

An XML-Based Lightweight C++ Fact Extractor

Michael L. Collard, Huzefa H. Kagdi, Jonathan I. Maletic
Department of Computer Science

Kent State University
Kent Ohio 44242

330 672 9039
collard@cs.kent.edu, hkagdi@cs.kent.edu, jmaletic@cs.kent.edu

Abstract

A lightweight fact extractor is presented that utilizes

XML tools, such as XPath and XSLT, to extract static
information from C++ source code programs. The
source code is first converted into an XML
representation, srcML, to facilitate the use of a wide
variety of XML tools. The method is deemed lightweight
because only a partial parsing of the source is done.
Additionally, the technique is quite robust and can be
applied to incomplete and non-compile-able source code.
The trade off to this approach is that queries on some low
level details cannot be directly addressed. This approach
is applied to a fact extractor benchmark as comparison
with other, abet heavier weight, fact extractors. Fact
extractors are widely used to support understanding
tasks associated with maintenance, reverse engineering
and various other software engineering tasks.

1. Introduction

Source code fact extraction is the process of extracting
facts, entities, and the relationships, from source code
given a specific query. It involves processing (e.g.,
parsing and/or searching) the source code to extract the
particular facts, expressing a desired query, and
formatting the output of the query.

Fact extractors are a vital tool for reverse,
reengineering, maintenance, testing, and general
development of software systems. They are used to help
developers comprehend software by uncovering
relationships between classes, modules, units, functions,
etc. Fact extractors can be of great benefit in locating
possible errors in source code as well as identify
concerns of interest across a system.

In the approach presented here, we convert C++
source code into an XML representation, namely srcML1
[6, 15]. This underlying representation is then leveraged
via the API’s, tools, and technologies of XML to give us

a lightweight, robust, and tolerant C++ fact extractor.
We use the term lightweight to highlight the fact that
only lightweight parsing is done and a number of very
low-level type facts can not be directly derived from the
data source (i.e., srcML markup of the C++ source).

Our method allows the extraction of high-level entities
such as functions, classes, namespaces, and templates, as
well as middle-level entities such as individual
statements (if, while, etc.), declarations and expressions.
Lower-level entities such as variables and function calls
can also be queried. Additionally, it allows the extraction
of entities that are typically discarded during pre-
processing such as comments, pre-processor directives,
and macros. The entities are extracted with full lexical
information such as white space and all original source
code information.

The following section will address some of the
problems encountered during fact extraction and address
the related work in the field of fact extraction. We then
describe srcML and our C++ to srcML translator.
Additionally, we briefly address related XML source
code representations. Our approach to using XML
technologies to support fact extraction is then detailed
and lastly the results of applying our method to a fact
extraction benchmark [24] are given.

2. Extracting Facts from C++ Code

A number of challenging, well known, technical
problems exist for building fact extractors for C++ [9, 11,
24]. Additionally, the work done by Sim et al [24] and
the benchmark they developed uncovered a number of
other problems relating to the types of questions and
perspectives of the users of fact extractors. The results of
researchers applying tools to this benchmark revealed
that there are often many correct answers to the same
question. The correctness depends on the perspective of
the user and their particular software engineering task.
Different tasks require different levels of detail about the
system to support the particular type of comprehension
necessary to complete the task. For example, a user may
be interested in variable, type, or comment information
while trying to understand a group of modules for reverse

1 Pronounced, “Source ML”.

2.1. Fact Extractor Characterization engineering. Another user may need the possible level of
function call nesting and dynamic typing for fault
localization. In [19] Murphy and Notkin describe an approach to

source model extraction using the terms lightweight,
flexible, and tolerant. Here, lightweight means extracting
a new fact requires a relatively short specification. In the
process view, this includes not only the search
specification but the configuration of the tool. Flexible
refers to what information from the original source code
can be extracted, such as comments, macros, etc. This
also includes using this information in the selection of the
extraction, such as extracting functions with some
particular content to their comments. Tolerant refers to
how complete are the source code documents. There
could be missing include files, the code may not compile,
or a dialect of C++, such as from a particular version of
the compiler, may have been used.

This gives credence to fact extractors with very
different capabilities and complexities. While many fact
extraction tools rely on a complete parsing of the entire
system we have chosen another avenue that, we believe,
augments those approaches.

One of the most important issues of fact extraction is
the input itself (i.e., the source code). It is typically a
single source code file and associated include files. In
the best case you have a complete, compile-able system.
In other cases there may be code fragments, compilation
problems, or missing associated include files. The source
code can be in a dialect of the original language(s) or it
could be code that will compile under one version of a
compiler but not another. Of particular interest here is
that our approach allows fact extraction on most of these
later situations. This can be a distinct advantage in many
situations (e.g., platform change, library change).

For XML to be used in the context of a lightweight
fact extractor, the XML must also be processed in a
lightweight form. This requirement is for both the XML
markup language used and the time/memory
requirements.

