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ABSTRACT

In this paper, we consider a novel scheme referred to as Cartesian
contour to concisely represent the collection of frequent itemsets.
Different from the existing works, this scheme provides a com-
plete view of these itemsets by covering the entire collection of
them. More interestingly, it takes a first step in deriving a gen-
erative view of the frequent pattern formulation, i.e., how a small
number of patterns interact with each other and produce the com-
plexity of frequent itemsets. We perform a theoretical investigation
of the concise representation problem and link it to the biclique set
cover problem and prove its NP-hardness. We develop a novel ap-
proach utilizing the technique developed in frequent itemset min-
ing, set cover, and max k-cover to approximate the minimal bi-
clique set cover problem. In addition, we consider several heuristic
techniques to speedup the construction of Cartesian contour. The
detailed experimental study demonstrates the effectiveness and ef-
ficiency of our approach.
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Algorithms, Theory
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1. INTRODUCTION

Frequent pattern discovery has initiated the acceleration of data
mining research and is also becoming a core building block of data
mining. Starting from frequent itemset mining [2], frequent pat-
tern mining has grown into a rich subject in data mining, ranging
over a variety of pattern domains. The powerful toolbox of fre-
quent pattern mining not only serves as a basis for a list of other
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data mining techniques and more importantly, it can directly help
researchers gain insight into their data [7]. Typically, domain ex-
perts try to identify the interesting frequent patterns and associate
them with domain knowledge for domain specific discovery. How-
ever, a major drawback of the frequent pattern mining methodology
is its often unwieldy number of discovered patterns, despite several
existing efforts [11, 13, 5, 18, 8, 17]. Indeed, the collection of fre-
quent patterns themselves are becoming the “data” which needs to
be mined.

The call to better understand a large collection of frequent pat-
terns is resonated with a list of recent efforts in pattern summariza-
tion or concise pattern representation on itemsets. Simply speak-
ing, these methods try to help gain a global view of the whole col-
lection of frequent itemsets. In [1], the authors propose to use K
itemsets as a concise representation to approximately cover the ma-
jority of the frequent itemsets. Typically, those itemsets are either
maximal frequent itemsets or close to being maximal, with the con-
dition that most of their subsets are frequent (subject to false posi-
tive constraint). Several later works apply probability inference to
restore the frequency of frequent itemsets [10, 19, 15].

In this paper, we consider a novel scheme to concisely represent
the collection of frequent itemsets. Different from [1], this scheme
provides a complete view of these itemsets by covering the entire
collection of them. More interestingly, it takes a first step in deriv-
ing a generative view of the frequent pattern formulation, i.e., how
a small number of patterns interact with each other and produce
the complexity of frequent itemsets. Here, the interaction is repre-
sented as the union of two frequent itemsets. Intuitively, for some
core itemsets, if they are frequent, then all the subsets of their union
are also likely to be frequent. To make this observation useful in
concise pattern representation, we further introduce the generalized
Cartesian product between any two sets of the itemsets to include
all the unions between any pair of itemsets, one from each set. Each
such product can be considered as a basic source for the frequent
itemsets and several such products will be utilized to represent the
entire collection of the frequent itemsets.

Next, we formulate our problem precisely.

1.1 Problem Formulation

Given a collection of frequent patterns F, with a being the min-
imum support level on transactional database D where 7 is the
set of all items. we would like to find a concise representation
to approximate the collection of frequent patterns. Our approx-
imation scheme is as follows: Let X = Xi, Xa, -+, X,, and
let Y = Y1,Ys,---,Y;, where X; and Y are the itemsets, i.e.
X; CZand Y; C Z. We define a generalized Cartesian product
(®) between two sets of itemsets X’ and V:

X®Y = {X1UY1, X1UYs, -+, XqUYy, -+, X UYS, - - -

; XmUYi}



Given this, we define the covering sets of a set of itemsets as
c(x)y=2"ru2%y...u2¥m
where 2% is the powerset of X;. Thus, the covering set of X @ )

is
U 9XiUYj

1<i<m,1<5<1

C(XRY) =

Given this, for a collection of frequent patterns Fi,, we seek a
small number of generalized Cartesian products, which can cover
F, . Specifically, we would like to find a list of Cartesian products,
ie., X1 ® Vi, X2 ® Vo, - - - Xk ® Vi, such that

U cxiey)~F.

1<i<k

Given this, we define the covering cost of alist of Cartesian prod-
uct X1 ® Vi, X2 ® Vo, - - - X ® Vi as the sum of covering costs
from each individual Cartesian product:

cost({X1 @Y1, Xo @ Vo, Xy @ Wi}) = Z cost(X; ® Vi)

1<i<k

The covering cost of a Cartesian product cost(X; ® Y;) can be
defined differently depending on how we want to express the con-
ciseness. In this paper, we define the covering cost of a Cartesian
product as the sum of the sizes of its two sets, i.e.,

cost(X; @ Vi) = |Xi| + Vil

However, other cost functions are also possible. For instance, if
we simply want to have the minimal number of Cartesian products,
then, the cost is simply one, i.e. cost(X; ® V;) = 1. Or if the
cost needs to reflect the size of each itemset, the cost of covering
by X; ® ); can also be defined as:

cost(X; @ Vi) = Z 1 X5+ Z Y51

X;€eX; Y;€Y;

The algorithms discussed in this paper can be generalized to handle
these costs.

Given this, we can formally introduce the problem of construct-
ing a concise representation of a collection of frequent itemsets.

DEFINITION 1. (Problem 1: Exact Representation) Find a
list of Cartesian products, X1 ® Y1, Xa ® Va, - -+ X ® Vi, such
that C(X1 @ Y1), C(Xo ®Vs), ...,C( Xk ® Vi) exactly cover Fy:

U cxiey)=F.

1<i<k
where the cost({X1 @ V1, X2 ® Vo, X @ Vi }) is minimal.

