
A Highway-Centric Labeling Approach for Answering
Distance Queries on Large Sparse Graphs ∗

Ruoming Jin† Ning Ruan† Yang Xiang‡ Victor E. Lee†

†Kent State University ‡ The Ohio State University
† {jin,nruan,vlee}@cs.kent.edu, ‡ yxiang@bmi.osu.edu

ABSTRACT

The distance query, which asks the length of the shortest path from
a vertex u to another vertex v, has applications ranging from link
analysis, semantic web and other ontology processing, to social
network operations. Here, we propose a novel labeling scheme,
referred to as Highway-Centric Labeling, for answering distance
queries in a large sparse graph. It empowers the distance labeling
with a highway structure and leverages a novel bipartite set cover
framework/algorithm. Highway-centric labeling provides better la-
beling size than the state-of-the-art 2-hop labeling, theoretically
and empirically. It also offers both exact distance and approximate
distance with bounded accuracy. A detailed experimental evalua-
tion on both synthetic and real datasets demonstrates that highway-
centric labeling can outperform the state-of-the-art distance com-
putation approaches in terms of both index size and query time.

Categories and Subject Descriptors

H.2.8 [Database management]: Database Applications—graph

indexing and querying

General Terms

Performance

Keywords

Highway-centric labeling, Distance query, Bipartite set cover

1. INTRODUCTION
Computing the shortest path distance between any two vertices

in a graph is a fundamental computer science problem and has
been widely studied for several decades. The emergence of mas-
sive graph data, from social networks, the semantic web, biological
networks, etc., and the need for this basic graph operator have re-
cently attracted much interest in the database community [47, 26].
For instance, in a graph of the Web, the smallest number of links
connecting two URLs can indicate page similarity [14]; in a se-
mantic web ontology, the shortest path distance from one entity to
another is also the key ingredient for ranking their relationship [5];
in a trust network, the number of hops from one person to another

∗The work is partially supported by NSF CAREER award IIS-
0953950, NSF Grant #1019343 to the CRA for the CIFellows
Project, and Ohio Supercomputer Center Grant #PGS0218-1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

can indicate the level of trust [43]; in general social networks, the
shortest path distance measures the closeness between users [46].

In the last decade, significant research progress has been made in
both theoretical and practical distance computation (especially on
road networks). The theoretical approach assigns each node u a la-
bel (for instance, a set of vertices and the distances from u to each
of them) and then answers the distance query using the assigned
labels [20]. The seminal work [45] by Thorup and Zwick shows
a (2k − 1)-multiplicative distance labeling scheme (the approxi-
mate distance is no more than 2k − 1 times the exact distance), for
each integer k ≥ 1, with labels of O(n1/k log2 n) bits. However,
Potamias et al. [33] argue that for practical purposes, even k = 2
is unacceptable (due to small-world phenomenon). The pioneering
2-hop method by Cohen et al. [12] provides exact distance label-
ing on directed graphs. Specifically, each vertex u records a list of
intermediate vertices OUT (u) it can reach along with their (short-
est) distances, and a list of intermediate vertices IN(u) which can
reach it along with their distances. To answer the shortest dis-
tance query from u to v, the 2-hop method simply checks all the
common intermediate vertices between OUT (u) and IN(v) and
choose the vertex p, such that dist(u, p)+ dist(p, v) is minimized
for all p ∈ OUT (u)∩ IN(v). However, the computational cost to
construct an optimal 2-hop labeling is very expensive [41, 28].

A variety of methods have been proposed to compute the (ex-
act) shortest path distance in road networks [29, 30, 42, 39, 7, 27,
22, 38, 40, 32, 21, 44, 8]. Remarkably, Abraham et al. [2] re-
cently discovered that the underlying mechanism for several of the
fastest distance computation algorithms [27, 39, 7, 21, 8] can be
explained by an intricate graph measure, referred to as highway di-

mension. Intuitively, a graph with low highway dimension (which
road networks generally have) means for any r, there is a small and
sparse set of vertices Sr , such that for any shortest path longer than
r hops must contains a vertex in Sr . Moreover, it turns out that
the method with the best time bounds is actually a labeling algo-
rithm [2], which resembles the 2-hop labeling. A fast and practi-
cal heuristic is developed in [1] to construct the distance labeling
on large road networks. Interestingly, we also note that another
state-of-the-art method, Path-Oracle [40] by Sankaranarayanan et

al., utilizes Path-Coherent Pair (PCP) for distance computation.
Specifically, a PCP records two sets of vertices A and B, along
with a vertex or an edge that lies along all the shortest paths be-
tween A and B. Indeed, this can be viewed as a different represen-
tation of the 2-hop labeling where each vertex in A and B explicitly
records the shared the vertex or edge. In [40], both sets A and B
are explicitly recorded using a spatial data structure.

Many real world graphs are quite sparse (similar to the road
networks). However, they generally do not have the spatial and
planar-like properties a road network has [26]. Though the 2-hop

or distance labeling have been effective on road networks [40, 1],
it is unclear how these methods which aggressively utilize the spa-
tial and planar-like properties can be applied to the general sparse
graphs. Can we construct distance labeling efficiently on general

large sparse graphs? This is an important question which clearly
calls for an answer. Compared with online search algorithms [22,
26], the distance labeling approach can a provide much faster query
result. The landmark [33] and Sketch [14], which can both be
viewed as simplified and practical distance labeling algorithms,
have been shown to quickly estimate the shortest path distance.
Though the estimation can be rather accurate, they do not guaran-
tee the exact results obtained from 2-hop labeling. Note that there
have been a few studies using heuristics approaches [41, 10] to
reduce the construction time for the 2-hop distance computation
on general directed graphs. However, they do not produce the ap-
proximation bound of the labeling size produced by Cohen et al.’s
approach [12].

Given this, the following questions are essential for applying
distance-labeling for distance computation on general sparse graphs.
1) Can we derive better distance labeling for the exact distance
query than the 2-hop approach, in terms of both indexing size,
query time, and construction time? 2) Can we speed up 2-hop
labeling without sacrificing its optimal labeling size? 3) Can we
develop an approximate distance labeling scheme which can esti-
mate distance with user-desired accuracy, i.e., d(u, v) ≤ d̃(u, v) ≤
(1 + ǫ)d(u, v)? Here d(u, v) and d̃(u, v) are the exact and es-
timated distance from vertex u to vertex v, respectively, and ǫ is
a user-defined accuracy threshold. 4) Can such labeling approach
handle large sparse graphs?

In this work, we propose a novel labeling scheme, referred to as
Highway Centric Labeling (HCL), for answering distance queries
in a large sparse graph which provides positive answers to all these
questions. Our scheme provides better labeling size than 2-hop
does, both theoretically and empirically. Intuitively, it utilizes a
tree structured highway to serve as the intermediaries to link the
start vertex and end vertex, a generalization of 2-hop which only
utilizes a single vertex as the intermediary. Though highway struc-
ture is widely used in shortest path computation in road networks,
it is primarily used for speeding up the online search [29, 30, 39,
21, 32]. Based on our best knowledge, this is the first attempt to
leverage highway structure in distance labeling. Also, the heart of
the highway-centric labeling consists of a fast greedy algorithm for
a general bipartite set cover problem, which by itself is very inter-
esting and useful as it significantly generalizes the classic set cover
problem. Furthermore, as a side product, we are able to speed up 2-
hop without sacrificing its labeling size (empirically offering even
better results). This scheme also offers both exact and approximate
distance with bounded accuracy. Finally, the experimental studies
show our approach can scale to large sparse graphs.

2. RELATED WORK
The shortest path distance (SPD) query is related to several key

questions, such as single-source shortest path (SSSP) computation,
in various branches of computer science. In the following, we
overview the prior and related work on the SPD query. Throughout
our discussion, we use n and m to denote the number of nodes and
edges in the graph G, respectively.
Shortest Path Computation: One of the most well-known meth-
ods for shortest path computation is Dijkstra’s algorithm [16]. It
computes the single source shortest paths (SSSP) in a weighted
graph and can be implemented with O(m + n log n) time. If the
graph is unweighted, a Breadth-First Search (BFS) procedure can
compute SSSP in O(m + n). To compute the all-pairs shortest

paths (APSP), we can directly invoke n Dijkstra or BFS proce-
dures with O(nm+n2 log n) and O(nm), respectively. For sparse
graphs, this can be very efficient. When the graph is dense, we may
apply the Floyd-Warshall algorithm [13], which utilizes dynamic
programming to compute APSP in O(n3).

To compute the point-to-point shortest path from source u to sink
v, the bidirectional algorithm running between two Dijkstra’s algo-
rithms, one from the source and the other from the sink, can be
applied to improve search efficiency [36]. Goldberg et al. combine
bidirectional search with the A∗ algorithm to improve the search
performance [22]. The key ideas being explored in those works is
how to derive better bounds to determine if an intermediate node
should be visited to reach the destination.

In early database research, several techniques including graph
decomposition and partial distance materialization are considered
to help prune the search space [3, 24]. Recently, Wei utilizes the
tree-width decomposition to help reduce the search space on un-
weighted undirected graphs [47]. Since the directed tree-width de-
composition tends to be more elaborate and difficult, it is not clear
whether it can be equally effective on directed or weighted graphs.
In general, the online search for the shortest path distance (SPD)
query is still very expensive (especially on large networks) due to
the need to scan underlying graphs.
Theoretical Distance Labeling: Several studied have been per-
formed to assign each node a label and then answer the SPD query
using the assigned labels. Gavoille et al. show that general graphs
support an exact distance labeling scheme with labels of O(n) bits
[19], and several special graph families, including trees or graphs
with bounded tree-width, all have distance labeling schemes with
O(log2n) bit labels [4, 35, 19]. Several results are obtained for ap-
proximate distance labeling schemes. For arbitrary graphs, the best
scheme to date is due to Thorup and Zwick [45]. They proposed a
(2k − 1)-multiplicative distance labeling scheme (the approximate
distance is no more than 2k − 1 times the exact distance), for each
integer k ≥ 1, with labels of O(n1/k log2 n) bits. Basically, when
k = 1, it can support the exact labeling with storage cost being on
the order of the entire distance matrix. However, when k ≥ 2, the
approximate distance can be 3-times higher than the true distance.
Since in real world applications, most of the distances can be very
small due to the small-world phenomenon, Potamias et al. [33] ar-
gue that this approximation bound is impractical.