The C++ language, in particular, is a challenging
language to parse and extract facts from. This is due, in
part, to the pre-processor and the numerous macro
constructs that are used in conjunction with the language.
Also, there are a great many versions and variations of
C++ in wide use. However, the biggest problem facing
someone wanting to construct a fact extractor is that C++
is defined by a non-Context Free Grammar. This makes
full parsing of the language difficult and lexical analyzers
can possibly produce incorrect results.

Our representation, srcML, and the translator we have
developed uses a lexically based approach allowing the
translator to be used on incomplete, non-compile-able
code, and code fragments. Since this can generate
incorrect results in certain cases, it has been constructed
to allow for additional refinement of the translated result.
These refinements include information from associated
source code files and heuristics from the user.

The other critical part of fact extraction is with respect
to the query. The input to the fact extraction process is
the specification of the desired fact. This may be in the
form of a query language or it may require a specialized
program to extract the answer. A simple specification
input may be limited as to what facts can be extracted.
However both of these approaches require a learning
process on the part of the user.

2.3. Related Work (on C++ Fact Extraction)

Parser-based fact extractors include cppX [8], Acacia
[1] and Columbus/CAN [12]. LSME (Lightweight
Source Model Extraction), described in [19] is a tool for
generating high-level source models using a regular-
expression based specification language. The user can
specify what they want to match in the source code or
other system artifacts and the actions that they want
performed. The system will produce a scanner that
generates the system model. The specification is small
and only has to be written for the needs of the particular
source model that is being generated. There are no
restrictions on the artifacts that the scanner can be
applied to and few constraints on the condition of the
artifacts.

Another issue for the specification is to what level of
understanding the tool has for the language being
processed. For example, does the tool already know how
new types are introduced into the language or is it a part
of the specification to list the language constructs that
can form a new type. A very flexible tool may require
configuration. The amount of configuration and the
configuration language affect both the usefulness and the
difficulty of using the tool.

In [19] the comparison is made between lexical and
parser based approaches to source model extraction. The
parser-based approaches are described as heavyweight
when an extractor for a new language needs to be
generated and as such are typically inflexible concerning
the constraints on the kinds of artifacts and not tolerant of
the (poor) condition of the source code.

Finally, we must consider the output of the fact
extractor. If the extractor is being used as part of a larger
process, such as for source model generation, then the
output format of the fact is important to the ease of use of
the result. If the extracted fact, such as a section of
source code, is to undergo further processing then the
tool should be able to output the extracted facts in its
original format.

The lightweight characteristic applies to the creation
of a new extractor. A distinction is not made between
creating a new extractor for a new source code language
and creating a new extractor for extraction of a new
system model.

In [7] the categorization of [21] is used to show that
LSME lexically extracted unit level models but not
syntactic level models. They extend this work by using
both lexical and parsing techniques and comparing the
results. The extraction is of individual entities such as
function definitions, calls, statements, expressions, etc.
Their comparison shows that lexically based approaches
can produce useful results of the entity extraction that is
performed.

3. C++ to srcML

In order to extract facts from C++ source code using
XML tools both an XML representation of the C++
source code and a translator from C++ to the XML
representation are needed. Both work in conjunction to
support lightweight, flexible, and robust fact extraction.
This section first discusses the particular XML
representation, srcML, and the translator used, src2srcml,
that support these characteristics. But first, we talk
briefly about related source code representations.

3.1. Related Representations

A number of options currently exist for representing
source code information (e.g., AST or ASG) in a XML
data format namely, GXL [13], CppML [17], ATerms
[25], GCC-XML, and Harmonia [4]. In these formats the
AST (actually an ASG) of the source code, as output
from a compiler intended for code generation, is stored in
a data XML data format. In JavaML and GCC-XML the
AST is mapped to the nested structure of XML. In GXL
a graph view of the source code is stored, i.e., storing all
nodes and vertices of the graph with no mapping of the
nested structure of the source code to the nested structure
of XML.

However, these representations are constructed as data
exchange languages or for displaying program structural
information. None of these representations directly
supports the representation of comments or formatting
information. The most widely used of these, GXL [13] is
an XML-based exchange format for graph-like structures
based on GraX (Graph eXchange format) [10], and RSF
(Rigi Standard Format) [29]. Software systems are
represented as ordered, directed, attributed, and/or typed
graphs. While GXL is designed to be a standard
exchange format for data that is derived from software,
srcML is designed to represent the actual source code.
Although srcML can be used as a standard exchange
format, the underlying goal of defining and using srcML

is to create an intermediate layer of representation
between the source code, the developer, and tools that
allows easy transformation to a standard exchange format
such as GXL.

The most closely related work to srcML is Badros’
work on JavaML [3], which is an XML application that
provides an alternative representation of Java source
code. JavaML is more natural for tools and permits easy
specification of numerous software-engineering analyses
by leveraging the abundance of XML tools and
techniques. However, JavaML does not preserve the
original source code document and discards much of the
formatting information. As with srcML it keeps the
comments in the text but it associates them to elements of
the program. Therefore, the location of comments is not
preserved. Additionally, all formatting information is
lost in JavaML and the original source code document
cannot be regenerated from JavaML representations.