Let us consider an example of Exact Representation. For the
dataset in table 1, we only need three generalized Cartesian prod-
ucts as shown below to exactly represent all the frequent itemsets
with support o = 1/20:

Har {1} {71} @ ({A, BY {C, DL AE, F}}
UMY, {13 {A @ {{A, G} {K, L}, {B, G}
M A} @ ({G, 11}

The above problem requires the covering set from the list of
Cartesian products to be exactly equal to the collection of frequent
itemsets. In many cases, we may want to trade the exactness with
the conciseness. In other words, we can relax the condition to al-
low the cover to be approximate, especially, to cover some itemsets

N O,PQ R,S, T ABU | CD,V | EEW
AB,G | AB,G | AB,I AB,I AB,J AB,J
CD,G | CD,G | CDI C,D.,I CD,J CD,J
EEG EEG E.EI E.EI EFEJ E.EJ
AGM | AGM | KLM | K.LM | KLI K,.L,I
KLA | KLA | AGI AGI GHM | GHM
G,H,I G,H,I B.GM | B.GM | B,G,I B.G,I
ABG | AGM | ABI K.LM | AB,J K,.L1I
CD,G | KLLA | CD,I AG,I CD,J G,HM
EEG G.H.I E,FI B.GM | EEJ B.G.I

Table 1: A toy transactional database. Each cell is a set of items
contained by one transaction. There is a total of 60 transac-
tions.

which may not be frequent itemsets, in order to reduce the cover-
ing cost. Given this, we expand the collection of frequent itemsets
F, to include itemsets which are nearly frequent and/or very simi-
lar to a frequent itemset. We denote the expanded collection as Fy .
There are several different choices for such an expanded collection.
For instance, we may include the negative border, choose a slightly
smaller support level, or require certain similarities. To handle all
these different possibilities, we generalize the exact representation
problem (problem 1) as follows.

DEFINITION 2. (Problem 2: Approximate Representation)
Given an expanded collection of frequent itemsets for F, denoted
as Fo O Fy, find a list of Cartesian products, X1 @ V1, X2 ® Va,
< X @ Vi, such that C(X1 @ Y1), C(X2 ®V2), ..., C( Xk @ Vi)
cover F:

Fa2 | Ccxiow) 2 Fa

1<i<k

where the cost({X1 @ V1, X2 ® Va, - X @ Vi }) is minimal.

For example, if in the previous example we let Fr, = F, U
{{A, G, H}}, then we can approximately represent the dataset of
table 1 by two generalized Cartesian products:

Hah i {71 @ {{A, BEA{C, DY {E, F1}
{M} {1}, {A}} @ {{A, G} {K, L}, {B, G}, {G, H}}

Note that the exact representation problem becomes a special
case of the approximate representation problem if we denote F, =
F,. We also refer to both the exact and approximate representation
of a collection of frequent itemsets as its Cartesian contour.

1.2 Our Contribution

In this work, we make the following contributions.

1. We propose a new scheme (Cartesian contour) based on the
generalized Cartesian products to concisely represent a collection
of frequent itemsets.

2. We perform a theoretical investigation of this problem and
link it to the minimal biclique set cover problem and prove its NP-
hardness.

3. We develop a novel approach utilizing the techniques devel-
oped in frequent itemset mining, set cover, and max k-cover to ap-
proximate the minimal biclique set cover.

4. We consider several techniques to efficiently construct the
Cartesian contour using our minimal biclique set cover algorithm.

5. We perform a detailed experimental study and demonstrate
the effectiveness and efficiency of our approach.



2. THEORETICAL BASICS

In this section, we perform a theoretical investigation of the prob-
lems in finding the minimal Cartesian contour for a collection of
frequent itemsets. We link this problem to the minimal biclique set
cover problem and demonstrate its NP-hardness.

We first simplify our concise representation from covering the
collection of frequent itemsets to covering only the maximal fre-
quent itemsets. Let My = {M1, Ma, ..., My} be the set of max-
imal frequent itemsets under support level o. By definition, an
itemset is maximal frequent if none of its supersets are frequent.
Hence it’s easy to see that C(M) = F,. Thus, we can simplify
our problems by focusing on covering the maximal frequent item-
sets.

Let M(Xi ® yi) record only the maximal itemsets covered by
the Cartesian product:

MX; @ Y;) =C(XQY) N Mo

Then, we basically want to find a list of Cartesian products, X; ®
Vi, X2 ® Vo, - - X ® Vi, such that they cover all the maximal
frequent itemsets M :

Fo2 | M@ ®@Y)2Ma

1<i<k

where the cost({X1 @ V1, X2 @ Vo, - Xk ® Vi }) is minimal.

Now we can transform our problem as a biclique set cover in
the bipartite graph. Let S be the ground set to be covered. Let
G = (AU B, E) be a bipartite graph where an edge in E connects
two vertices from A and B, respectively. Each edge e is associated
with a subset Se C S'and S = UeegSe. Let C = (X, ), X X V)
be a subgraph of G, where ¥ C A, Y C B, X x Y C E. Thus, C
is a biclique. Let S(C) be the union of sets covering all it’s edges,
ie., S(C) = UecexxySe. Further, we associate a cost with each
biclique C, denoted as cost(C). Given this, the minimal biclique
set cover problem is defined as follows.

DEFINITION 3. (Minimal Biclique Set Cover) Given the ground

set S and a bipartite graph G, where S = UccgSe, we seek a
list of bicliques, Ci, Ca, -+ ,Ck, to cover the ground set, i.e.,
S = U1<i<wS(C5), with the minimal cost, Y, ., . cost(C5).

(4) Ground set: 1,2,3,4,5,6,7,8,9,10,11 3 4

Figure 1: C1,C of G cover the ground set

Figure 1 shows an example of minimal biclique set cover. Each
edge of G is associated with a subset of the ground set, as marked
on that edge. We can use bicliques C'; and C'> from G to cover the
ground set.