Interestingly, Sarma et al. develop the Sketch method based on
Thorup and Zwick’s theoretical distance labeling and they show
that in real Web graphs, distance labeling can provide fairly accu-
rate estimation. More recently, Gubichev et al. further generalize
the Sketch method to discover the shortest path (not only the dis-
tance) in large graphs [26].
2-HOP Labeling: The 2-hop labeling method proposed by Co-
hen et al. [12] is an exact distance labeling scheme. Each ver-
tex u records a list of intermediate vertices OUT (u) it can reach
along with their (shortest) distances, and a list of intermediate ver-
tices IN(u) which can reach it along with their distances. The in-
dex size is determined by the total number of intermediate vertices
each vertex records. To answer the point-to-point shortest distance
query from u to v, we simply need to check all the common in-
termediate vertices between OUT (u) and IN(v) and choose the
vertex p, such that dist(u, p) + dist(p, v) is minimized for all
p ∈ OUT (u) ∩ IN(v). They propose an approximate (greedy)
algorithm based on set-covering which can produce a 2-hop cover
with size no larger than the minimum possible 2-hop indexing by a
logarithmic factor. The minimum 2-hop index size is conjectured
to be Õ(nm1/2) for directed graphs.

The major problem of the 2-hop indexing approach is its high

construction cost. Several heuristics approaches [41, 10] have been
proposed to reduce construction time for the 2-hop distance com-
putation. However, they do not produce the approximation bound
of the labeling size produced by Cohen et al.’s approach [12].
Landmark Encoding: Several works uses landmarks to approxi-
mate the shortest path distance (SPD) [34, 31, 33]. The basic idea is
to precompute the shortest distance between all nodes in the graph
to these landmarks and then apply the triangle inequality to help
estimate the shortest path distance. The recent work by Potamias et

al. [33] investigates the selection of the optimal set of landmarks
from the graphs. In particular, they target answering the point-to-
point shortest path distance (SPD) query. Specifically, they intro-
duce the LandMark-Cover problem which tries to find a minimum
number of points such that for any pair of vertices u and v, there ex-
ists at least one landmark in a shortest path from u to v. This guar-
antees that each estimation is the exact distance. They show this
problem is NP-hard and point out that a set-cover framework can
solve this problem. Note that this problem has a very close relation-
ship to the aforementioned 2-hop labeling scheme. In 2-hop, only a
subset of relevant landmarks is assigned to a given node. Here, they
assign the complete set of landmarks to each node. However, unlike
2-hop, this method employs a set of heuristics based on the node
properties, such as degree or centrality, to select the landmarks, and
landmarking does not aim to provide exact approximation. Instead,
they use the small number of landmarks to estimate the SPD.
Shortest Path Distance Computation on Road Networks: Com-
puting shortest path distance on road networks has been widely
studied. Here we only provide a short review (More detailed re-
view on this topic can be found in [15]). Several early studies [29,
30, 42] utilize the decomposition of a topological map to speed up
shortest path search. For instance, in HEPV [29] and HiTi [30], they
first decompose the entire map into fragments (subgraphs), then
they extract the border nodes (nodes in fragments directly adjacent
to nodes in other fragments), and finally the relationship of these
border nodes form a new graph to express the high level structure
of the graphs. Recently, a variety of techniques [15], such as Arc-
flag (directing the search towards the goal) [8], highway hierarchies
(building shortcuts to reduce search space) [27, 39], transit node
routing (using a small set of vertices to relay the shortest path com-
putation) [7], and utilizing spatial data structures to aggressively
compress the distance matrix [38, 40], have been developed.

As we mentioned before, Abraham et al. [2] recently discovered
that several of the fastest distance computation algorithms [27, 39,
7, 21, 8] need the underlying graphs to have small highway dimen-

sion. Furthermore, they demonstrate the method with the best time
bounds is actually a labeling algorithm [2], which resembles the 2-
hop labeling. In [1], they develop a fast and practical algorithm to
heuristically construct the distance labeling on large road networks.
Interestingly, another state-of-the-art method, Path-Oracle [40] by
Sankaranarayanan et al., also turns out to be derived from a similar
idea as the 2-hop labeling. To sum, exact distance labeling has been
shown to be fundamental and practical for distance computation on
road network. However, it is not clear how these techniques which
reply on the road network property can be broadened to a larger
class of graphs.

3. LABELING OVERVIEW
The highway-centric labeling scheme simulates the usage of the

highway system in a transportation network. In order to find the
shortest travel distance from city A to city B, we simply find the
shortest distance from city A to the correct entrance of an appropri-
ate highway, and then get off at the correct exit which leads to the
remaining shortest distance to city B. Indeed, highway structure

has been studied for finding the shortest path in a large graph [39,
29, 30, 7]. However, they primarily utilize the highway structure
to speed up the online search. A key thrust of our labeling scheme
is to effectively utilize the highway structure for distance labeling
(instead of searching). It also generalizes the distance labeling as
it typically utilizes only intermediate vertices as the meeting point
for distance computation [45, 12].
Utilizing Highway in Distance Labeling: Our distance labeling
scheme utilizes the highway in the following fashion. Each ver-
tex in the graph records an outgoing list, i.e., its shortest distances
to a list of entry points in the highway, and an incoming list, i.e.,
the shortest distances from another list of exit points to this ver-
tex. Here, we focus on directed graphs in this work. For undirected
graphs, only one list is needed. Basically, the outgoing and in-
coming lists associated with each vertex are the “label” our scheme
generates and uses. To query the shortest distance from the starting
vertex to destination vertex, we simply match the outgoing list of
the starting vertex with the incoming list of the destination vertex.
If one vertex (an entry) of the outgoing list can reach another vertex
(an exit) of the incoming list in the highway system, we refer to this
as a match and assume their distance can be computed in constant
time.

Thus, the estimated distance from u to v through such a match is
simply the sum of three distances: 1) the distance from the starting

vertex to the entry vertex in its outgoing list; 2) the distance from

the entry vertex to the exit vertex in the highway; 3) the distance

to the destination vertex from the exit vertex of its incoming list.

By choosing the smallest distance of all the matched pairs from the
outgoing list of the starting vertex to the incoming list of the desti-
nation vertex, our labeling scheme can guarantee that the smallest
distance is equivalent to the true shortest distance between them.

Figure 1 illustrates the difference between highway-centric la-
beling and 2-hop labeling. In highway-centric labeling, the high-
way connection can be effectively utilized as each vertex only needs
to record distances to highway entries and distances from highway
exits. Since 2-hop cannot utilize the highway connection, each ver-
tex has to record more entries and exits than the new scheme to
recover all the pairwise shortest path distances. Indeed, the 2-hop
can be viewed as a special case of highway-centric labeling, where
the highway degenerates to a set of disconnected points. In other
words, the highway connection in the new scheme improves the ca-
pacity of these entry and exit vertices as they can combine together
to encode shortest path distances.
Utilizing Tree as Highway Structure: For a highway structure to
provide the necessary speed, we need a distance oracle to answer
distance queries from any entrance to any exit quickly, e.g., in con-
stant time. A simple solution would be to precompute all pairwise
shortest distances. However, to encode all the exact shortest path
distances, in the worst case the highway would include (nearly) ev-
ery vertex in the graph. Then the size of the highway distance index
would approach that of the graph’s distance matrix (O(n2)), leav-
ing little benefit to having a highway. Basically, the distance oracle
of the highway structure should have a small fingerprint.

In this work, we consider the highway structure to be a sparse
subgraph of the entire graph and the distance oracle answers the
distance from one vertex to another vertex by using only the high-
way structure. In other words, this distance is the “highway dis-
tance” and may not always be the shortest path distance in the orig-
inal graph. As we will see in Section 4, this treatment enables a
unified labeling scheme for approximate distance answering. In
this work, we choose a tree to be the highway structure, and thus
the distance oracle is simply tree-distance. Specifically, in a di-
rected graph, our tree is a rooted directed tree, i.e., the root vertex

Figure 1: highway structure vs 2-

hop

Figure 2: An example of using tree as highway

structure

Figure 3: (a) A directed graph with a spanning tree. Tree

edges are highlighted in bold and red lines. (b) Lout and

Lin labels for each vertex.

(or virtual root) in the tree can reach all the other vertices in the tree
and each vertex except the root has exactly one incoming edge [11].

Figure 2 shows a simple example of using a tree (in green) as
a highway structure in answering distance queries. To tell the dis-
tance between two vertices, say h and w, we compare h’s outgoing
list, denoted as Lout and w’s incoming list, denoted as Lin. A pair
(b : 1) in Lout of vertex h means b is an entry of h to the tree
highway, and the shortest distance from h to b is 1. Similarly, a
pair (f : 1) in Lin of vertex w means w can be reached from f in
distance 1. Since the tree distance from vertex b to vertex f is 3,
we conclude the distance from h to w is 5.

3.1 Research Challenges and Our Approach
The major research problem we study in this work is as follows:

Given a directed graph G, how can we construct a rooted directed

tree T (a subgraph of G), and utilize it to label each vertex with

outgoing list Lout and incoming list Lin, so that the distance query

can be efficiently answered with minimal labeling cost?