In the same realm, the Harmonia framework [4] and
cppML/JavaML developed at the University of Waterloo
[17] are closely related approaches since they encode the
AST itself and actual source code, rather than data
extracted (such as the case in GXL). While Harmonia
adds tags to source code as metadata, cppML only uses
tags and records the additional information as attributes
on the tags. The differences mentioned above for
Badros’ work stand for these approaches as well.

The XML data view of source code, since it is based
on the AST, is a “heavyweight” format. It requires
complete parsing of the original document and generation
of the complete AST.

Other work on source code interchange formats
includes the work by Malton et al [16]. While this work
is not an XML application it has many of the same
features as srcML and the other formats described
previously. Malton’s work addresses issues of design
recovery through source factoring on legacy code.

3.2. srcML

As an alternative to these other representations srcML
(SouRce Code Markup Language) [6, 15] is an XML
application that is used to add structural information to
raw source code text files. All original lexical
information including comments, white space,
preprocessor directives, etc. from the original source
code are preserved in srcML with the syntactic
information marked using elements. Figure 1 shows an
example source code and figure 2 presents the source
code representation in srcML.

In short, srcML is an attempt to keep the textual
semantics of the source code intact while adding explicit
structural information. This leaves us with a much richer
representation to work with than plain text, but with all
the flexibility.

The representation of the source code as structured
documents directly supports the following:

• Representation of multiple levels of granularity
within the AST;

• Multiple level of abstraction (or views);
• Transformation equality of source to

representation and of representation to source;
• Query-able and search-able representation;
• Representation of structural information,

including macros, templates, and compiler
directives (e.g., #include), etc.;

• Preservation of:
o Location of constructs;
o Text formatting information;
o Comments and their location;
o File names and structure.
o Macros and macro definitions

The feature of srcML that differentiates it from other
related approaches is its ability to preserve semantic
information from the source code.

3.3. srcML Translator

Translating source code to srcML is a multi-stage
process and is shown in figure 3. The core unit is the
srcML translator. ANTLR [20] is used to construct the
srcML translator from a pred-LL(k) grammar
specification and a context stack to maintain context
information. Actions, both pre and post, are attached to
the grammar specification to markup the source code
with XML start and end tags of the appropriate syntactic
structure. On identification of the beginning of syntactic
structure a start XML tag is inserted in the token stream
and a transition occurs in the context stack to reflect the
state of the construct being parsed. When a statement or
block terminating token is encountered, the context
information from context stack is utilized to insert end
XML tags for the appropriate closing structures. This
approach of parsing is motivated by the island grammar
concept and in particular the idea of an island with
lakes[18].

An island grammar, as defined by Moonen [18] is a

grammar
certain co
productio

Figur .

Island
specifica
grammar
high leve
low leve
parsing p
with lak
with recu
and itera
being pa
for other
identifica
language
islands.
are not o
(islands)
ignored (
lakes wi
embedde
the appli
parsers f
do not ne

Consi
and its c
At first,
hidden fr
element.
statemen
state of
expressio

<unit>
<comment type="line">// swap two numbers</comm
<if>if<condition>(<expr><name>a</name> > <name>
<block>{

<expr_stmt><expr><name>t</name> = <name>a<
 <expr_stmt><expr><name>a</name> = <name>b<
 <expr_stmt><expr><name>b</name> = <name>t</
}</block></then></if>
</unit>

Figure 2. srcML representation of source code

// swap two numbers
if(a > b)
{

t = a;
 a = b;
 b = t;
}

e 1. Source code swapping two numbers

 consisting of detailed productions describing
nstructs of interest (i.e., the islands) and liberal
ns that catch the reminder (i.e., the water).
 grammars can be expressed in any grammar
tion formalism or parsing technique. Island
s are suitable in identification and translation of
l (enclosing) constructs by eliminating details of
l (enclosed or constituent) constructs in the
hase. A variant of island grammars, islands

es, provide simple specification of constructs
rsive and nested definition such as conditional
tive statements. Productions for a construct

rsed are considered as islands while productions
s are considered as water. Our interest is in
tion of all the structural constructs of a C++
. Therefore, all such constructs are considered as
However, all the components of these constructs
f interest and thus only components of interest
 are parsed and marked up while others are
but not discarded) as water. Another variant,
th island, provide simple specifications for
d language constructs. Moonen [18] advocates
cation of island grammar in generation of robust
or source model extraction and applications that
ed the complete parse tree.
der the source code fragment shown in figure 1
orresponding srcML representation in figure 2.
the comment is identified in the lexical stage,
om the parsing stage and is marked as first class
 On seeing the “if” token, the start tag for the if
t is inserted and context stack is updated to a

open “if” structure. Next the conditional
n is parsed and appropriate start and end tags

ent>
b</name></expr>)</condition><then>

/name></expr>;</expr_stmt>
/name></expr>;</expr_stmt>
name></expr>;</expr_stmt>

 swapping two numbers.

are inserted. Also, artificial start and end of tokens are
introduced to support queries to the then block. In our
implementation, the expression statement is a loose
grammar specification. Anything ending with semicolon
and not matching any other construct specification is
parsed as expression statement. All the expression
statements in “then” blocks are marked accordingly. On
seeing the “{“, block terminating token the context stack
is utilized to mark the end of “if” structure.