We can transform our problem to a minimal biclique set cover
problem as follows. We construct a bipartite graph, where each of
its vertices corresponds to an itemset. Basically, let
A ={Xy,Xa,...,Xm} containing m itemsets and
B = {Y1,Y2,...,Y;} containing [ itemsets. At this point, for
the easy of understanding of our problem, we can simply assume

A = B = F,. Then, we construct an edge between itemsets X;
and Yj if and only if X; UY; is a frequent itemsets, i.e., X; UY; €
F,. We further assign the set of maximal frequent itemsets being
covered by X; U Y;, to the edge (X;,Y;) in the bipartite graph.
Clearly, for the exact representation, F, = F,, each edge either
has a singleton (covering only a single maximal frequent itemset),
or the empty set (#). However, when F, D F,, each edge can
associate a set with more than one maximal frequent itemset. In
addition, we define the cost of a biclique C' = (X, Y, X x V) as
the cost of its corresponding Cartesian product:

cost(C) = cost(X @ Y)

Thus, we have demonstrated that our problem is an instance of the
minimal biclique set cover problem.

The NP-hardness of the minimal biclique set cover can be easily
observed by noting that a single biclique can represent a candidate
set. In addition, we have the following NP-hardness results of our
Cartesian contour problems. The Proof is omitted due to the space
limit.

THEOREM 1. Problem 1 (Exact Representation) and 2 (Approx-
imate Representation) are NP-hard.

3. ALGORITHM FOR MINIMAL BICLIQUE
SET COVER

In this section, we will develop a novel algorithmic framework to
handle the minimal biclique set cover problem, which is the gener-
alization of our Cartesian contour problem. In the next section, we
will consider how to leverage this framework effectively to handle
our Cartesian contour problem by considering how to construct a
sparse bipartite graph and how to handle the approximation.

3.1 Basic Ideas

Since our problem is essentially using bicliques of a bipartite
graph G to cover the ground set S. A natural approach is the greedy
set cover algorithm [6]. Let R be the covered subset of S. For each
biclique (or sub-biclique) C' = (X U Y, X x V) in the bipartite
graph G, we define the price of C' as:

X

 |Ueeaxy Se\R|

By greedy set cover algorithm, we will choose a biclique with
minimum price in each iteration until the ground set S is covered
(R = S) and we will have a logarithmic approximation bound [6].
However, the problem is that the total number of bicliques in the
bipartite graph G is exponential (O(2/41*!81Y)). Thus, to directly
apply the greedy set cover algorithm is computationally intractable
as the number of candidate sets (bicliques) is too large

Our basic strategy to tackle this problem is as follows. First,
we utilize the connection between frequent itemset mining with bi-
cliques in a bipartite graph to quickly identify “one-side maximal
bicliques” (defined in section 3.3), which can be much smaller than
the number of total bicliques. Then, we introduce a fundamental
lemma which can select a sub-biclique from a (maximal) biclique
with the cheapest price linearly and with a constant approximation
bound. In the following we first introduce the fundamental lemma.

3.2 Finding Low Price Sub-biclique from Bi-
clique in Polynomial Time

In this subsection, we introduce a fundamental lemma and al-
gorithm to identify a sub-biclique with cheapest price. This tool



forms a basic building block of our approach to construct the min-
imal biclique set cover.

DEFINITION 4. (Cheapest Sub-biclique Problem) Given a clique

C = (XUY,X x)Y), where each of its edges e € X X Y
associates with a set Se. We would like to find a sub-biclique
C'=(XUY X xY) from C, where Y’ C Y, with the low-
est covering price:

arg min X
V'Y |Uecxxyr Sel

Note that we can easily generalize this problem to consider a set
of elements, denoted as R, which has already been covered in the
biclique. In this case, we can simply treat the set associated with
each edge e as Sc\R. Clearly, the solution to our above problem
can directly handle such generalization. Therefore, the price of a

| X+

which does
[ UeE)c‘ x Y’ Sel

sub-biclique here is defined as v(C') =

not consider R as in Formula ( 1).

It is easy to see the brute-force algorithm cannot work here be-
cause the number of candidate sub-bicliques is 2Pl We will in-
troduce a polynomial time algorithm for this problem. To explain
our algorithm, we first transform it into a classical SET COVER
problem setting. Let Y = {¥1,Y2,...,Y|y },andlet C; = (XY U
{Y;}, X x {Y;}) be a biclique containing only a single Y -vertex
and the entire X vertices, referred to as single-Y -vertex biclique.
Now, we treat each single-Y -vertex biclique C;, 1 < |C] < |V,
as a candidate set, which covers all the elements associated with
each of its edges, |, o} Se. Clearly, the clique C has a total
of || candidate sets (as well as single-Y -vertex bicliques).

Now, we consider the following variant of the set cover problem,
the MAX k-COVER problem, which seeks k sets whose union has
maximal cardinality. Specifically in our problem setting, Max k-
COVER is to get k single Y-vertex bicliques of C, such that they
cover a maximal number of elements. Notice that the union of the &
single Y-vertex bicliques of C' actually forms a biclique. Then, the
MAX k-COVER problem in this setting basically corresponds to
finding a sub-biclique (X UY’, X x V') of k vertices in ), |V'| =
k, which maximize U.¢ x xy7 Se. This is equivalent to minimizing

X+ &
[Ucexxyr Sel

for any fixed k. It is well-known that the greedy algorithm provides
a bounded (1 — é) approximation ratio to this problem [9]. Note
that the difference between our Cheapest Sub-biclique Problem and
the MAX k-COVER problem is that the latter needs a fixed k& and
the former does not have such constraint. Given this, we simply
need to generalize the greedy algorithm for the MAX k-COVER
problem to help identify the cheapest sub-biclique.