A central challenge here is that because the highway links the
entry and exit vertices, the choices of entry and exit vertices in
Lout and Lin are not independent decisions. Thus, we cannot ap-
ply the classical set cover framework to find the optimal labeling
cost, which is the core of all the existing works on 2-hop reacha-
bility and distance labeling [12], as well as the recent 3-hop reach-
ability labeling [28]. Interestingly, we found our problem can be
transformed into a new variant of the set cover problem, referred
to as the Set-Cover-with-Pairs (SCP) problem. This SCP problem
was recently proposed [37] and no good approximation algorithm is
available to our best knowledge. It is still an open research question
whether there exists a logarithmic bound approximation algorithm
for SCP, as for the classical set cover problem [18].

Furthermore, we consider using a rooted directed spanning tree
of the graph to serve as its highway structure. However, each tree
may have different “routing power”, i.e., each tree covers different
sets (and different portions) of shortest paths. How to select an
optimal spanning tree which can maximally cover shortest paths to
minimize the labeling cost is another important research problem.

Overall, our approach includes the following key components:
1. Given a spanning tree as the highway structure, we transform
the labeling problem to a special case of the SCP problem, which
we refer to as the bipartite set cover (BSC) problem.
2.We propose a new approximation algorithm for the bipartite set
cover problem and SCP problem. The approximation bound of our
algorithm is very close to a logarithmic bound. Thus, our algorithm
is of independent interest for the theoretical SCP problem.
3. We describe a linear distance labeling scheme for directed trees
which provides a constant-time distance oracle. We efficiently con-
struct the spanning tree that minimizes the labeling cost.
4. Utilizing a virtual tree, we demonstrate an efficient procedure
for speeding up query processing.

4. LABELING FRAMEWORK
In this section, we study the following problem: Given a rooted

directed spanning tree T of G, how can we utilize it to answering

the distance query with minimal labeling cost?

To facilitate our discussion, we begin by defining some notation
and terminology. Let G = (V, E) be a directed graph, where V =
{1, 2, · · · , n} is the vertex set, and E ⊆ V × V is the edge set
(m = |E|). We use (v, w) to denote the edge from vertex v to
vertex w, and we use (v0, v1, · · · , vp) to denote a path from vertex
v0 to vertex vp, where (vi, vi+1) is an edge (0 ≤ i ≤ p−1). We say
vertex u can reach v (denoted as u → v) if there is a path starting
from u and ending at v. Let TC(G) be the transitive closure of G,
i.e., TC(G) = {(u, v)|u → v}. The distance from vertex u to
v in graph G is denoted as d(u, v), which is the shortest distance
among all the paths from u to v. In the unweighted graph, the
shortest distance from u to v is simply the smallest path length of
all the paths from u to v. Further, let the rooted directed spanning
tree T = (VT , ET), where VT = V and ET ⊆ E. We denote
the root of T as rT . The distance from vertex u to v in tree T
is denoted as dT (u, v). Note that we may have a spanning forest
instead and in this case, we can add a virtual root to a tree. For
simplification, we focus our discussion on unweighted graphs in
this paper, though our approach can be easily extended to weighted
graphs (by replacing the path length in the unweighted graph with
the general distance in the weighted graph).

4.1 The Labeling Problem
Our scheme assigns each vertex u in G two labels, Lout(u)

and Lin(u). Lout(u) records the outgoing list of entry vertices
in the highway structure, tree T , and their respective distances, i.e.,
Lout(u) = {(x1 : dx1), . . . , (xp : dxp)}, where dxi

= d(u, xi),
the distance from u to entry vertex xi, 1 ≤ i ≤ p. Lin(u) records
the incoming list of exit vertices from tree T , and their respective
distances, i.e., Lin(u) = {(y1 : dy1), . . . , (yq : dyq)}, where
dyj

= d(yj , v), the distance from exit vertex yj to v, 1 ≤ j ≤ q.
Figure 3 shows a directed graph with a spanning tree (a) and the
Lout and Lin label for each vertex in the graph (b). Given starting
vertex u and destination vertex v, let (xi : dxi

) ∈ Lout(u) and
(yj : dyj

) ∈ Lin(v). We define the distance d(u, v|xi, yj) =

dxi
+ dT (xi, yj) + dyj

= d(u, xi) + dT (xi, yj) + d(yj , v)

This is the distance of a path from u to xi via a shortest path in
G, from xi to yj via T (which may be ∞, i.e., not reachable), and
from yj to v via a shortest path in G. Further, we define the labeling
distance from vertex u to v:

d(u, v|Lout(u), Lin(v)) = min
(xi:dxi

)∈Lout(u)

(yj :dyj
)∈Lin(v)

d(u, v|xi, yj)

In addition, the size of the labeling is defined to be

Cost(HCL) =
X

u∈V (G)

(|Lout(u)|+ |Lin(u)|)

Formally, we define the following highway-centric labeling (HCL
distance labeling) problems:

DEFINITION 1. (Exact HCL Distance Labeling Problem)
Given a rooted directed spanning tree T of G, the exact HCL dis-
tance labeling problem is to assign each vertex an outgoing list
Lout(u) and an incoming list Lin(v), such that for any vertices u
and v:

(u, v) ∈ TC(G) =⇒ d(u, v|Lout(u), Lin(v)) = d(u, v),

(u, v) /∈ TC(G) =⇒ d(u, v|Lout(u), Lin(v)) =∞,

where the labeling size cost(HCL) is minimal.

DEFINITION 2. (Approximate HCL Distance Labeling Prob-
lem) Let ǫ be user-specified relative error for the point-to-point
shortest distance query. The approximate HCL distance problem
is to assign each vertex an outgoing list Lout(u) and an incoming
list Lin(v), such that for any vertex pair u and v:

(u, v) ∈ TC(G) =⇒ d(u, v) ≤ d(u, v|Lout(u), Lin(v))

≤ (1 + ǫ)d(u, v),

(u, v) /∈ TC(G) =⇒ d(u, v|Lout(u), Lin(v)) =∞,

where the labeling size cost(HCL) is minimal.

Since 2-hop can be treated as a special case of HCL, where all ver-
tices in G directly link to a virtual root, we can easily observe that
given a rooted directed spanning tree T of G, both the optimal exact
HCL distance labeling problem and optimal approximate HCL
distance labeling problem are as hard as the 2-hop labeling (the
generalized 2-hop labeling is proved to be NP-hard [12]).

Furthermore, since HCL distance labeling can utilize not only
the intermediate vertices, but also the directed tree structure whereas
2-hop utilizes only the former, thus we observe:

THEOREM 1. Given any spanning tree T of G, the minimum

distance labeling cost of HCL is no larger than the minimum dis-

tance labeling cost of 2-hop, i.e., cost(HCL) ≤ cost(2 − hop).

4.2 Transforming to Bipartite Set Cover (BSC)
The HCL distance labeling problem has a nice connection to the

Bipartite Set Cover (BSC) problem. To understand this intrinsic
connection, we briefly introduce the BSC problem as follows.

DEFINITION 3. (Bipartite Set Cover (BSC) Problem) Let U
be the ground set of elements. Given a bipartite graph G = (A ∪
B, E), where each edge e in E is associated with a subset of ele-

ments in U (C(e) ⊆ U), we seek a subgraph G[X ∪ Y] induced

by X ∪ Y (X ⊆ A and Y ⊆ B) to cover the ground set U , i.e.,

U =
S

e∈E(G[X∪Y]) C(e) (E(G[X ∪ Y]) is the edge set in the in-

duced subgraph G[X ∪Y]), with the minimal cost which is usually

defined as |X | + |Y|.
Figure 4(a) shows an example of the BSC problem. The ground

set contains a,b,c,d,e,f . An optimal cover is a bipartite subgraph
induced by vertices 2,3,5,7. By reducing the classical set-cover
problem to BSC, we have

THEOREM 2. The bipartite set covering (BSC) problem is an

NP-hard optimization problem.

Now we transform our distance labeling problem to the BSC
problem as follows. Let the ground set U = TC(G), i.e., it
contains any vertex pair (u, v) in G, such as u → v. To cover
a pair (u, v) means we can restore their corresponding exact (or

Figure 4: (a) An example of BSC problem. (b) The bipartite

graph (partially displayed) for the example in Figure 3.

approximate) distance in the labeling scheme. We construct a bi-
partite graph G = (A ∪ B, E) for the covering purpose: a vertex
in A corresponds to a tuple (u, (xi : dxi

)), where u is a starting
vertex, xi is a candidate entry on the tree-highway structure, and
dxi

= d(u, xi) is the distance from u to xi; a vertex in B corre-
sponds to a tuple ((yi : dyj

), v), where v is a destination vertex,

yj is a candidate exit from the tree-highway, and dyj
= d(yj , v)

is the distance from yj to v. Given this, for any four vertices
(u, xi, yj , v), if

d(u, xi) + dT (xi, yj) + d(yj , v) = d(u, v) (1)

we will add vertex (u, (xi : dxi
)) to A, add vertex ((yi : dyj

), v)
to B, and add an edge from the first vertex to the latter one. For the
approximate distance labeling, the condition will be generalized as

d(u, xi) + dT (xi, yj) + d(yj , v) ≤ (1 + ǫ)d(u, v) (2)

Note that those vertices may not be distinct, i.e., u may be xi,
xi may be yj , etc. In addition, we associate each edge with the
singleton set {(u, v)}. Further, we assign a unit cost to each vertex
in the bipartite graph, i.e., cost(e) = 1. It is not hard to see that if
we can find vertex subsets X ∪ Y (X ⊆ A and Y ⊆ B) to cover
the ground set, we basically are able to restore all the distances for
any reachable pair of vertices in graph G. Specifically, we have the
following relationship:

(u, (xi : dxi
)) ∈ X ⇐⇒ (xi : dxi

) ∈ Lout(u);

((yi : dyj
), v) ∈ Y ⇐⇒ (yi : dyj

) ∈ Lin(v).