Parsing proceeds in multiple passes with higher level
entities parsed and augmented with XML tags in the first
pass and lower level entities in subsequent passes. The
srcML translator provides a simple Context-Free (CFG)
srcML representation of C++ source code. Later
processing can be used to refine srcML representation to
deal with non-CFG issues. In the remaining part of the
section we discuss ANTLR and multi-pass/multi-stage
parsing.

3.4. ANTLR: pred-LL(k) Parser Generator

The class of languages recognized by LL(k) parsers
can be extended with semantic and syntactic predicates to
determine the application of a production. This results in
the class of languages recognized by pred-LL(k)
parsers[20]. Semantic predicates resolve syntactic
ambiguities by using context information allowing for
context-sensitive actions as part of the grammar
specification. In our system this is only used with a
context stack. No symbol table information is used in the
predicates since no symbol table is maintained. Syntactic
predicates resolve conflicts requiring infinite look-ahead
by using selective backtracking with finite look ahead.
Syntactic predicates provide a simple resolution to non-
deterministic decisions. In our system, syntactic
predicates provide the capability to resolve ambiguities
arising due to a common left-prefix between certain C++
constructs (e.g., function declaration and definition).

These extensions of conventional LL(k) grammars allows
for readable and intuitive grammars for languages like
C++.

ANTLR (Another Tool for Language Recognition) [2]
is a tool for automatically constructing recognizers,
compilers and translators in C++ or Java from a LL(k)
grammar specification of a language combined with C++
or Java actions. ANTLR provide similar syntax and
analysis (pred-LL(k) grammar) specifications for both
parsers (tree-parsers and token stream parsers) and
lexers. ANTLR considers lexical analysis to be parsing
on a character stream. ANTLR allow both structural and
behavioral grammar inheritance. The derived grammar
can specify different actions for the same structure
defined in base grammar. ANTLR supports both
semantic and syntactic predicates. ANTLR also provides
rich and flexible error handling and recovery. ANTLR
provides a basic structure for filtering and splitting token
streams between lex and parser. The ANTLR group is
investigating the similar ability for parser to generate a
stream of tokens as output. Multi-pass parsing would be
simplified as parsers would also become stream
producers.

3.5. Multi-Pass and Multi-Stage Parsing

Parsing proceeds with higher-level entities being
parsed and marked appropriately before going into the
details of constituent or lower level entities. The
subsequent levels are processed in latter passes. This
hierarchal approach enables us to control parsing at the
desired level of interest. Additionally, source code
irregularity in syntax present at one level does not impact
parsing at other levels. Multi-pass parsing together with
our partial grammar specification approach supports an
event driven interface to the source code. Multi-pass
parsing allows issuing events without having to wait for
arbitrarily long parsing to resolve non-determinism

Figure 3. Translation of source code into srcML

A fact extraction program using the DOM has no
restrictions on the order of DOM access so any fact
extraction algorithm can be directly implemented.
However the overhead of construction and storage of the
DOM tree in memory can be costly with large source
code documents or a large number of source code
documents.

between ambiguous structures with common left-prefix
that require infinite lookup requirements (e.g., function
definition and declaration ambiguity can be resolved
without parsing possibly arbitrary list of parameters).

The srcML translator takes into account only a CFG
view of the non-CFG C++ grammar. This transparent
view of the translator introduces problems of
misidentification of constructs that are syntactically
identical at the context free level. This kind of ambiguity
complicates the production of parsers and fact extraction
tools for C++. To deal with this problem we have
designed the entire translation process in stages. The
first stage translates the source code into an XML
representation. This basic representation may contain
some inaccurate markups of ambiguous structures. The
following sequence of configurable, refinement stages
rectifies this inaccuracy by processing include files (if
present), applying rules based on knowledge of built-in
or native types, applying heuristics, and integrating user’s
source code knowledge. All these refinement filters are
written as an XML transformation programs.

SAX (Simple API for XML) [22] is an event-driven
Java API for XML documents. Parsing events, such as
element start tags, text, element end tags, are delivered in
sequential order for the user program to process.
Unofficial bindings to other programming languages do
exist.

For fact extraction programs SAX is the most
efficient. Only the part of the tree necessary for the fact
being extracted (e.g., extracting all of the types used) is
constructed and stored. The disadvantage is that the
program must include code to store any needed results
between events. In addition the lack of an official
standard in any language except Java creates portability
concerns if Java is not used.