Our greedy procedure for the cheapest sub-biclique is as follows.
1) We initialize an empty vertex set V' = 0; 2) At each iteration, we
choose the single-Y -vertex biclique C; with the maximal number of
uncovered elements,

CANE A

arg max | U
vie(\Y) eex XY

eeXx{Y;}

3) We try to add the vertex Y; to Y’ to build a new biclique as
(XU U{Y:}), X x (V' U{Y:})). As long as the price is being
reduced by the new vertex, i.e.,
X[+ V']
|Ucer sy Sel

X+ Y| +1
| UeEXXy’U{Yi} Se|

weaddY; toY'. Otherwise (we find the new vertex does not reduce
the price), we will stop the iteration, and return the current biclique
(X UY', X x V') as the one with cheapest price in C.

We refer to this procedure as OptimalSubBiclique. It has a worst
case time complexity O(|)V|?|X|), as in each iteration we need to
update every single-Y -vertex biclique in C|, pick up a lowest-price
one and add it into the current biclique. This procedure can find a

(%) approximation ratio for our Cheapest Sub-biclique Problem.

LEMMA 1. Let the C* be the lowest-price sub-biclique in

{(X,Y")|Y* C YV}. The OptimalSubBiclique procedure finds a
sub-biclique C' € {(X,Y")|Y" C Y} suchthaty(C*) < v(C") <
S(CT).
Proof Sketch:Without loss of generality, let us assume the selected
sub-biclique at the i-th iteration by greedily choosing the single-Y -
vertex biclique with the maximal number of uncovered elements
as C]. However, our algorithm stops at the ¢ + 1-th iteration (i.e.,
C' = C}) when the price stops decreasing.

To prove this lemma, we first prove the following claim: If in our
OptimalSubBiclique algorithm, we do not stop greedily choosing
and adding single-Y -vertex bicliques, the price of the later formed
sub-biclique y(C7), (¢ > t), will be greater than the price of Cf.
Basically, we will show:

X+t _ X+
(G I (€9

where f(C;) is the number of elements covered by sub-biclique
!

, forany 7, (t < i < |Y|)

To show this, it is easy to observe that the coverage size of a
single-Y -clique will never go up, i.e.,
f(C) = F(C1) > ... > f(Ciy) = f(C) > ...

Thus, we have for any ¢ > t,

|X]+i |X[+t+ (i —1) S

(G FO)+ 51 (F(Ch) = £(Cim)) —
|X|+t+(GE—1t) | X+t

FC)+ (i —t)(f(Cryr) — f(Cr)) = F(CD)
fr0m|)(|+t+1: |X|+t+1 | X+t
F(Cl) — f(CH+ (F(Crr) — f(Cr)) = F(CY)

Now we prove the lemma. It is straightforward that v(C™*) <
~(C") because C* is the lowest-price sub-biclique. Therefore we
focus on the proof of ¥(C’) < —£5~+(C™).

We consider the optimal sub-biclique of C' for a fixed size k on
the ) vertices, denoted as C}:

arg  min - XIERE
191=k,Y' Y | Ueeaxyr Sel

Thus, we can redefine the cheapest price sub-biclique C* as

Cy =

T Ry )

Given this, it is easy to see that our OptimalSubBiclique sim-
ply applies the MAX k-COVER greedy procedure to find a sub-
biclique C}, at each iteration which covers a maximal number of
elements (f(Cy)) for (k < ¢+ 1). This is withina (1 — %) ap-
proximation ratio of the optimal one:

F(C) = (1= DF(CH)
Then we can see
X +k | X+ &
F(C) — (1= f(Ch)

Y(C) < ﬁ’y(C;ﬁ), because |



Put together, we have

! < . ! < . !
(C) < lggl%?+17(ck) < 1ST§|1y|7(C’€)

< min
1<k<|Y|

e € «
L 1(Ch) = —E2v(C)

Figure 2: An example of OptimalSubBiclique

Figure 2 shows an example of OptimalSubBiclique: Given
biclique C' as shown in (1), we first choose the single-Y -vertex
biclique Y3 U {X1, X2, X3} with the greatest number (here is 4)
of uncovered elements and put it into C’, as shown in (2). Then
~v(C1) = 4/4 = 1. Following the same rule, secondly we choose
the single-Y -vertex biclique Y2 U { X1, X2, X3} with 3 uncovered
elements and put it into C”, as shown in (3). Then (C3) = 5/7.
Lastly we choose the single-Y -vertex biclique Y1 U{X1, X2, X3}.
Now it has only 1 uncovered element and the price v(C3) = 6/8,
which is greater than 5/7. Therefore we revert the last step and the
final output is the biclique C% as shown in (3).

3.3 The Biclique-Covering Algorithm

Based on OptimalSubBiclique and Lemma 1, we can find low-
price sub-biclique, where one-side is fixed, from a given biclique.
To release the power of this tool, we introduce the notation of one-
side maximal biclique. Given a bipartite graph G = (AU B, E),
for a biclique C' = (XY UY, X x Y), where ¥ C A, Y C B,
and X x Y C F, if we add an extra vertex to X, it will not be
a biclique of G, then, we refer to it as a A-side maximal biclique.
Similarly, we refer to it as B-side maximal biclique. In other words,
for instance, a B-side maximal biclique of G can be simply written
as

(X UB(X),X x B(X))

where B(X) = {b|(z,b) € E forany € X'} simply includes all
the vertices in B, which links to every vertex in X. An A-side or
B-side maximal biclique is called as a one-side maximal biclique.
It is easy to see that if a biclique is both A-side maximal and B-side
maximal, it is a maximal biclique [12].

Recall in the SET COVER greedy algorithm (Subsection 3.1, we
need to find a biclique with lowest price, which needs an enumera-
tion of O(2|A‘+‘B |) bicliques of G. We can achieve such a task us-
ing the B-side maximal biclique and the OptimalSubBiclique pro-
cedure as follows. Let U be the set of all B-side maximal bicliques
of G:

U ={(XUB(X), X x B(X)}

Then, we can visit each B-side maximal biclique of U and invoke
the OptimalSubBiclique procedure to find its lowest price subbi-
clique, and then choose the one with lowest price among these sub-
bicliques (a total of |U|). However, the number of bicliques in U is
still in the order of O(2/!). To bring down the number of exponen-
tial B-side maximal bicliques, we propose to approximate U using

frequent itemset mining technique. This is quite interesting as our
initial goal is to concisely represent a collection of frequent item-
sets, and its solution also needs frequent itemset mining, though on
a different transactional database which is derived from the bipar-
tite graph.

