maintenance type. A description of the error,
enhancement, platform change, or adaptation is
needed for this phase to determine what type of
maintenance problem solving is taking place.
For example, the particular maintenance problem
can possibly be transformed so that it can be
solved by some current technology or a special
purpose problem solving activity may have to be
developed to tackle the problem. The concerned
in this phase is with the input and output of the
software system rather than the internal design
and structure of the system. The intent here is to
do an analysis of the maintenance problem
without dealing with the low level details of the
system. The next phase, assessing the current
state of the system deals with these design and
structure issues relative to operationalizing a
solution for the problem.

1.3.2. Determine Service Rational or General
Maintenance Type.

The first phase of the Service Bay Methodology
involves determining the problem solving
rational behind the service. Just as there is a
definite reason why one takes a car in for
service, e.g., it stalls at every stop light or the
car's ride is very rough, there must be a rational
behind the need for maintenance. This rational
can be defined explicitly or implicitly in terms of
the four types of maintenance: corrective,
perfective, adaptive, and preventive. A
maintenance type provides the focal point for the
problem solving process to follow. Each phase
is customizable, using domain knowledge, to
reflect the type of maintenance to be done there.
The service rational is expressed relative to a
maintenance schedule or set of constraints that is
established with the generation of the software
product. Within that schedule certain generic
maintenance tasks are specified and provide
temporal landmarks for the realization of other
tasks. Identification of new problems can spawn
auxiliary schedules for future use.

1.3.3. Acquire Specific Domain Knowledge.

In assessing the current state of the system and
its environment, an understanding of the
software system's design, structure, and data
flow must be acquired relative to the current
problem. The depth of knowledge required is
dependent upon the rational for the service and
the problem at hand. For example, localizing a
bug or determining where program changes for
an enhancement will occur connote very
different levels of knowledge about the software
system. The corrective maintenance problem
may require general knowledge of the entire
system structure and only a very detailed
understanding of maybe one or two routines.
However, in a perfective or adaptive
maintenance problem detailed knowledge of the
entire system is often needed because this type of
maintenance often requires many code changes
throughout the system.

1.3.4. Develop Maintenance Strategies and
Plans.

This phase of the maintenance methodology
concerns the selection of a set of general
problem solving strategies and plans that address
the problems elucidated previously in terms of
the current knowledge of the system acquired
previously. The maintenance strategies
developed here will then be operationalized later
on in order to implement specific solutions to the
particular maintenance problems at hand. For
instance, problem solving strategies are used to
suggest possible side effects resulting from the
change and specify ways to deal with them. In
the case of preventive maintenance, the actual
problem to be solved is dictated by the strategies
developed. That is, the strategies developed
suggest ways to make a system more
maintainable or point out areas in the system that
are poorly constructed. Plans developed in this
phase direct what fixes and modifications must
be done to certain portions of the software
system and the nature of the systems future
maintenance schedule. These plans include
"canned" fixes or routines known to fit the
change specification. This type of planning
knowledge and information are retrieved from a
software reuse library.

1.3.5. Operationalize Strategies and Plans.

Once the maintenance problem solving strategies
and corresponding plan are selected they are
implemented, and the changes and modification
dictated by them are made to the software
system. The plans may involve code changes,
code rewrites, or the creation of new code
however, they are not limited to modification of
code. Changes also occur to the corresponding
documentation in order to reflect the
modification of the code. This step in the
methodology is analogous to the auto mechanic
doing the actual work on the vehicle (i.e., get
their hands greasy). All of the canned fixes
suggested by the previous phase is implemented
in this phase. Therefore, a reuse system that

allows easy access and indexing of such
solutions is needed.

1.3.6. Validate Solution.

The last phase of this methodology involves the
validation of the solution. Validation of these
changes and modification are made with the
knowledge gleaned from the previous phases and
any testing history of the system and associated
documentation being maintained. The testing of
a modified system only entails testing part of the
system versus the entire system. A modification
may only effect a subset of the entire system.
Knowledge of the modifications and where they
occurred in the system are useful information in
this phase. This type of knowledge is useful to
the vehicle mechanic in the same way. For
instance, if a new alternator (generator) is
installed into a vehicle, the mechanic would
check to see if the battery is being charged
correctly. And the mechanic will not test the
transmission in this case because the alternator
has nothing to do with the transmission.

1.4. Service Bay Agents.

Each of the problem solving phases within the
Service Bay Methodology is supported by one or
more specialists and agents. These specialists
and agents are experts in one particular area of
the maintenance problem. The Service Bay
specialists and agents are functionally
independent but work in conjunction with one
another in an opportunistic fashion. This topic
will be discussed in more detail in section 3.