Thus, we have demonstrated that our labeling problem is an in-
stance of the bipartite set cover (BSC) problem. Figure 4(b) illus-
trates the constructed bipartite graph.

4.3 Bipartite Set Cover Algorithms
In the following, we study efficient approximation algorithms for

solving the bipartite set cover (BSC) problem. This is the key for
generating the highway-centric labeling.

A straightforward approach is based on the observation that the
bipartite set cover (BSC) can be considered a special case of the
recently proposed set-cover-with-pairs problem [37].

DEFINITION 4. (Set-Cover-with-Pairs Problem [37]) Let U
be the ground set and let Q = {1, . . . , M} be a set of objects,

where each object i ∈ Q has a non-negative cost wi. For every

{i, j} ⊆ Q, let C(i, j) be the collection of elements in U cov-

ered by the pair {i, j}. The objective of the set cover with pairs

(SCP) problem is to find a subset Q′ ⊆ Q such that C(Q′) =
S

{i,j}⊆Q′ C(i, j) = U with a minimum covering cost
P

i∈Q′ wi.

We refer to the special case in which each object has a unit weight

(wi = 1) as the cardinality SCP problem.

Using a graph formulation, we can see that the input of the SCP
problem is a complete graph where each edge associates with a
subset of the ground set U , each node has a weight, and the ob-
jective is to find a subset of nodes whose corresponding induced
subgraph will cover U . In BSC, our input graph is a bipartite graph

G = (A ∪ B, E). In addition, to configure our bipartite graph for
distance labeling, each edge is associated with an element in U (a
single vertex pair in the original graph), and each node is associ-
ated with a unit cost. Given this, we can directly apply the existing
algorithms for SCP to the BSC problem. However, the best avail-
able algorithm for SCP proposed in [37] yields an O(

√
N log N)

approximation ratio, where N is the cardinality of the ground set
N = |U |, for the cardinality SCP problem. Note that in our gen-
erated bipartite set cover for distance labeling, the ground set is
U = TC(G) and N = |TC(G)|, which in the worst case is
n(n−1)

2
. Thus, the approximation bound is O(n

√
log n), which

is almost useless in practise.

4.3.1 2
1−α

(ln N + 1)-Approximate Algorithm

Here, we present a fast greedy algorithm (Algorithm 1) that yields
2

1−α
(ln N + 1) approximation ratio for our BSC problem (α will

be defined later). Note that each node has a unit cost in this prob-
lem. Our greedy algorithm works as follows: each time we select a

node in the bipartite graph G = (A ∪ B, E) according to our de-

fined criterion, until all the elements in the ground set, i.e., all pair

shortest distance of G in our HCL problem, have been covered.

To describe our node-selection criterion, we introduce the fol-
lowing definitions: Let U be the ground set and R be the set record-
ing the already covered elements: R ⊆ U . Let S be the set of
already selected nodes in the bipartite graph and let S denote the
nodes not in S, i.e., S = (A ∪ B)\S. We use S to denote the S at
the end of our algorithm, i.e., S is our solution.

Assume at some iteration, node v is to be selected. Let Nv

(Nv ⊆ U) be the set of all elements on the edges adjacent to v.
Let Sv be those elements in Nv which are immediately covered
by S ∪ {v}. It is easy to see that Sv ⊆ Nv \ R holds. Let
Zv = Nv \ (R ∪ Sv), i.e., Zv is the set of uncovered elements
in Nv . Intuitively, |Sv| is exactly how many new elements will be
covered by selecting v at current iteration, and |Zv| is how many
new elements may potentially be covered in future iterations as a
consequence of selecting v. In other words, |Sv|+ |Zv| = |Nv\R|
is the upper bound of the number of elements which can be covered
by selecting node v.

In our algorithm, at each iteration, we select node v from S with
minimum 1

|Sv|+|Zv |
. Intuitively, we can see that our algorithm with

its criteria is “optimistic” or ”far-sighted” as it always selects the
node with “maximal potential” (max(|Sv|+ |Zv|)) . As our analy-
sis will show, this optimistic approach can produce much better ap-
proximation results (near logarithmic factor) than the existing SCP
algorithm [37]. In the experimental results, we further show that
this α is typically very small (α < 0.2). Therefore, our algorithm
has near logarithmic factor approximation ratio.

We now specify α. For each selected node v ∈ S, let Ẑv be the
set of elements in Zv that are covered as a consequence of selecting
v and v′. More precisely, let ε be an element covered by (v, v′),
where v is selected before v′ is selected. If there is another node
u selected before v′ and (u, v′) is also associated with ε, this tie
can be broken arbitrarily, i.e., we only consider one pair, either
(v, v′) or (u, v′) but not both, covers ε. Without loss of generality,
let (v, v′) cover ε, and thus, we have 1) ε ∈ Zv; 2) ε ∈ Sv′ ; 3)

ε ∈ Ẑv . Let ∆Zv = Zv\Ẑv , and thus |∆Zv | = |Zv\Ẑv| is the
penalty from “overestimation”.

THEOREM 3. The ratio between the solution discovered by the

greedyCover algorithm (Algorithm 1) and the optimal solution is

bounded by 2
1−α

(ln N + 1) where α = 1
|S|

P

v∈S

|∆Zv
|

|Sv|+|Zv |
.

Let OPT be the cardinality of the optimal vertex set in A ∪ B
for covering all elements in the ground set U . Then we need to

prove
|S|

OPT
≤ 2

1−α
(ln N + 1). We note that when Algorithm 1

Algorithm 1 greedyCover(U ,G = (A ∪ B, E))

Parameter: U is the ground set and G is the bipartite graph for set cover.
1: R← ∅;
2: S ← ∅;
3: while R 6= U do
4: Select a node v from (A∪B)\S such that 1

|Sv|+|Zv |
is minimum;

5: S ← S ∪ {v}
6: Add into R new elements covered by edges induced by v and Sv .
7: end while
8: return S

selects vertex v, its corresponding Sv , Zv , and Ẑv are considered
to be finalized and will not change as the algorithm continues. In
the following proofs, we only consider these finalized values.

To prove this theorem, we first prove several lemmas.

LEMMA 1. When Algorithm 1 selects v, 1
|Sv|+|Zv |

≤ OPT

|R|
.

Proof Sketch: This is because the vertex v has the largest |Sv| +
|Zv|, and thus, considering all the vertices in the optimal solution,
we shall have (|Sv |+ |Zv |)OPT ≥ (|Sv |+ |Zv |)(OPT − S) ≥ |R|.
2.

Next, we prove the following inequality:

LEMMA 2.
P

v∈S

|Sv|
|Sv|+|Zv |

≤ OPT ·(ln |U | + 1).

Proof Sketch: First, we note that for some vertex v ∈ S, its corre-
sponding Sv can be empty (no element is immediately covered by
v and S), and thus |Sv| can be zero correspondingly. Given this,
assume we rank each element in U according to its order of cov-
ering in Algorithm 1, breaking ties arbitrarily for elements covered
in the same iteration. Let ε be the element with rank k, and cov-
ered by vertex v(ε). Let k′ be the first element being covered by

vertex v(ε), i.e., k′ = |R| + 1. Then we have 1
|Sv(ε)|+|Zv(ε)|

≤
OPT

|U|−(k′−1)
≤ OPT

|U|−k+1
(Lemma 1). Thus,

P

ε∈U
1

|Sv(ε)|+|Zv(ε)|
≤

OPT
|U|

+ OPT
|U|−1

+ · · ·+ OPT
1
≤ OPT ·(ln |U |+ 1). Since |Sv| is the

number of elements being covered when selecting node v, we have

X

v∈S

|Sv |

|Sv |+ |Zv |
=

X

ε∈U

1

|Sv(ε)|+ |Zv(ε)|
≤ OPT ·(ln |U |+ 1). 2

Lemma 2 is from the perceptive of Sv where
S

Sv = U . In the
following we show a very interesting result: The above analysis
also holds from the perspective of Ẑv .

LEMMA 3.
P

v∈S

ˆ|Zv |
|Sv|+|Zv |

≤ OPT ·(ln |U | + 1).

Proof Sketch: We will show
P

v∈S

ˆ|Zv|
|Sv|+|Zv |

≤ P

v∈S

|Sv|
|Sv|+|Zv |

.

Note that if this is true, based on the proof of Lemma 2, the lemma
holds. The key observation is that at any iteration,

S

v∈S Sv ⊆
S

v∈S Ẑv (and
S

v∈S
Ẑv =

S

v∈S
Sv = U). This is because for

every element (say ε ∈ U) to be covered by v in Sv , there must
be a node v′ already selected in S, which can link to v to cover it.
In other words, ε ∈ Ẑv′ (also described in the definition of Ẑv′).
Then, we conclude that 1

|Sv′ |+|Zv′ |
≤ 1

|Sv|+|Zv |
. This is due to

two reasons: (1) v′ is selected before v. Therefore, at the time v
is selected, 1

|Sv′ |+|Zv′ |
≤ 1

|Sv|+|Zv|
according to Algorithm 1. (2)

For any vertex u ∈ S at an iteration of Algorithm 1, 1
|Su|+|Zu|

will

either remain the same or increase for the next iteration, because
|Su| + |Zu| = |Su ∪ Zu| = |Nu\R| will not increase.