Frequent itemsets and One-side Maximal Bicliques: To reveal
the relationship between frequent itemsets and one-side maximal
bicliques, we will have to represent the bipartite graph G = (AU
B, E) as a transactional database D(G). Let each row correspond
to a vertex in A and each column corresponds to a vertex in B and
if an edge between a vertex a and b, then, we have D(a,b) = 1.
For a support level 3, let F3[D(G)] be the collection of all frequent
itemsets whose support is greater than or equal to 3. Further, for a
frequent itemset I € F[D(G)], let T'(I) be its supporting trans-
actions, i.e., the transactions have I as the subset. Then, we can
see the Cartesian product I x T'(I) = {(i,t)|i € T and ¢t € T(I)}
corresponds to a B-side maximal biclique (I UT'(I), I x T(I)) of
G,where I C Aand T(I) C B.

<
-
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<.:~< m< -
N N

N N
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N
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Figure 3: Representing a bipartite graph as a transactional
database

Given this, we construct the following set of B-side maximal
bicliques to approximate U:

Us = {(X UB(X), X x B(X))|X € F5[D(G)] U A}

Clearly, it includes only those B-side maximal bicliques, whose A-
subsets either correspond to a frequent itemset in the transactional
database D(G), or contain a single vertex in A (for the complete-
ness of set cover). Note that this allows us to utilize the fast frequent
itemset mining algorithms to construct the set Ug.

As an example, figure 3(1) is a transactional database converted
from the bipartite graph shown in figure 1(1). Given 8 = 0.5,
figure 3(2) shows a B-side maximal biclique (there are 9 in total).
Overall Algorithm: The general sketch of our biclique-covering
algorithm is illustrated as Algorithm 1, which takes G, U as input.
In each iteration it will find the lowest-price sub-biclique (with X’
on the A side) from each biclique C(XUB(X), X x B(X)) € Us
using the OptimalSubBiclique procedure (Line 4). Then it selects
the cheapest C’ from the set of selected sub-bicliques (Line 5). C”
will be added into the set of Bicliques_Found (Line 6). Set R
which records the covered elements which are associated with each
edge in the bipartite graph, and will be updated accordingly (Line
7). The while loop terminates when the ground set S = UccgSe is
covered, i.e. R = S (Line 3-8).

We note that there are well-established techniques to speedup the
greedy set cover procedure [16, 14] and both our BicliqueCover al-
gorithm and OptimalSubBiclique procedure can employ them. The
basic idea of these techniques is to maintain a priority queue of the
candidate sets and sort them based on their price. However, since
the price of each candidate set cannot decrease (since more ele-
ments are being covered, i.e., R grows), we can apply this property
to prune the search space for each iteration significantly. Due to the
space limitation, we omit the details here.



Algorithm 1 BicliqueCover(G, Ug)

Require: G = (AU B, E) is the bipartite graph

Require: Usp is the set of B-side maximal bicliques of G

: R« 0

: Bicliques_Found + 0,

while R # UccrSe do
call OptimalSubBiclique to find ¢’ = (X UY', X x )’) of
each (X U B(X),X x B(X)) € Ug (Y C B(X)) with
minimum v(C");

5:  choose the C’ with minimum ~y(C’) among all the ones dis-

covered by OptimalSubBiclique;

6:  Bicliques_Found « Bicliques_Found U {C'};

;: R — RU (Ueenxy Se);

9

b

: end while
: return Bicliques_Found

This algorithm has a bounded approximation ratio with respect
to the candidate sets U as stated in Theorem 2.
The proof is omitted due to the space limit.

THEOREM 2. The Biclique_Cover algorithm has -5 (In(n) +
1) approximation ratio with respect to the candidate set Ug.

Time Complexity of BicligueCover Algorithm: Here, we con-
sider the worst case time complexity of our algorithm (the speedup
techniques are not considered since they typically do not reduce the
worst case time complexity.) Further the BicliqgueCover procedure
assume the frequent itemsets of the transactional database D(G)
transformed from the bipartite graph is given. Thus, the overall
running time for the minimal biclique set cover problem includes
the time of running the frequent itemsets mining algorithm, which
we do not consider for the time complexity analysis of Biclique-
Cover algorithm.

The worst case time complexity of the BicliqgueCover algorithm
is O((|Fs[D(@)]| + |A])(JA||B|?)k), where k is the number of
bicliques in the final result. Assume the while loop in Algorithm 1
runs k times. Each time it chooses a C’ with minimum ~(C")
from Upg, which contains no more than |F3[D(G)]| + |A]| can-
didates. The OptimalSubBiclique procedure takes O(|B||B||A|)
time. Since we need to do so for every biclique in U,, it takes
O((|Fs[D(@)]] + |AD(|B||BJ|A])). In addition, we note that k
is bounded by (|Fs[D(G)]| 4+ |A]) x |B| since each biclique in
Upg can be visited at most |B| times. Thus, we conclude that our
BicliqueCover algorithm runs in polynomial time with respect to
|[F5(D(@)]]. | Al and |B].