One refining filter uses keyword types to refine the
base translator output. For example, we know that if the
only parameter is a keyword type, such as “int”, then we
have a function declaration, not a variable declaration.
Another filter process the include files to find out the
declared types and uses that information to refine the
srcML. This filter is optional since the include files are
not always present. It is not necessary for all included
files to be processed. The more that are available the
more accurate the translation can be, but even without
processing the include file we still have the base
translator information.

4.1. XPath and Fact Extraction

XPath [27] is a language for addressing parts of an
XML document. An XPath expression is the address of a
single (or multiple) part of the XML document. In
addition to describing a path into the XML document,
XPath expressions can also include predicates and string
manipulation. XPath is normally used inside another
tool, such as XSLT or STX or is used with an API to
extract parts of the XML document for further
processing. XPath is a subset of XQuery, an XML Query
language. The flexibility of using the translator comes from the

stages that can be applied to the output of the srcML
translator. The filters may update the existing srcML
with a more accurate picture of context, or may be used
to transform the results into another format. This allows
the user to extend the srcML representation to better their
specific task at hand.

4.2. XSLT and Fact Extraction

XSLT (extensible StyLesheet Language) [28] is a
programming language specifically designed for
transformations of XML documents. An extension of
XPath is used to match and process parts of the XML
document tree. Various XSLT processors exist including
Xalan, Saxon, and xsltproc.

4. Fact Extraction using XML
A fact extraction program requiring random (versus

sequential) access to the XML document can be written
in XSLT. This provides more support than using a
general-purpose programming language with the DOM.
However, the program has many of the same memory
and time requirements of the DOM since a DOM-like
tree is constructed internally by XSLT processors.

The srcML translator only provides an XML
document view of a source code document. To actually
do the fact extraction a number of standard XML tools
are utilized. We now briefly cover the APIs and
standards that we use to support fact extraction then we
describe the use of XPath for fact extraction.

DOM (Document Object Model) [26] is an API that
provides access to the XML document as a tree. User
programs can use the API for sequential and random
access to the XML document. The DOM is defined
using a generic API with bindings to programming
languages such as Java, C, C++ and Python.

4.3. STX and Fact Extraction

STX (Streaming Transformations for XML) [5] is
another programming language specifically designed for
XML transformations. The difference between STX and

XSLT is that STX works off of input from a SAX
interface. Only a subset of XPath expressions are
supported since the entire XML document tree is not
stored.

XPath expressions of this type can be used with any of

the entities that srcML including functions, classes,
statements, types, comments, pre-processor directives,
etc. A fact extraction program requiring only sequential

access to the XML document can be written in STX.
This provides more support than using a general-purpose
programming language with SAX.

A combination of tools, starting with src2srcml, were
used for the benchmark fact extraction. They include:

• src2srcml - Source code to srcML translator
• xpath - Execution of XPath statements on srcML.

4.4. Querying using XPath The xpath tool uses the Perl module XML::XPath to
query XPath statements in XML documents.

Once in srcML, the source code is query-able using
XPath. XPath expressions can be used to specify a
particular point in the source code and are used to extract
the fact or parts of source code.

The execution of the XPath statements can be done by
any XPath enabled tool. The tool xpath was chosen for
its simplicity and easy integration to the fact extraction
process.

For extracting specific language entities simple XPath
expressions may be used. The XPath expression

The typical output of an XPath query is an XML
document fragment. Fact extraction queries often return
the source code itself or the line number of where the
source code is located. Because of the direct traceability
of srcML the document fragment can be directly
translated back to the original source code fragment. The
tool used to do this is srcml2src. It converts from srcML
back to the original source code. This is a simple script
using stripsgml, which is a part of the perlSGML
package.

/unit/function

finds all function definitions at the top-level of the
document.

Function definitions can occur at any level in the
XML document including inside namespaces and pre-
processor block directives. To extract function
definitions at any level the XPath expression XPath statements refer to specific points in the srcML

document. Fact extraction questions, including those in
the benchmark, often ask for a line number or line count
as the answer. The XPath statement can be directly
translated into the line number in a particular document.
The tool that was used is srcpath2line. It translates from
an XPath statement to a line number in a source file and
is a simple program written in the event-driven XML
transformation language STX.

//function

does so by looking for the function element starting at the
top and looking at any level in the XML document tree

To extract an entity in the context of other entities
requires expressing a path in that context. The XPath
expression

 Any conversion from srcML to another format, such
as the original source code, line number, etc., becomes
the last stage of the fact extraction process.