Assume 1
|Sv|+|Zv |

is the price of covering an element in Sv ,

and 1
|Sv′ |+|Zv′ |

is the price of covering an element in Ẑv′ . Thus,

P

v′∈S

|Ẑv′|

|Sv′ |+|Zv′ |
corresponds to the total cost of covering each

element in U using set {Ẑv′ : v′ ∈ S}. Therefore, we have
P

v′∈S

|Ẑv′ |

|Sv′ |+|Zv′ |
≤ P

v∈S

|Sv|
|Sv|+|Zv |

. 2

Now we prove Theorem 3.
Proof Sketch: From Lemma 2 and Lemma 3, we get

|S| =
X

v∈S

|Sv |+ |Zv |

|Sv |+ |Zv |
=

X

v∈S

|Sv |+ |Ẑv |

|Sv |+ |Zv |
+

X

v∈S

|∆Zv
|

|Sv |+ |Zv |

≤ 2OPT ·(ln |U |+ 1) +
X

v∈S

|∆Zv
|

|Sv |+ |Zv |

This can be rewritten as:

|S| ≤ OPT ·
2(ln |U |+ 1)

1− 1
|S|

P

v∈S

|∆Zv
|

|Sv|+|Zv |

≤ OPT ·
2(ln N + 1)

1− α

where α = 1
|S|

P

v∈S

|∆Zv
|

|Sv|+|Zv |
. 2

Speeding up the greedy algorithm: In the greedy algorithm, we
have to choose node v with minimum 1

|Sv|+|Zv |
. A straightfor-

ward implementation would compare all the remaining unselected
nodes in the bipartite graph. However, we observe that this value

1
|Sv|+|Zv |

can only increase or remain the same after each itera-

tion. Based on this observation, we can use a queue to maintain
1

|Sv|+|Zv |
for each v. Initially it is ranked in ascending order. Each

time we select a node from the head of the queue to update its value.
If this value is still smaller than the next value in the queue, we re-
trieve this node without updating the value for any other nodes in
the queue. Otherwise we insert it back to the queue in the order
of its new value. Note that a similar technique has been used in
the standard set cover applications [41, 28]. It can result in up to
O(|A ∪ B|) times speedup for our greedy cover algorithm.
Alternative 2-hop Solution: The original 2-hop approach [12] ap-
plies the classical set cover framework to deal with the special case
of BSC problem. However, it has prohibitive computational com-
plexity O(n3|TC(G)|) [28]. Now, we can apply our general BSC
solver to deal with the bipartite graph (G0) generated by 2-hop.
Complexity: The time complexity of the greedy algorithm is as
follows. To complete the covering, the main loop needs
O(

P

u∈V (|Lout(u)|+|Lin(u)|)) iterations in the worst case. Each
iteration, using the speedup queue technique, assuming we only
need to visit κ << n nodes in the queue, takes O(κ(log |TC(G)|+
|TC(G)|)) time to extract and update. In the next section, we will
introduce a heuristic to further reduce the cost to approximately
O(κn) in each iteration.

5. CONSTRUCTING TREE-HIGHWAY
In the previous section, we assume the spanning tree is given.

Here, we consider how to find a spanning tree which can assist in
optimal distance labeling. In addition, we discuss a simple labeling
scheme for a tree for constant-time distance oracle. Finally, we
summarize the overall high-centric labeling approach.

5.1 Tree Construction Methods
Now, we introduce two criteria for selecting the best tree to serve

as the highway structure for high-centric labeling.
Criterion 1 (Shortest-Path Tree with Maximal Cover): Here we
wish to find a spanning tree which maximally directly covers the
shortest paths in the original graph G. We say tree T directly covers
the shortest path from u to v iff the distance in T is equivalent to the
distance using the entire graph, i.e., dT (u, v) = d(u, v). Formally,
we define the objective function as follows:

C1(T) = |{(u, v)|(u, v) ∈ V × V ∧ dT (u, v) = d(u, v)}| (3)

Intuitively, the more shortest path distances are directly covered by
the spanning tree, the fewer shortest path distances are left for the
labeling process. This potentially reduces the size of labeling.

Finding the optimal tree T in G for (3) seems still very difficult.
We propose to limit our candidate trees to only the shortest-path
trees, i.e., the breadth-first search trees (BFS-trees) from vertices in
G, which have the following appealing property:

LEMMA 4. The total number of shortest paths directly covered

by a BFS-tree T is C1(T) =
P

v∈V (G) desc(v), where desc(v) is

the number of all descendants of vertex v in the tree.

That is, in a BFS-tree T , if u is the ancestor of v, then the path in
the tree from u to v is the shortest one: dT (u, v) = d(u, v). The
detailed proof is omitted for brevity. For this lemma, we can utilize
a post-order traversal to compute C1(T). Given this, we can simply
enumerate all BFS trees, compute their respective C1, and choose
the tree with maximal C1 as our spanning tree (Highway structure)
for the distance labeling. This can be done in O(n(n + m)) time.
Criterion 2 (Directed MST on Edge-Betweenness): A limitation
of the first criterion is its focus on only “directly” covered vertex
pairs based on the tree structure. However, the purpose of the tree
is to facilitate pair-wise “shortest path traffic” for all of G. Even
though a tree may not directly cover many vertex pairs, a large
number of shortest paths may employ some segment of the tree.
Now the key question is how to measure a tree’s utility for carrying
such shortest path traffic. Consider the utility of a single edge in
the tree: given an edge e = (x, y) in graph G,

b(e) = |{(u, v)|u, v ∈ V ∧ d(u, v) = d(u, x) + 1 + d(y, v)}|
records the number of pairs whose shortest path go through edge e.
In complex network theory, b(e) is referred to as the edge between-

ness [9]. Given this, we define the tree’s utility C2(T) as the sum
of all its tree edge betweenness measures: C2(T) =

P

e∈T b(e).
Thus, the optimal tree T is the one which maximizes C2(T).

This optimal spanning tree problem (for C2(T)) can be formu-
lated as a maximum directed spanning tree problem if we first com-
pute the edge betweenness b(e) for each edge e in graph G and as-
sign b(e) as the edge weight for e. Given this, we can then utilize
any well-known algorithm [11, 17] to find the maximal directed
spanning tree of G and use it in our distance labeling, which can be
done in O(n log n + m). In addition, the exact edge-betweenness
can be computed in O(mn) [9] and faster accurate approximation
can be achieved through sampling [6].

5.2 Distance Labeling for Rooted Directed Tree
Here, we introduce a simple labeling method for the rooted di-

rected tree, which can provide constant distance oracle. Specifi-
cally, in a rooted directed tree, each vertex needs record only three
numbers and offers a constant query time to answer the tree-distance
between any two vertices in the tree.

The first two numbers are the interval labeling to answer the
reachability from one vertex to another in the tree [25] and the third
number is the distance to the root of the tree (or simply the depth
of the node). There are several interval-labeling schemes [25] for
a rooted directed tree. A simple scheme is as follows. We per-
form a preorder traversal of the tree to determine a sequence num-
ber for each vertex. Each vertex u in the tree is assigned an in-
terval: [pre(u), index(u)], where pre(u) is u’s preorder number
and index(u) is the highest preorder number of u’s successors. It
is easy to see that vertex u is a predecessor of vertex v (u can reach

v in the tree) iff [pre(v), index(v)] ⊆ [pre(u), index(u)] [25].
Further, let depth(u) be the third number (the depth) of vertex

u in the tree. To answer the tree-distance query from u to v, we
first use the interval labeling to check in O(1) time if u can reach
v. If yes, we return depth(v) − depth(u) as the tree-distance, and
+∞ otherwise. Figure 2 illustrates the distance labeling scheme for
the highlighted tree, where the three numbers associated with each

vertex in the tree is the actual labeling (the first two are intervals
and the last one is the depth).

5.3 Overall Labeling Algorithm and Batch Pro-
cessing

In summary, here are the key steps of the highway-centric label-
ing approach:
(Step 1): Compute spanning tree T based on Criterion (1) or (2)
and label it with 3 integers;
(Step 2): Compute the pair-wise shortest path distances of G and
use it to construct the bipartite graph G = (A ∪ B, E);
(Step 3): Run greedy bipartite set cover(BSC) algorithm.

The time complexity of Step 1 and 3 are analyzed earlier. In
the following, we first focus on analyzing the complexity of Step
2. Here, the we need O(n(n + m)) time to compute the distance
matrix and O(n3) time complexity to construct the bipartite graph
(we will reduce this complexity later). Also, due to space limita-
tion, we will focus on the exact distance labeling (the analysis of
approximate labeling is similar). To observe the complexity of the
bipartite graph construction, we introduce the following lemma.

LEMMA 5. Given directed graph G and spanning tree T , if ver-

tex u reaches both xi and x′
i, where xi is the parent of x′

i in tree T ,

and d(u, xi)+1 = d(u, x′
i), then we can always replace (x′

i : dx′
i
)

with (xi : dxi
) in Lout(u) without affecting the correctness and

optimality of the labeling results.

Due to its simplicity, its proof is omitted. This lemma suggests
we can construct the simplified bipartite graph G = (A ∪ B, E)
for graph G by processing each vertex u as follows. For any vertex
v ∈ TC(u) (reachable by u), and for any vertex y in a shortest
path from u to v (u · · · y · · · v), there is a unique vertex x with
the following property: 1) x is on a shortest path from u to y, i.e.,

(u · · ·x · · · y · · · v) (note that x can be u or y) and 2) x to y has the

longest shortest path in the spanning tree T (dT (x, y) = d(x, y)).

Based on Lemma 5, for any u, y and v, we only need to find this
unique x and add (u, x : d(u, x)) ∈ A, (y : d(y, v), v) ∈ B, and
((u, x : d(u, x)), (y : d(y, v), v)) ∈ E .