4. FAST CONSTRUCTION OF CARTESIAN
CONTOUR

In the previous section, we present the BicliqgueCover algorithm
for the minimal biclique set cover algorithm. Following the discus-
sion in Section 2, we will try to transform the Cartesian contour
problem into a minimal biclique set cover problem. However, the
time to construct the bipartite graph G = (A U B, F) can sig-
nificantly affect the efficiency of the algorithm. This is because
our algorithm relies on finding the itemsets in the transactional
database D(G), which correspond to the bipartite graph G. If G
is very dense, then the itemsets of D(G) even with a high support
level may be very large. Besides, since A corresponds to the items
(columns) in the transactional database, we also need A to be small.
Otherwise, the search space for the itemsets is too large. Given this,
it is clear that the simple transformation as described in Section 2,
which lets A and B contain all frequent itemsets F,, and links an

edge between two itemsets if their union is in Fl,, is prohibitive for
a large number of maximal frequent itemsets.

In the following, we will introduce several techniques which help
with constructing sparse bipartite graphs and present our overall
algorithm for deriving a concise Cartesian Contour representation
for a large number of (maximal) frequent itemsets.

4.1 Closed Itemsets for A and B

In this subsection, we introduce a method to reduce the size of
vertex sets A and B of the bipartite graph. Recall our goal is to use
general Cartesian products (i.e. bicliques) to cover the collection of
maximal frequent itemsets M, with minimum cost. The process
is similar to the “factorization” of the M, i.e., finding the fac-
tors (the common itemsets) shared by a group of maximal itemsets.
Considering a Cartesian product

XRY={X1UY, -, X1 UY, - , XnnUY} C M,

covering [ X m maximal itemsets, then, each X; is contained in
at least [ maximal itemsets and each Y is contained in at least m
maximal itemsets. Thus we are interested in finding a complete set
of “maximal factors” such that they are the largest subsets which
are shared by a number of maximal itemsets in M.

DEFINITION 5. (Maximal Factor Itemsets) An itemset X is a
maximal factor itemset of M., if the following two condition holds:
1) X C M;nNM;N...N M where {M;, Mj,..., M} is a sub-
set of M, and 2) There does NOT exist another subset X' such
that X C X' and X' C M; N M; N ...NM,.

The definition of maximal factor itemsets has the following im-
portant property which enables us to reduce the size of A and B:
Given a maximal factor itemset X which is a subset of M1NMa N
...NM;and X' C X, if

X/®{Y1,Y2,...,Yk} = {Ml,Mz,..
then,X®{Y1,Y2,...,Yk} = {MhMQ,..

aMk}
aMk}

However, the reverse is not always true. Therefore, it is not hard
to see that X" is a redundant information for our Cartesian contour
(exact representation) problem as we can always use X to replace
X'. Regarding efficiency, we do not consider the the approximate
representation problem here (for constructing A and B). The next
subsection will deal with that.

Now the problem is how we can find the maximal factor itemsets
for M. The following lemma builds the connection between the
notion of maximal factor itemsets and the notion of closed item-
sets. Given a transaction database, a closed itemset is an itemset
all of whose immediate supersets do not have the same support as
its. In the context of frequent itemset mining, we typically give a
minimum support and refer to the closed itemsets whose support is
no less than the minimum support as the frequent closed itemsets.
In other words, the closed itemsets are the frequent closed itemsets
with support zero.

LEMMA 2. For a collection of maximal frequent itemsets, Ma,
we construct a transactional database D B(M ), which records
each maximal itemset in M, as a unique transaction. Thus, the
database has a number of | M| transactions. Then, the closed
itemsets of D B(M ) are maximal factor itemsets of the collection
of maximal itemsets M.

For simplicity, we omit the proof here. Given this, we utilize only
the closed itemsets in A and B, which is much less than the number
of frequent itemsets.



4.2 Sparse and Dense Bipartite Graphs

Even though we have reduced the size of A and B, we still need
to consider how to reduce the edge density of the bipartite graph.
Recall the straightforward solution is simply connecting two item-
sets (vertices) if their union is in the expanded frequent itemsets
F,. Clearly, this will make the bipartite graph very dense. How-
ever, if we construct a sparse bipartite graph, we may lose some
good biclique candidates (or Cartesian products).

To deal with this problem, we introduce a novel “two-bipartite-
graphs” technique. First, we construct a sparse bipartite graph G,
which is used for finding the frequent itemsets with support (3,
F3[D(G5)]. Then, we construct a dense bipartite graph G4, which
is used to build the set of B-side maximal bicliques, Ug.

Sparse Bipartite Graph G,: We construct the edge set Fs for the
sparse bipartite graph G; = (A U B, E;) as follows: two vertices
(a,b) have an edge if and only if the union of their corresponding
itemsets is a maximal frequent itemset.

Dense Bipartite Graph G;: We construct the edge set Eq for the
sparse bipartite graph G4 = (A U B, E4) as follows: two vertices
(a,b) have an edge if and only if the union of their corresponding
itemsets is in the expanded set of frequent itemsets F,.

Given this, after we find the frequent itemsets from G, we con-
struct the candidate biclique set as

Us = {(XYUB(X),X x B(X))|X € Fg[D(Gs)] U A,
and B(X) is the supporting transactions in G4}

The idea is to reduce the number of frequent itemsets through
the sparse bipartite graph (|Fg[D(G)]| is small). Then, we use
the dense graph to build a larger biclique by incorporating more
vertices from B into each candidate bicliques. Since our Optimal-
SubBiclique performs linear search over the vertices from B in each
candidate biclique, we can traverse a large number of sub-bicliques
without compromising the efficiency.

4.3 Iterative Algorithm

The last technique we consider is to handle the case where a large
number of closed itemsets are being produced from DB(M). In
this case, we consider iteratively invoking the BicliqgueCover pro-
cedure, and utilize the frequent closed itemset here. Basically, we
apply a minimum support § for D B(M,,) and reduce it gradually
in each round. Since we do not expect to cover M, in a single
pass, we can also further shrink the size of A and B, by splitting
those frequent closed itemsets into two disjoint parts. For instance,
we can put all the itemsets whose size is smaller than a threshold in
one dataset and the rest in another one. Then, we always let A be
the part which has smaller number of itemsets, to reduce the search
space of frequent itemset mining. In addition, we let A and B each
contain an empty itemset so that coverage will be complete after
several passes.