//function//if

locates any if statements at any level inside a function
definition. The XPath expression

5. Benchmark Results
//function/block/if

In order to determine the needs of a fact extractor the
CppETS 1.1 [23] benchmark for C++ fact extractors was
used as a test bed. This benchmark has been applied to
many of the parser-based fact extractors previously
discussed and is a good choice since it helped to define
exactly what was meant by fact extraction.

finds any if statements inside of a function that are not
nested inside another statement (they are at the top-level
inside the block of the function). To find a particular
entity by name we use XPath predicates. The XPath
expression

The benchmark consists of 19 test buckets in the
category of accuracy and 10 in the robustness category.
There are a total of 99 questions. The file sizes ranged
from 46B to 47KB and the corresponding srcML
representation ranged from 851B to 63.2KB with a ratio
ranging from 1.251 to 7.586.

//function[name='convert']

finds the function definition with a name of convert. We
can get more specific at this point and find all if
statements inside of the function with the name convert
by using The srcML translator and the XML tools for

extraction described in the last section were applied to
//function[name='convert']//if.

this benchmark. The remainder of this section describes
these results.

5.1. Format of the answer

The benchmark had a variety of ways to format the
output. In some cases, such as for a statement, the
requested output should be the actual code. In other
cases the line number, range of line numbers, and number
of bytes is requested.

The form of the output did not affect whether the fact
is extractable or not. The XPath expression to extract the
answer is applied to the xpath tool when the actual code
is requested and to the srcpath2line tool when the line
number is requested.

There were a small number of questions that requested
a byte count. We do not have a specific tool to calculate
this type of value.

5.2. Entities in isolation

Many of the questions concerned the direct extraction
of entities with no information in regards to their context
in the source code. Since these are directly marked with
tags in srcML simple XPath expressions, along with the
xpath tool, were able to directly extract these entities
using XPath in the manner described in the last section.
For example, to extract the named namespaces the XPath
expression //namespace was used. The entities
extracted in this way include variable declarations and
uses, function declarations and definitions, pre-processor
directives, namespaces and templates. These were
primarily questions that referred to entities that the
programmer defines.

5.3. Entities in context

For other extractions the context of the entity was
important. For example, the same tags are used in srcML
for any type of variable declaration, both for global
variables, local variables and class data members. If a
class data member was requested, then the XPath
expression //class//decl was used.

This is part of the tradeoff over using specific tags for
specific uses versus general tags. In some cases the
context must be used.

5.4. Scope & Type

The issue of scope was too complex in all but the
simplest cases to solve in a straightforward manner with
the tools that we used. An example is the linking of the
use of a variable in a function with the declaration in the
class that it is a friend.

A similar problem occurs with questions involving the
type. Simple type questions are relatively easy to solve

by extracting the type from the declaration. But given a
use of a variable in any statement it is too complex to
determine its type. This would have required a (partial)
symbol table to be built requiring a further processing
stage.

5.6. Entities extracted using string matching

There are examples of programming constructs that do
not directly relate to a keyword or special symbol. For
example, pure virtual functions have the “= 0” at the end
of their function declaration.

Since all the original text is preserved it is possible to
detect this very specific textual pattern for a pure virtual
function by comparing the text at the end of the virtual
function declaration. XPath does include string matching
and may include regular expression matching in a future
version. However, this was not included in the results
since it seemed to be a hack around something missing in
srcML.

5.7. Extraction with missing files

The robustness test buckets contained examples of
missing files, including missing include files and
libraries. With the tools that are used, the missing files
did not affect the result of answering the questions. A
difference would have been seen had an additional tool
that applied XPath expressions across files were to be
used. This would have increased the number of
questions that this approach could have answered in the
other buckets.

5.8. Pre-Processor

The preprocessor directives are straightforward to
extract. However, it is beyond the scope of the tools used
to attempt to extract the source code that is to be used
given arbitrary values for the pre-processor symbols.

This is one area where a specialized tool could be
built that worked on the srcML representation. The tool
could go through all pre-processor directives and keep
track of their current values. This new tool could have
answered all of the pre-processor directive questions
fully.

5.9. Dialects

The robust section included different dialects of C++
and the results were mixed. For the test bucket with MS
Visual C++ extensions, the extraction was successful.
For the g++ extension test bucket the extraction was not
successful.

The difference is the nature of the language extension.
The MS Visual C++ extension includes the addition of a

Fact
Extractor

Full
Answer

Partial
Answer

No
Answer

Acacia 32% 16% 52%

Columbus 19% 11% 70%

Cppx 45% 19% 35%

Pr
ev

io
us

 B
en

ch
m

ar
k

R
es

ul
ts

TkSee/SN 28% 18% 54%

 srcML
Translator 44% 8% 48%

We are working to extend our current set of tools and
completely implement the C++ to srcML translator. It is
fairly robust but still is not complete.

The DTD (Document Type Definition) for srcML, and
our C++ to srcML translator, is available on the web page
of the Software Development Laboratory <SDML>, at
Kent State University (www.sdml.cs.kent.edu).

7. Acknowledgements

This work was supported in part by grants from the
National Science Foundation CCR-02-04175 and the
Office of Naval Research N00014-00-1-0769.