Since x is y’s ancestor in the spanning tree T and x is on a short-
est path from u to y, we can easily compute x for every y ∈ TC(u)
using a single BFS procedure (the overall cost is O(n(m + n))
for all u ∈ V). Furthermore, the transitive closure

S

u∈V TC(u)

and the predecessor set
S

v∈V TC−1(v) (TC−1(v) records all ver-
tices which can reach v) can be computed in O(n(m+n)) (similar
to invoking BFS n times). Given this, to construct the bipartite
graph, for every u and v ∈ TC(u), we find each y ∈ TC−1(v)
with d(u, y) + d(y, v) = d(u, v) and add (u, x : d(u, x)) ∈ A,
(y : d(y, v), v) ∈ B, and ((u, x : d(u, x)), (y : d(y, v), v)) ∈ E .
Thus, the overall cost of the bipartite graph is O(n(m + n) +
P

u∈V

P

v∈TC(u) |TC−1(v)|) = O(n3).
Batch Processing: A potential issue of the overall labeling algo-
rithm is that it requires complete materialization of the distance
matrix (and also the transitive closure) for constructing the bipar-
tite graph. It can be hard to hold the entire distance matrix in main
memory for large graphs. Furthermore, the computational costs of
constructing the bipartite graph and the BSC algorithm are both
rather expensive. To deal with these problems, we utilize a batch
processing procedure which not only reduces the memory needs
but also constructs a simpler bipartite graph. The latter can speed
up both the construction and BSC algorithm.

The batch processing strategy works as follows. Instead of try-
ing to cover all the shortest pairs in a single large bipartite graph,
in each batch, we will cover all the shortest pairs starting from a
subset of vertices. Specifically, for each vertex u in the batch, we

will online compute its BFS-tree, and then add all the relevant ver-
tices/edges into the bipartite graph G. Note that a BFS-tree T en-
codes the shortest distance for any ancestor-descendent pair, i.e.,
dT (u, v) = d(u, v) if u is an ancestor of v in T . Because of this,
the bipartite graph is further simplified in the batch processing:
considering vertex u and its BFS tree is available, for any vertex
v ∈ TC(u), instead of considering every vertex y in all shortest

paths between u and v (u · · · y · · · v), we only consider one short-

est path encoded in the BFS tree. In other words, y is a vertex on
the path in the BFS tree from the root u to v. Thus, for each vertex
v, the total number of y is bounded by D, where D is the diameter
of the graph (the length of the longest shortest path). Given this,
the cost of building the simplified bipartite graph can be written as
O(n(n + m) + n2D). Since most real graphs are rather sparse
and tend to have the small-world property (D is small), the overall
time complexity is close to O(n2) for constructing bipartite graph
by batch processing.

We also note that in the simplified bipartite graph, each node
(u, x) in A links to at most Dn nodes (y, v) in B and vice versa.
Thus, the BSC algorithm, in each iteration, the update cost of se-
lecting a node in the bipartite graph is bounded by Dn. Then the
greedy BSC algorithm cost can be written as O((

P

u(|Lout(u)| +
|Lin(u)|))κ(log |TC| + Dn)) = O(Cκn2), where κ << n
(please refer to the analysis at the end of Section ??), and C =
(
P

u(|Lout(u)| + |Lin(u)|))/|V | is the average labeling cost for
each vertex. In the empirical study, C is generally less than 10 and
thus can be treated as a constant. Putting these together, we can see
that the computational complexity of the overall labeling algorithm
is close to O(n2) for large sparse graphs.

6. EFFICIENT QUERY PROCESSING
For any two vertices u and v, let us denote their corresponding

distance labels as Lout(u) = {(x1 : dx1), . . . , (xp, dxp)} and
Lin(v) = {((y1 : dy1), . . . , (yq, dyq)}, where dxi

and dyi
are

the shortest distances from u to xi and from yi to v, respectively.
A straightforward approach to answer the shortest path distance
query is to perform a pairwise join on Lout(u) and Lin(v) to find
min{dxi

+ dT (xi, yj) + dyj
}. This takes O(pq) time.

Here, we introduce an efficient query processing algorithm with
O(p + q) linear complexity. Our algorithm is based on the obser-
vation that the vertices in the set Lout ∪ Lin can form a “virtual
tree”, which can be used for matching vertices between Lout(u)
and Lin(v). Note: we say vertex “v is in L” if in fact (v : dv) ∈ L.
Specifically, the virtual tree Tuv on vertices of Lout ∪ Lin is de-
fined as follows: For any vertex pair xi and xj in Lout ∪ Lin, if

there is a path in spanning tree T from xi to xj and no other xk

in Lout ∪ Lin in this path, then we have an edge from xi to xj

in the virtual tree Tuv . In other words, Tuv is a tree structure
which preserves all the reachability relationship of those vertices in
Lout ∪ Lin on the original rooted directed tree T .

Given this, we claim that to compute the distance between u and

v, each vertex recorded in Lin(v) needs only to join with its nearest

ancestor belonging to Lout(u) in the virtual tree Tuv . Basically,
for any vertex Lin(v), instead of trying to join with all the vertices
in Lout(u) through the tree T , at most one vertex in Lout(u) is
needed for consideration. Lemma 6 supports the claim.

LEMMA 6. For any vertex yk in Lin(v), and let xi in Lout(u)
be an ancestor of yk, and xj in Lout(u) be an ancestor of xi in

Tuv . Then, we have

d(u, xi)+dT (xi, yk)+d(yk, v)≤d(u, xj)+dT (xj , yk)+d(yk, v)

Proof Sketch: Clearly, we only need to prove d(u, xi)+dT (xi, yk) ≤
d(u, xj)+d(xj , yk). Since xj is an ancestor of xi in Tuv , we have

Algorithm 2 Query(u,v)

1: merge Lin(v) and Lout(u) into Vuv in postorder of Tuv ;
2: stack ← ∅;
3: for each r ∈ Vuv {follow the postorder in Tuv} do
4: if r ∈ Lin(v) then
5: stack.push(r);
6: else

7: compute all distance D = {d(u, r) + dT (r, y) + d(y, v)} be-
tween r and its successors y in the stack;

8: distuv ← min(D, distuv);
9: remove all r’s successors from stack;

10: end if
11: end for
12: return distuv ;

dT (xj , yk) = dT (xj , xi) + dT (xi, yk). Moreover, d(u, xj) +
dT (xj , xi) ≥ d(u, xi), because d(u, xi) is the shortest distance of
any path from vertex u to vertex xi. Thus, d(u, xj)+dT (xj , yk) =

d(u, xj) + dT (xj , xi) + dT (xi, yk) ≥ d(u, xi) + dT (xi, yk).2

Based on Lemma 6 and the virtual tree Tuv , we basically need at
most q = |Lin(v)| distance check: min{dxi

+ dT (xi, yj) + dyj
},

for each yi in Lin(v), there is at most one xi in Lout(v), which is
yi’s nearest ancestor belonging to Lout(u) in Tuv . Given this, we
need to show 1) the virtual tree can be built in linear time and 2)
for each yj , its corresponding xi can b discovered in linear time.
The query procedure with O(p + q) time complexity is depicted in
Algorithm 2.
Constructing Virtual Tree Tuv: Our approach is to employ the
postorder sequence to organize the vertices in Lin(v) and Lout(u).
In a postordering, if x is a descendant of y, then x � y. We can
utilize a stack to find out the descendant-ancestor relationship in
the virtual tree. Note that we do not need to compute the pos-
tordering from scratch, because we can derive it from the exist-
ing tree interval labeling (assuming each vertex u in the tree is as-
signed an interval: [pre(u), index(u)], where pre(u) is u’s pre-

order number and index(u) is the highest preorder number of u’s
successors). The postorder can be inferred in the following way:
Given vertex x with interval [ax, bx] and vertex y with interval
[ay, by], then x � y (in the postorder) iff [ax, bx] ⊆ [ay, by], or
[ax, bx] * [ay, by] ∧ bx < by . Thus, we can sort each label set
easily (Lin(v) and Lout(u) both are organized in postorder of the
spanning tree T), and more importantly, we can merge the sorted
Lout and Lin in linear time (this corresponds the merging step, line
1, in the Query algorithm).
Post-Order Traversal: Once the virtual tree Tuv is constructed,
we perform a post-order traversal of the every vertex in Tuv . This is
because the postorder traversal simulates a process to visit each ver-
tex first before visiting its predecessors in increasing order accord-
ing to their distance to this vertex. This procedure guarantees that a
vertex’s nearest predecessor will be visited before other predeces-
sors. Therefore, we can traverse in postorder to quickly identify the
nearest ancestor in Lout(u) for any yj in Lin(v). Specifically, for
each vertex r, if it belongs to Lin(v), then it is temporarily stored
in a stack (lines 4 to 5) for further computations; otherwise (the ver-
tex belongs to Lout(u)), then we join all vertices in the stack which
are its descendents, and compute a distance between u and v (lines
7 to 8). Furthermore, each vertex in the stack will be processed at
most once (Line 9). Put together, the query procedure needs only
O(p + q) time.

7. EMPIRICAL STUDY
In this section, we empirically study the performance of our ap-

proach, comparing it with other state-of-the-art distance query an-

Dataset #V #E Avg.Deg Dia. Avg.LD

AgroCyc 13969 17694 1.27 20 13.2

Ecoo157 13800 17308 1.25 22 13.5

GO 6793 13361 1.97 11 2.3

HpyCyc 5565 8474 1.52 22 13.2

Nasa 5704 7942 1.39 24 3.1

P2PG08 4055 12443 3.07 17 11.9

P2PG09 4179 11944 2.86 18 13.7

Reactome 3678 14447 3.93 24 14.9

Vchocyc 10694 14207 1.33 22 13.5

Xmark 6483 7654 1.18 38 9.0

Wiki-Vote 7115 103689 14.57 10 4.7

CiteSeer.scc 693947 312282 0.45 12 2.3

Table 3: Real datasets

swering schemes on real and synthetic datasets. Specifically, our
benchmarks include: the classical breadth-first search BFS and the
state-of-the-art ALT algorithm (combining A∗ search, Landmark
technique and Triangle inequality) [22, 23] in the online search cat-
egory; the 2HOP exact distance labeling scheme [12]; and Sketch,
the latest landmark-based approximate distance query algorithm [14].
For our HCL labeling scheme, we consider the following alterna-
tives: 1) OptHCL-1, HCL using approximate set cover algorithm
and shortest-path tree with maximal cover criterion; 2) OptHCL-

2, HCL using approximate set cover algorithm and directed MST
with Edge-Betweenness criterion; 3) NaïveHCL, HCL using the
naïve greedy algorithm from the set-cover-with-pairs problem [37].
4) 2HOP, the original 2-hop algorithm introduced by Cohen et

al. [12]; and 5) BSC2HOP, a new implementation of 2-hop based
on the bipartite set cover framework.