Given this, our overall procedure is as follows:

1) Find the frequent closed itemsets in DB(M,);

2) Split those discovered itemsets into A and B;

3) Construct the sparse and dense bipartite graphs, Gs and G,
respectively;

4) Find the frequent itemsets in D(Gs) and build Ug, the set can-
didate bicliques, by using Gq, A, and Fg[D(G,)];

5) Invoke the BicliqueCover procedure to cover maximal frequent
itemsets;

6) Remove the covered maximal itemsets from My;

7) Reduce the minimum support § gradually and then repeat the
above steps until M, is empty (all maximal itemsets are covered).

Consider the dataset of table 1 as a running example: Given sup-

ABG | CD,G | ABI | CDJI AB.J CD.J
EFEG | AGM | EEFI | KLM | EEJ K,.LI
K.L.A | GHI AG]I | BGM | GHM | B,GI

Table 2: M.,

AB |[CD | EF | AG| KL | GH | B.G | GI | MG
Al | BI I J M A B G

Table 3: frequent closed itemsets in DB(M,,)

port & = 1/20, the maximal frequent itemsets M, are listed in
table 2. In addition, the frequent closed itemsets in DB(M,,) are
listed in table 3 given support 6 = 1/9. Then we construct sparse
and dense bipartite graphs as shown in Figure 4(1). The dark bold
edges are edges in both sparse and dense bipartite graphs, and the
light thin edges are edges in dense bipartite graph only. After in-
voking the biclique cover procedure, we find three bicliques (i.e.
three general Cartesian products) that cover all frequent itemsets
F,, with support o = 1/20, as shown in Figure 4(2).

In this example our overall procedure finishes in one round. How-
ever, as an example, if M, contains an additional maximal fre-
quent itemset {O, P, Q}, our overall procedure can finish in two
rounds given the same support § = 1/9. In addition, here we only
considered exact representation. If we let Fl, = F,U{{A, G, H}},
the edge between { A} and {G, H} will be added to the sparse bi-
partite graph, and the approximate representation will contain only
two bicliques (i.e. C2 and Cs in figure 4(2) will merge into one
biclique).

@

G / J M / A
C C C

1 2 3

Figure 4: (1) sparse and dense bipartite graph (2) three bi-
cliques that cover the frequent itemsets F,,

S. RELATED WORKS

Our work is closely related to the goal defined by the spanning
set approach [1]. In this work, the authors propose to use K item-
sets as a concise representation of a collection of frequent itemsets.
Basically, the K itemsets are chosen to maximally cover the collec-
tion of frequent itemsets. They consider two important cases: 1) if
the K itemsets themselves are frequent, i.e., being chosen from the
collection, there will be no false positive coverage. Based on the
down-closure property, a subset of any of the K itemsets must be
frequent. 2) if the K itemsets can be chosen outside the collection,
they require that those K itemsets satisfy a certain false positive
ratio. They further show that finding such K itemsets corresponds
to the classical set-cover problem and thus is NP-hard. The well-
known greedy algorithm is applied to find the concise representa-
tion. The main differences between their work and ours are in the



Datasets T T density
chess 75 3,196 dense
retail 16469 | 88162 sparse
connect 129 67557 dense
pumsb 7116 49046 sparse
T40I10D100K | 1000 100000 | sparse

Table 4: Datasets Characters. 7 is the total number of items
and 7 is the total number of transactions

following three aspects:1) First, their work is a special case of our
work as a spanning itemset X in [1] is simply a Cartesian product
between itself and an empty set, i.e., {X} x {0}. Indeed, in our
work, we do incorporate such cases into consideration by allowing
one side of Cartesian product to be an empty set. Careful readers
should have observed that in Figure 4(1) there are two non-labeled
vertices which actually represent empty sets. 2) Secondly, the goal
of their work is to use a small number of itemsets to maximally
represent the collection of frequent itemsets. Thus, their work typ-
ically can cover only a proportion of the frequent itemsets. Specifi-
cally, if no false positive is allowed, the approach in [1] essentially
need all the maximal frequent itemsets. In this sense, there will no
reduction in terms of the conciseness. While in our work, we focus
on representing all the frequent itemsets using a small number of
itemsets. 3) Finally, our representation scheme based on the Carte-
sian product between itemsets is clearly different from [1] and we
develop a set of novel techniques utilizing the set cover and MAX
k-COVER approach to discover such a scheme.

Several methods consider to restoring the frequency for the col-
lection of frequent itemsets. Yan et al.’s work [19] introduces a
pattern-profile approach. It partitions the itemsets into K clusters,
and all frequent itemsets in a cluster are estimated based on the
item-independence assumption. Wang et al. [15] propose the con-
struction of a global Markov random field (MRF) model to estimate
the frequencies of frequent itemsets. This model utilizes the depen-
dence between items, specifically, the conditional independence, to
reduce their estimation error. Jin ef al. [10] derive a regression-
based approach to cluster the frequent itemsets and restore the item-
set frequency based on the regression model. However, these ap-
proaches cannot provide a global view of the collection of frequent
itemsets and their power to predict which itemsets are frequent or
not seems also to be limited by their frequency restoration error.
Our goal here is different as we focus on the the concise repre-
sentation of the collection of frequent itemsets. It is an interest-
ing research problem as to how this approach can contribute to the
itemset frequency restoration.

Finally, our problem is also related to the hyperrectangle cover-
ing problem [16]. However, as we discussed in Subsection 2, this
problem is only a special case of the minimal biclique cover prob-
lem, and the method developed in [16] cannot handle our problem.
Even though both works link their roots to the set cover problem,
this work has developed a set of new techniques to handle the com-
plexity of using bicliques for set cover. Especially, we develop a
fundamental lemma based on the MAX k-Cover to approximate
the low-price sub-bicliques from a clique and techniques to employ
the minimal set cover problem for the Cartesian contour represen-
tation.