8. References Table 1. Summary of benchmark results compared to

previous results as presented at IWPC’02
[1] Acacia, "Acacia - the C++ Information Abstraction
System", AT&T, Web page, Date Accessed: 11/01/2001,
http://www.research.att.com/sw/tools/Acacia/, 2001.

type keyword. Since srcML has a generic type and

specifier element it handled the added keyword easily.
The g++ language extension is not an added type or
specifier keyword and did not fit into the existing
grammar as easily.

[2] ANTLR, "The ANTLR Translator generator", Web page,
Date Accessed: 11/01/2001, http://www.antlr.org/, 2001.

[3] Badros, G. J., "JavaML: A Markup Language for Java
Source Code", in Proceedings of 9th International World Wide
Web Conference (WWW9), Asterdam, The Netherlands, May
13-15 2000.

The extractor failed the IBM Visual Age test bucket
not due to a language extension, but due to the use of a
macro.

A summary of our results applying our tool to the
benchmark is combined in Table 1 to the results of the
IWPC’02 Working Session.

[4] Boshernitsan, M. and Graham, S. L., "Designing an XML-
Based Exchange Format for Harmonia", in Proceedings of
Seventh Working Conference on Reverse Engineering
(WCRE'00), Brisbane, Australia, November 23-25 2000, pp.
287-289. 6. Conclusions and Future Work
[5] Cimprich, P., "Streaming Transformations for XML (STX)
Version 1.0 Working Draft", http://stx.sourceforge.net/, Web
page, Date Accessed: 11/15/2002,
http://stx.sourceforge.net/documents/spec-stx-20021101.html,
2002.

The results of applying our lightweight fact extractor
to the benchmark are quite reasonable in comparison to
the published results of the other types of tools. The
other tools (Ccia, cppx, Columbus, and TkSee/SN) were
able to answer approximately the same number of
questions. However, the application of the tools to the
benchmark resulted in [14] large improvements for a
number2of the tools.

[6] Collard, M. L., Maletic, J. I., and Marcus, A., "Supporting
Document and Data Views of Source Code", in Proceedings of
ACM Symposium on Document Engineering (DocEng’02),
McLean VA, November 8-9 2002, pp. 34-41.

Since the output format is in srcML it is easily
converted to other required formats, such as another
XML format and even back to source code. Other tools
can take multiple fact extractor results and combine them
to form higher level source models. Future work will
explore the conversion of the fact extractor output to the
required input format of tools that can use these results,
i.e., visualization tools, source model generators, etc.

[7] Cox, A. and Clarke, C., "A Comparative Evaluation of
Techniques for Syntactic Level Source Code Analysis", in
Proceedings of 7th Asia-Pacific Software Engineering
Conference (APSEC'00), Singapore, 2000, pp. 282-291.

[8] CPPX, "CPPX - Open Source C++ Fact Extractor", Web
page, http://swag.uwaterloo.ca/~cppx/, 2001.

[9] Dean, T. R., Malton, A. J., and Holt, R. C., "Union Schemas
as a Basis for a C++ Extractor", in Proceedings of Eighth
Working Conference on Reverse Engineering (WCRE'01),
Stuttgart, Germany, October 2-5 2001, pp. 59-70.

Given the lightweight approach used here this is a
reasonable and simple method to use for many tasks of
fact extraction. Our results also indicate that the
approach will scale well due to the reasonable srcML file
sizes and the capability of event-driven translation.

[10] Ebert, J., Kullbach, B., and Winter, A., "GraX — An
Interchange Format for Reengineering Tools", in Proceedings
of Sixth Working Conference on Reverse Engineering
(WCRE'96), Atlanta, GA, October 6-8 1999, pp. 89 - 100.

2 As presented during a working session at IWPC 2002.

http://www.research.att.com/sw/tools/Acacia/
http://www.antlr.org/
http://stx.sourceforge.net/
http://stx.sourceforge.net/documents/spec-stx-20021101.html
http://swag.uwaterloo.ca/~cppx/

[11] Ferenc, R., Gyimóthy, T., Sim, S. E., Holt, R. C., and
Koschke, R., "Towards a Standard Schema for C/C++", in
Proceedings of Eighth Working Conference on Reverse
Engineering (WCRE'01), Stuttgart, Germany, October 2-5
2001, pp. 49-58.

[12] Ference, R., Magyar, F., Beszedes, A., Kiss, A., and
Tarkiainen, M., "Columbus – Tool for Reverse Engineering
Large Object Oriented Software Systems", in Proceedings of In
Proceedings of SPLST 2001, June 2001 2002, pp. 16-27.

[13] Holt, R. C., Winter, A., and Schürr, A., "GXL: Toward a
Standard Exchange Format", in Proceedings of 7th Working
Conference on Reverse Engineering (WCRE '00), Brisbane,
Queensland, Australia, November, 23 - 25 2000, pp. 162-171.

[14] Kienle, H., "A Benchmark for C++ Fact Extractors:
Results and Observations", IWPC, Web Page, Date Accessed:
11/15/2002,
http://cedar.csc.uvic.ca/kienle/view/IWPC2002/Workshop,
2002.