In addition, note that Sketch can only approximate the distance
query, utilizing sampling techniques to control the approximation
accuracy. A parameter k determines the number of sampling times
(typically the higher the k, the larger the index size, and the higher
the accuracy). In [14], the parameter k is set between 1 to 20. To
make a fair comparison with exact distance query, Sketch’s param-
eter K is set to be 10 as it is the smallest sampling times which can
produce indices with an average additive distance error to be within
1 in most datasets. For the approximate distance query, when ε is
set to be 0.5 and 1, Sketch’s parameter K is set to be 5 and 8, re-
spectively, for comparable distance approximation accuracy (with
respect to the HCL). For ALT, we observe that the forward ALT is
around 2 times faster than bidirectional ALT [22] in directed un-
weighted graphs, even though fewer vertices are visited by the lat-
ter. Thus, we use the forward ALT as the benchmark, and we also
use 8 randomly selected landmarks for pruning.

In each experiment, we measured the labeling time, label size,
and query time needed to answer 100,000 random queries. In ad-
dition, the real value of α is also recorded to show how close our
results are to the approximate logarithmic bound mentioned in sub-
section 4.2. We implemented all algorithms in C++. All exper-
iments were conducted on a Linux server with 2.48GHz AMD
Opteron processors and 24GB RAM.

7.1 Real Data
To validate our approaches on real-world datasets, we collected

12 datasets, listed in Table 3. We also present important character-
istics of all real graphs, where Avg.Deg is the average out-degree
(i.e., |E|/|V |, which is also equivalent to the average in-degree in
the directed graphs), Dia. is graph diameter and Avg.LD is aver-
age value of longest distances starting from vertices having imme-
diate neighbors (i.e., vertex’s in-degree is greater than 0 or vertex’s
out-degree is greater than 0). These graphs are generally sparse
(the average degree is small). The graph size ranges from a few
thousand to almost 700, 000 vertices. AgroCyc, Ecoo157, Hpy-

Dataset α
Label Size Query Time (in ms)

OptHCL-2 NaiveHCL BSC2Hop Sketch OptHCL-2 NaiveHCL BSC2Hop Sketch ALT BFS

AgroCyc 0.17 42199 2033601 138418 292831 36.432 7324.4 43.957 100.821 25865.4 2322.76

Ecoo157 0.17 40758 1808305 130883 273210 33.429 5606.29 42.435 81.189 28972.2 2236.29

GO 0.10 20891 71388 64283 97227 28.24 136.732 33.352 40.263 2676.6 923.28

HpyCyc 0.18 23336 773741 67777 160026 47.662 6419.93 45.662 89.648 30658.4 1296.73

Nasa 0.04 10592 48984 36295 91792 14.053 54.241 24.535 37.292 3282.8 804.962

P2PG08 0.13 120995 3358392 268565 327331 1947.17 205580 1229.47 217.326 81379.4 2576.75

P2PG09 0.13 121983 3307903 274135 326105 1830.76 187586 1321.96 192.093 126586 2675.4

Reactcome 0.26 40755 6738338 452061 415157 395.917 1.06E+06 5.45E+02 4.75E+02 229649.6 4203.81

VchoCyc 0.19 37655 1801417 118069 253651 41.736 9841.03 47.847 100.287 47067.6 1991.13

Xmark 0.09 25617 654397 103777 315450 79.999 2685.32 132.128 139.823 43692.6 1330.66

Wiki-Vote 0.05 323444 15822487 2173473 517178 2817.94 2.35E+06 1434.8 204.919 1690304 10078.1

CiteSeer.scc 0.17 1182295 1165706 1044328 585114 22.908 21.735 47.673 37.448 463.4 84560.7

Table 1: Label Size and Query Time of Real Datasets

Dataset
Label Size Query Time

OptHCL-2 ε = 0.5 ε = 1 Sketch (K=8) Sketch (K=5) OptHCL-2 ε = 0.5 ε = 1 Sketch (K=8) Sketch (K=5)

AgroCyc 42199 32993 28810 252886 180886 36.432 27.313 22.528 84.585 58.654

Ecoo157 40758 31799 27820 230037 168842 33.429 25.837 21.222 77.167 53.547

GO 20891 19195 19035 93808 70904 28.24 28.552 27.888 38.815 35.944

HpyCyc 23336 18048 16126 136267 99781 47.662 33.509 30.578 65.164 52.027

Nasa 10592 10382 10235 85991 69096 14.053 13.836 13.574 36.458 34.512

P2PG08 120995 53735 31989 276314 183689 1947.17 597.509 266.974 176.473 103.942

P2PG09 121983 55759 34165 276602 180089 1830.76 520.932 246.527 158.289 97.619

Reactcome 40755 33731 31570 347529 237151 395.917 3.38E+02 293.849 3.82E+02 2.44E+02

VchoCyc 37655 28868 24336 225920 161930 41.736 32.375 24.871 90.008 61.854

Xmark 25617 19843 17495 267994 179680 79.999 60.264 50.462 118.416 72.772

Wiki-Vote 323444 223151 149221 431653 288564 2817.94 1655.02 917.502 161.852 110.893

CiteSeer.scc 1182295 1182295 1182295 580183 564717 22.908 23.541 23.041 37.221 38.13

Table 2: Label Size and Query Time on Real Datasets with Approximation Error

Cyc, GO and VchoCyc are from EcoCyc; Xmark and Nasa are
XML documents; Reactome is a metabolic network; CiteSeer.scc
is extracted from the citation graph indexed by CiteSeer; P2PG09
is extracted from a sequence of snapshots of the Gnutella network
collected in September 2002; and Wiki-Vote describes the relation-
ships between users and their related discussion from the inception
of Wikipedia until January 2008.

Due to space limitation, we present results only for OptHCL-2,
NaïveHCL, and BSC2HOP based on the new highway-centric la-
beling scheme. In the next subsection, we will show that OptHCL-1
has slightly worse performance than OptHCL-2, due to the directed
MST with Edge-Betweenness criterion producing a better tree for
the highway centric labeling. In addition, 2HOP cannot work on
most of the datasets due to insufficient scalability. We include these
approaches for comparison on small synthetic datasets in the next
subsection.

Table 1 shows the label size and query time for different query
answering approaches. The label sizes for the online search algo-
rithms BFS and ALT are not applicable. We also record the α value
for OptHCL-2. Recall that α is an important parameter to indicate
how close the approximation bound comes to a logarithmic bound
(2
1−α

(ln N + 1), Subsection 4.3.1). The smaller the α is, the bet-
ter the bound is. In our results, we can see that the value of α is
quite small, close to or less than 0.2 in most cases. Thus this con-
firms that the new approximation algorithm has almost logarithmic
approximation bound.

Label Size: In the table, we see that OptHCL-2 and BSC2HOP
consistently have the smaller label size. The size advantage of the
new greedy algorithm (Subsection 4.3.1) is clearly demonstrated.
Using the new BSC algorithm, the labeling sizes of OptHCL-2 are
more than one order of magnitude smaller than those from Naïve-
HCL, which uses the original greedy algorithm based on the set-
cover-with-pairs [37]. Interestingly, even compared with Sketch
(K = 10), an approximate landmark-based distance labeling scheme,

OptHCL-2 has smaller labeling size. The OptHCL-2 is much better
than Sketch in 11 out of 12 datasets.

Query Time: In terms of query answering time, both OptHCL-2
and BSC2HOP are much faster than other distance answering ap-
proaches. OptHCL-2 is on average around 1.5 times faster than the
Sketch method. We also found that on unweighted graphs, the ad-
vanced search algorithm ALT does not perform well, being much
slower than BFS. Without the edge weight and spatial/planar prop-
erties, the advanced pruning seems not to be very helpful. Overall,
OptHCL-2 (and BSC2HOP) achieves significantly faster perfor-
mance compared with ALT and BFS. In many cases, the speedup
is close to two orders of magnitude. In addition, OptHCL-2 and
BSC2HOP are on average more than two orders of magnitude faster
than NaïveHCL. Interestingly, in several datasets, BSC2HOP is
faster than OptHCL-2 even it has larger label size. This is be-
cause the query processing of OptHCL-2 needs more operations
(e.g. merging two sets of vertices, temporary stack operations, and
checking whether vertices in the temporary stack can be reached
in the spanning tree introduced in Section 6) though both with the
same query time complexity.

Labeling Time: For labeling time, OptHCL-2 takes 180, 157,
11, 51, 10, 322, 331, 397, 141, 110, 1003, and 253104 seconds to
construct indexing for 12 real datasets in the same order with Table
3. BSC2HOP is approximately 1.5 times slower. Since NaïveHCL
spends much more time than BSC2HOP, we do not report its label-
ing time here.