2. Realization of a Maintenance Methodology.

In section one a methodology for maintenance
problem solving, The Software Service Bay, is
presented that performs in all types of
maintenance situations. This method for doing
maintenance is different from current methods
for maintenance in that the Service Bay is not
embedded in a development methodology
whereas most current methods are. In order to
implement the Service Bay approach, a number
of tools and technologies must be integrated
together to support some of the diverse problem
solving done in maintenance.

Many maintenance situations can be
reformulated into problems that are solved by
other existing tools and technologies. Such tools
and technologies include: software reuse, re-
engineering of software, and KBSE
technologies. These techniques must be
examined to determine how they may be applied
to specific types of maintenance problems.

The next step is to operationalize the Software
Service Bay Methodology in terms of problem
transformation and reformulation. The general
problem solving mechanism is augmented by a
special purpose problem solver. Each special
purpose problem solver has a set of
preconditions that must be satisfied, by a
particular problem, for it to be activated. In this
manner traditional problem solving approaches
are integrated into the maintenance problem
solving process.

Maintenance Problem Type

Corrective Perfective Adaptive Preventive

Problem Identification

Problem Transformation

Reuse Re-engineering

Program Development
.....

Figure 2.1.

General Problem
Solver

Planner

And/or description of the Software Service Bay.

2.1. A Knowledge Based Maintenance
Assistant.

The maintenance problem solving process within
the Software Service Bay Methodology involves
the following phases:

1) Pose the specific maintenance
problem(s).

2) Determine the maintenance type for
the problem. Within that
maintenance type can the problem be
transformed in terms of an alternative
methodology. Identify the problem
solver (special purpose or general
purpose) that is appropriate to the
original or transformed problem

3) Acquire specific domain knowledge
needed to solve that type of problem.

4) Develop maintenance problem
solving strategies and plans.

5) Implement problem solving strategies
and plans.

6) Validate solution.
These phases are now operationalized (see figure
2.1) with reference to transforming particular
maintenance problems into problems can be

solved opportunistically in terms of other tools
and technologies associated with problem
solving situations.

The overall problem solving procedure is
described in a task oriented fashion using and/or
tree above. The first task in the
operationalization scheme (figure 2.1) is
Problem Identification. This relates to the first
phase of the Service Bay methodology namely,
posing the specific maintenance problem. The
next task is to determine the general
maintenance type. Next, the appropriate
problem solver is selected. Each subproblem is
then either reformulated so that it can be solved
by some special purpose problem solver, or the
subproblem is handed over to a general problem
solver for that maintenance type. For example,
if the subproblem can be transformed into a
problem in software reuse, an associated planner
is activated to construct a plan or strategy to
solve this particular subproblem. If the problem
is initially given to the general problem solver
for a given maintenance type it can eventually
solve enough of a subproblem so that parts or all
of its subproblem can be handed over for
problem transformation. Each time a problem

transformation is applied, a reduction in the
search space of possible solutions for the entire
problem is made. The transformations are
applied in an opportunistic way so that each time
the conditions are satisfied for a special purpose
problem solver to be used, it will be invoked
upon that particular subproblem.

The special purpose problem solvers are
represented in the Software Service Bay as
specialists and generic tools are represented as
agents. These specialists and agents are experts
or tools in one particular area of the maintenance
problem solving process and are functionally
independent but work in conjunction with one
another in an opportunistic fashion. For
example, the problem reformulation specialist
may determine that a particular subproblem
meets the condition to be solved by the reuse
specialist, the reuse specialist would then
attempt to solve that problem. In another type of
interaction between agents: the Static Structure
agent, which computes and displays the static
structure of a given software component,
produces information used by the Program
Understanding agent, which needs the static
structure information to construct a high level
description of the component.

The following is a suggested list of possible
(Semi-) Automated Service Bay agents and
specialists:

• Reuse specialist- Classifies, retrievals,
and storage of software components.

• Re-engineering specialist- Applies re-
engineering problem solving to
maintenance problems

• Reformulation agent- Transforms
problem for solution by specialists.

• Maintenance Strategy/Plan agent-
Develops plans and strategies.

• Modification agent- Planner, organizer
of modification to component.

• Static and Dynamic Structure agent-
Compute and display static/dynamic
structure.

• Description agent- Fact sheet, and
viewing information about
components.

• Understanding agent- At different
levels.