6. EXPERIMENTAL RESULTS

In our experimental evaluation, we will focus on answering the
following questions:

1. How does Cartesian contour representation summarize the
collection of frequent itemsets?

exact representation | approximate representation
o [Ma| || Car. prod. | cost Car. prod. | cost
0.88 | 313 21 243 23 171
0.87 | 348 23 306 25 229
0.86 | 352 19 309 23 228
0.85 | 454 22 359 25 297
0.84 | 510 21 432 28 363

Table 5: connect

exact representation | approximate representation
o [Ma| || Car. prod. | cost Car. prod. | cost
0.9 34 4 29 4 14
0.85 | 119 13 91 11 38
0.8 226 17 170 18 71
0.75 | 489 38 393 42 176
0.7 891 37 855 63 366

Table 6: chess

exact representation | approximate representation
a [Mq] || Car. prod. | cost Car. prod. | cost
0.89 | 348 24 219 20 94
0.88 | 500 29 320 33 152
0.87 | 633 38 413 32 183
0.86 | 825 40 462 40 282
0.85 | 1080 76 684 49 415

Table 7: pumsb

2. How does the approximate representation performs compared
with the exact representation?

3. How fast can we construct such representation?

Here, we report our experimental evaluation on 4 real datasets
and 1 synthetic dataset. All of them are publicly available from
the FIMI repository . The basic characteristics of the datasets
are listed in Table 4. Borgelt’s implementation of the well-known
Apriori algorithm [3] was used to generate frequent itemsets. The
maximal frequent itemsets and closed maximal frequent itemsets
are generated by MAFIA algorithm [4], which is publicly avail-
able online?. Our algorithms were implemented in C++ and run on
Linux 2.6 on an Intel Xeon 3.2 GHz with 4GB of memory.

For each dataset, we vary the support level from high to low.
We perform both the exact Cartesian contour representation and
the approximate Cartesian contour representation. For the approxi-
mate representation, we specify the expanded collection of frequent
itemsets Fy, as follows. Foreach I € F,\ F,, we require there is at
least one maximal frequent itemset M € M., such that I is very
close to M with only one item difference.

Table 5, 6 and 7 show the results for real datasets connect, chess,
and pumsb, respectively. We can see that on average the exact rep-
resentations need around 16% to 37% less number of itemsets than
the number of maximal itemsets. Most numbers of Cartesian prod-
ucts for the representations are on the order of low tens. The ap-
proximate representation needs much less number of itemsets to
cover all the frequent itemsets. On average, they only need around
60% of the number of itemsets required by the exact representation.

Table 8 and table 9 show the experimental results for real dataset
retail and synthetic dataset 740110D 100K, respectively. In both
results, the cost of exact representation is a little higher than the
number of Cartesian products. We found that this is because one
side of the Cartesian product contains only one or few itemsets or
is simply an empty set, and the other side contains a large number

"http://fimi.cs.helsinki.fi/data/
Zhttp://himalaya-tools.sourceforge.net/Mafia/



exact representation | approximate representation
a [Mq| || Car. prod. | cost Car. prod. | cost
0.009 | 100 8 108 5 86
0.008 | 122 7 129 5 101
0.007 | 167 5 172 7 133
0.006 | 219 6 225 5 172
0.005 | 284 4 285 5 223

Table 8: retail

exact representation | approximate representation
o [Mq| || Car. prod. | cost Car. prod. | cost
0.02 | 2015 3 2018 12 1595
0.019 | 2372 4 2376 12 1879
0.018 | 2781 10 2791 23 2101
0.017 | 3300 23 3323 30 2429
0.016 | 4003 155 4147 41 3112

Table 9: T40I110D100K

of itemsets. However, as we allow approximation, we can reduce
the representation cost significantly.

In Table 8, we can also observe that as « decreases, both the to-
tal number of frequent itemsets and the exact representation cost
increases. However, the number of Cartesian products for the exact
representation decreases. Note that the representation cost in the
present work is the total number of itemsets used in all the Carte-
sian product, and our algorithm focuses on minimizing this cost.
A reason to choose this criteria is that we can always do the ex-
act representation with one side of the Cartesian product being an
empty set and the other side being the set M. In this case, using a
single Cartesian product, we may cover a large number of frequent
itemsets, but this product does not provide much compression than
simply listing each individual frequent itemsets. In general, if one
side of the Cartesian product has only very few itemsets and then
other side has many, the representation cost would also be high
even the Cartesian product can cover a large number of itemsets.
As we mentioned before, most of the Cartesian products found in
both real dataset rerail and synthetic dataset 740110D100K have
such characteristic. Indeed, this also explains why in Table 9 the
number of Cartesian products for some approximate representation
is higher than that for the exact representation, but the approximate
representation cost is smaller.

In addition, our algorithm is rather efficient. On average, it takes
around 277s, 52s, 116s, and 1s to generate the exact representa-
tion for datasets connect, chess, pumsb, and retail, respectively; it
takes around 261s, 50s, 56s, and 1s to generate the approximate
representation for datasets connect, chess, pumsb, and retail, re-
spectively. For the synthetic dataset, it takes on an average of 140s
and 424s to produce the exact and approximate representations, re-
spectively.

7. CONCLUSIONS

In this paper, we introduced a Cartesian contour representation
for covering the entire collection of frequent itemsets by the ob-
servation that shorter itemsets interact with each other to produce
longer frequent itemsets. We use the generalized Cartesian product
to formalize such interaction and allows the concise representation
of a collection of frequent itemsets. We transformed our representa-
tion problem as an instance of the minimal biclique covering prob-
lem. Based on this, we first developed a general approach for the
minimal bicilque covering problem. Then, we developed several
techniques to adapt this general approach to the Cartesian contour
construction. Our experimental evaluation shows that our approach
is both effective and efficient to concisely represent the collection

of frequent itemsets. In the future, we are interested in utilizing this
representation for restoration of the frequent itemset frequency, and
to derive generative model for frequent itemsets.
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