[15] Maletic, J. I., Collard, M. L., and Marcus, A., "Source
Code Files as Structured Documents", in Proceedings of 10th
IEEE International Workshop on Program Comprehension
(IWPC'02), Paris, France, June 27-29 2002, pp. 289-292.

[16] Malton, A. J., Cordy, J. R., Cousineau, D., Schneider, K.
A., Dean, T. R., and Reynolds, J., "Processing SOftare Source
Text in Automated Design Recovery and Transformation", in
Proceedings of IEEE 9th International Workshop on Program
Comprehension (IWPC'01), Toronto, Canada, May 12-13 2001,
pp. 127-134.

[17] Mammas, E. and Kontogiannis, C., "Towards Portable
Source Code Representations using XML", in Proceedings of
7th Working Conference on Reverse Engineering (WCRE '00),
Brisbane, Queensland, Australia, November, 23 - 25 2000, pp.
172-182.

[18] Moonen, L., "Generating Robust Parsers using Island
Grammars", in Proceedings of 8th IEEE Working Conference
on Reverse Engineering (WCRE'01), Suttgart, Germany,
October 2-5 2001, pp. 13-24.

[19] Murphy, G. C. and Notkin, D., "Lightweight Lexical
Source Model Extraction", ACM Transactions on Software
Engineering and Methodology, vol. 5, no. 3, July 1996, pp.
262-292.

[20] Parr, T. J. and Quong, R. W., "Adding Semantic and
Syntatic Predicates To LL(k): pred-LL(k)", in Proceedings of
International Conference on Compiler Construction (to appear),
1994.

[21] Perry, D., "Software Interconnection Models", in
Proceedings of Internation Conference on Software
Engineering, March 1987, pp. 61-69.

[22] SAX, "Simple API for XML (SAX)", SAX, Web page,
Date Accessed: 01/20/2002, http://www.saxproject.org/, 2001.

[23] Sim, S. E., "CppETS Benchmark",
http://cedar.csc.uvic.ca/kienle/view/IWPC2002/Benchmark, Tar
Zipped File,
http://cedar.csc.uvic.ca/kienle/view/IWPC2002/Benchmark,
2002.

[24] Sim, S. E., Holt, R. C., and Easterbrook, S., "On Using a
Benchmark to Evaluate C++ Extractors", in Proceedings of
10th International Workshop on Program Comprehension,
Paris, France, 2002, pp. 114-123.

[25] van den Brand, M., Sellink, A., and Verhoef, C., "Current
Parsing Techniques in Software Renovation Considered
Harmful", in Proceedings of 6th International Workshop on
Program Comprehension (IWPC'98), Ischia, Italy, June 24-26
1998, pp. 108 - 117.

[26] W3C, "Document Object Model (DOM) Level 1
Specification", W3C, Web page, Date Accessed: 01/20/2002,
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/,
1998.

[27] W3C, "XML Path Language (XPath) Version 1.0 W3C
Recommendation", W3C, Web page, Date Accessed:
01/20/2002, http://www.w3.org/TR/1999/REC-xpath-
19991116, 1999.

[28] W3C, "XSL Transformations (XSLT) Version 1.0", W3C,
Web page, Date Accessed: 01/20/2002,
http://www.w3.org/TR/xslt, 1999.

[29] Wong, K., "The Rigi User's Manual - Version 5.4.4." The
Rigi Group, Date Accessed: 01/20,
http://ftp.rigi.csc.uvic.ca/pub/rigi/doc/rigi-5.4.4-manual.pdf,
1998.

http://cedar.csc.uvic.ca/kienle/view/IWPC2002/Workshop
http://www.saxproject.org/
http://cedar.csc.uvic.ca/kienle/view/IWPC2002/Benchmark
http://cedar.csc.uvic.ca/kienle/view/IWPC2002/Benchmark
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/xslt
http://ftp.rigi.csc.uvic.ca/pub/rigi/doc/rigi-5.4.4-manual.pdf

	1. Introduction
	2. Extracting Facts from C++ Code
	2.1. Fact Extractor Characterization
	2.3. Related Work (on C++ Fact Extraction)

	3. C++ to srcML
	3.1. Related Representations
	3.2. srcML
	3.3. srcML Translator
	3.4. ANTLR: pred-LL(k) Parser Generator
	3.5. Multi-Pass and Multi-Stage Parsing

	4. Fact Extraction using XML
	4.1. XPath and Fact Extraction
	4.2. XSLT and Fact Extraction
	4.3. STX and Fact Extraction
	4.4. Querying using XPath

	5. Benchmark Results
	5.1. Format of the answer
	5.2. Entities in isolation
	5.3. Entities in context
	5.4. Scope & Type
	5.6. Entities extracted using string matching
	5.7. Extraction with missing files
	5.8. Pre-Processor
	5.9. Dialects

	6. Conclusions and Future Work
	7. Acknowledgements
	8. References