• Testing agent- Testing of a component,
history of testing.

The reuse specialist is a particularly important
part of the Software Service Bay Methodology.
By incorporating a reuse library and a reuse
based problem solving paradigm into the
maintenance problem solving process, a
programmer is able to solve certain maintenance
problem by reusing existing software. Going
back to the analogy of the automotive service
bay, the reuse library is much like the parts
department at a automotive service bay. An
inventory of new (and often times used) parts for
a variety of vehicles are kept on hand so the
mechanics may fix the malfunctions found. The
importance of the reuse activity to the
maintenance process is discussed in the next
section.

2.3. Conclusion and Future Work.

In order to operationalize the Software Service
Bay Maintenance Methodology the following
issues must be addressed:

• What information is needed in general to

describe the maintenance problem? How can
a special case of the maintenance problem be
identified? The information needed to
describe the maintenance problem has been
partially addressed in terms of a task oriented
description relating the methodology to
current tools and technologies for problem
solving. There are several issues yet to be
directly addressed for each task in this
framework. The issues include the
following: what type of information is
needed for the problem identification task?,
and how is the specific maintenance type to
be determined?

• Can the Service Bay methodology be
expressed in terms of the blackboard model
of problem solving? To implement this
methodology with a black board architecture
a detailed system analysis is needed. What
basic types of specialists, such as reuse based
problem solver, are needed to implement a
useful system? What types of general
problem solving paradigms are to be used?
How do the specialists interact with the
software system (blackboard) and with the
other agents of the system needed?

• How can existing problem solving

technologies such as reuse based approaches
be embedded in this framework as special
purpose problem solvers. In a prototype of
the system, as proposed, the issues of
integrating traditional problem solving
approaches (i.e., software reuse) into the
maintenance activity will be examined. How
these problem solving approaches enhance
the performance of implementing
maintenance tasks will also be studied. In
doing so, the maintenance problem solving
process in general can be better understood.

A prototype of a knowledge based software
maintenance problem solver is now under
construction at Wayne State University. This
prototype employs the Software Service Bay
methodology and incorporates into the
framework, a reuse oriented maintenance
specialist based upon the PM System
architecture [11].

3. Bibliography.

1. Barr, A., Feigenbaum, E.A., (1982) The

Handbook of Artificial Intelligence Volume
II, William Kaufmann, Inc.

2. Basili, Victor R., (1990) "Viewing
maintenance as Reuse-Oriented Software
Development", IEEE Software, January,
pp. 19-25.

3. Boehm, B., (1977), "Seven Basic
Principles of Software Engineering", in

Infotech State of the Art Reports: Software
Engineering Techniques (Maidenhead,
England: Infotech International), pp. 77-
113.

4. Boehm, B.W., (1975), "The High Cost of
Software", in Practical Strategies for
Developing Large Software Systems,
Horowitz, E, (editor), Addison-Wesley
Pub. Co.

5. Booch, G. (1994), Object-Oriented
Analysis and Design with Applications
2nd Ed., Benjamin/ Cummings Pub. Co.
Inc. california.

6. Lamb, David A., (1988), Software
Engineering Planning for a Change,
Prentice Hall.

7. Martin, James, McClure, Carma, (1983),
Software Maintenance, The Problem and
its Solutions, Prentice-Hall Inc.

8. Mills, Harlan D., (1993), "Zero Defect
Software: Cleanroom Engineering",
Advances in Computers, Vol. 36, pp. 1-41.

9. Osborne, Wilma M., Chikofsky, Elliot J.,
(1990), "Fitting Pieces to the Maintenance
Puzzle", IEEE Software, January, pp. 11-
12.

10. Pressman, Roger S., (1992), Software
Engineering, A Practitioner's Approach
3rd Ed., McGraw-Hill Book Co.

11. Reynolds, R.G., Maletic, J.I., Porvin S.E.,
(1992), "Stepwise Refinement and Problem
Solving", IEEE Software September, pp.
79-88.

12. Schach, Stephen R., (1993), Software
Engineering Second Edition, Aksen
Associates Incorporated Publishers.

13. Schneidewind, Norman F., (1987), "The
State of Software Maintenance", IEEE
Transactions on Software Engineering, SE-
13, No. 3, March, pp. 303-310.

14. Sommerville, Ian, (1989), Software
Engineering 3rd Ed., Addison-Wesley
Publishing Co.

15. Swanson, E.B., (1976), "The Dimensions
of Maintenance", Proc. 2nd Intl. Conf.
Software Engineering, IEEE, pp. 492-497.