Approximation: In Table 2, we report the effect of approxima-
tion accuracy ε on the labeling size and query time. Here we com-
pare OptHCL-2 with Sketch approximate distance labeling method.
With the approximation accuracy parameter ε increasing from 0 to
0.5 and 1, we observe that both labeling size and query time are re-
duced. The label sizes of OptHCL-2 with approximation errors 0.5
and 1 are only 77% and 67% of exact OptHCL-2. Their query per-
formance is 1.6 and 2.5 time faster than that of OptHCL-2. Com-
paring them with Sketch, we see that query times of OptHCL-2

#V
Query Time (in ms)

OptHCL-1 OptHCL-2 NaiveHCL 2HOP BSC2HOP BFS

200 92.293 96.569 1967.56 535.753 121.447 251.951

400 166.297 177.43 5106.69 1387.78 248.939 430.28

600 209.905 245.966 10088.2 3169.97 330.853 586.934

800 171.904 179.511 12206.9 4264.74 329.784 684.068

1000 261.794 346.508 26514.8 6630.36 487.206 899.803

Table 4: Query Time of Small Synthetic Datasets

with ε = 0.5 and ε = 1 are approximately 1.3 and 1.5 times
faster, respectively, than Sketch with K = 5. The labeling sizes
of OptHCL-2 with ε = 0.5 and ε = 1 are on average 4.7 and 5.6
times smaller, respectively, than that of Sketch with K = 5. How-
ever, since the approximation labeling can significantly increase
the density of the bipartite graph (for BSC), for large or dense
graphs (like Wiki-Vote and CiteSeer.scc) and may introduce mem-
ory thrash, it can take too long to produce the labeling. The labeling
time of OptHCL-2 for the datasets (from top to bottom) in Table 6
are 245 (343), 228 (301), 12 (13), 72 (101), 10 (10), 611 (857),
627 (871), 885 (1234), 210 (268), 137 (181), 1817 (2531) and
233957 (255904) seconds, respectively when ǫ = 0.5 (ǫ = 1). Ba-
sically, when the ǫ increases (more flexible distance estimation), the
smaller is the index size, the faster is the query time, and the larger
is the construction cost. This is because as we relax the distance
error ratio (see (2) in Subsection 4.2), the bipartite graph becomes
denser, taking longer time to discover the optimal cover.

7.2 Synthetic Data
We ran three sets of experiments using synthetic random directed

graphs. Here, we focus on comparing different variants of exact
labeling approaches. In the first experiment, we generated a set
of random directed graphs with average out-degree (and also in-
degree) of 1.5, varying the number of vertices from 200 to 1000.
We compared six approaches, OptHCL-1, OptHCL-2, NaïveHCL,
2HOP, BSC2HOP, and BFS in this experiment. The number of
vertices is small in the first test because the original 2HOP does not
handle large graphs well.

Figure 5(a) shows the label size of five approaches. Here, OptHCL-
1 and OptHCL-2 always obtain the best results among all algo-
rithms. In particular, the label size of OptHCL-1 and OptHCL-2 are
significantly better than 2HOP or BSC2HOP’s. Overall, OptHCL-
1 and OptHCL-2 are on average about 23 times and 25 times better
than 2HOP, and about 11 times and 12 times better than Naïve-
HCL. Moreover, the label sizes of OptHCL-1 and OptHCL-2 are
on average approximately 2.9 and 3.2 times smaller than that of
BSC2HOP, respectively. Especially, BSC2HOP is on average 8
times better than the original 2HOP, confirming the power of the
bipartite set cover framework. On the other hand, OptHCL-2 is
always better than OptHCL-1 on all datasets.

Table 4 reports the query time of six algorithms including breadth-
first search. Both OptHCL-1 and OptHCL-2 are approximately 3
times faster than BFS on answering distance queries. The label
size directly affects the query time results, such that both OptHCL-
1 and OptHCL-2 are much faster than the queries on 2HOP and
NaïveHCL by an average of 13 times and 47 times, respectively.
For labeling time, as we expected, 2HOP takes much longer label-
ing time than other approaches. The three approaches, OptHCL-1,
OptHCL-2, and NaïveHCL, which employ the same bipartite set
cover framework vary only slightly on the labeling time.

Next, we evaluate the performance of the HCL approach on syn-
thetic data with different graph sparsity. In this experiment, we
generate a set of random directed graphs with 5000 vertices, while
varying the average out-degree from 1.2 to 2.

The query times of all three algorithms are listed in Table 5. As
expected, the large label size greatly influences the query time. In

Avg.Deg
Query Time (in ms)

OptHCL-2 NaiveHCL BSC2HOP BFS

1.2 115.2 9727.06 293.65 1793.43

1.4 715.1 134390 1353.48 3534.48

1.6 3599.9 553867 3912.90 5033.43

1.8 6898.5 1.22E+06 6558.09 6042.27

2 9528.2 1.74E+06 9464.09 6541.99

Table 5: Query Time of Synthetic Dataset (5K) varying sparsity

our test, OptHCL-2 is 157 times faster than NaïveHCL on answer-
ing 100,000 randomly generated queries. For the other two ap-
proaches, OptHCL-2 is on average 4.7 times faster than BFS, and
1.5 times faster than BSC2HOP. In addition, on average, the label
size of OptHCL-2 is about 34 times and 3 times smaller than those
of NaïveHCL and BSC2HOP, respectively. Also, in terms of the
labeling time, OptHCL-2 is consistently the most efficient one on
all graphs with different vertex degree. Due to the space limitation,
the figures on the labeling size and time is omitted here.

Dataset
Query Time (in ms)

OptHCL-2 NaiveHCL BSC2HOP BFS

DAG200K 41.134 58.301 64.793 13609.9

DAG400K 36.545 54.953 55.291 43275.8

DAG600K 32.902 56.14 64.938 94253.7

DAG800K 40.752 56.199 184.936 144556

DAG1M 53.387 67.224 245.925 185319

Table 6: Query Time of Large DAG Datasets
To test the scalability of our highway-centric approach on large

DAGs (directed acyclic graphs), we generate very large DAGs, with
the number of vertices ranging from 200K to 1M , while keep the
average out-degree at 1.5. Figure 5(b) and Figure 5(c) show the
label size and labeling time of three algorithms. For label size, we
can see that OptHCL-2 is better than NaïveHCL and BSC2HOP,
outperforming them by approximately 20% and 33% label size,
respectively. We observe that HCL’s performance on large DAGs
is not as impressive as it was with the previous random directed
graphs. Our approximate set cover with pairs algorithm tends to
work very well on graphs with large transitive closure, because one
label potentially covers many shortest paths in this case. However,
in directed acyclic graphs, the transitive closure size is significantly
smaller than in random directed graphs. This eventually leads to a
decrease of improvement on label size compression rate. As in
previous experiments, OptHCL-2 is still the fast labeling approach
among three algorithms. Table 6 lists the query time of four algo-
rithms. Overall, OptHCL-2 is significantly faster than BFS, outper-
forming it by more than 2000 times. It is on average 1.5 times and
2.8 times faster than NaïveHCL and BSC2HOP.

8. CONCLUSION
In this paper, we propose to answer distance queries in large

sparse graphs by a highway-centric labeling scheme. We find an in-
teresting link between our labeling problem and Bipartite Set Cover
(BSC) problem. To find a near optimal solution to the BSC prob-
lem, we propose an elegant yet simple algorithm, and prove rigor-
ously that our algorithm yields a non-trivial logarithmic bound. We
show both theoretically and empirically that HCL is better than 2-
hop, the state-of-the-art labeling scheme for exact distance queries,
in all key aspects – labeling size, query time, and indexing time.
We plan to study how to further scale HCL and its incremental
maintenance on dynamic graphs.

9. REFERENCES
[1] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. A

hub-based labeling algorithm for shortest paths in road networks. In
Proceedings of the 10th international conference on Experimental

algorithms, 2011.

[2] I. Abraham, A. Fiat, A. V. Goldberg, and R. F. Werneck. Highway
dimension, shortest paths, and provably efficient algorithms. In
SODA ’10, 2010.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 200 400 600 800 1000

L
ab

le
 S

iz
e

|V|

Lable size of small synthic datasets

OptHCL-1
OptHCL-2
NaiveHCL

2HOP
BSC2HOP

(a) Small Synthetic Datasets (200-1K)

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

L
a
b
e
l
S

iz
e

|V|

Label size of large DAG datasets

OptHCL-2
NaiveHCL
BSC2HOP

(b) Large Synthetic DAG (200K-1M)

 0

 5000

 10000

 15000

 20000

 25000

 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

L
a
b
e
lin

g
 T

im
e

|V|

Labeling Time of large DAG datasets (in Sec)

OptHCL-2
NaiveHCL
BSC2HOP

(c) Large Synthetic DAG (200K-1M)

Figure 5: Experimental Results of Synthetic Datasets

[3] R. Agrawal and H. V. Jagadish. Algorithms for searching massive
graphs. TKDE, 6(2):225–238, 1994.

[4] Stephen Alstrup, Philip Bille, and Theis Rauhe. Labeling schemes
for small distances in trees. In SODA, pages 689–698, 2003.

[5] K. Anyanwu and A Sheth. P-queries: enabling querying for semantic
associations on the semantic web. In WWW ’03, 2003.

[6] D. A. Bader, S. Kintali, and M. Madduri, K.and Mihail.
Approximating betweenness centrality. In WAW’07: Proc. 5th Int’l

Conf. Algor. and models for the web-graph, 2007.

[7] H. Bast, S. Funke, P. Sanders, and D. Schultes. Fast Routing in Road
Networks with Transit Nodes. Science, 316:566–, April 2007.

[8] R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, and
D. Wagner. Combining hierarchical and goal-directed speed-up
techniques for dijkstra’s algorithm. J. Exp. Algorithmics, 15, March
2010.

[9] U. Brandes. A faster algorithm for betweenness centrality. Journal of

Mathematical Sociology, 25:163–177, 2001.

[10] J. Cheng and J. X. Yu. On-line exact shortest distance query
processing. In EDBT ’09, 2009.

[11] Y. J. Chu and T. H. Liu. On the shortest arborescence of a directed
graph. Science Sinica, 14:1396–1400, 1965.

[12] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick.
Reachability and distance queries via 2-hop labels. SIAM J. Comput.,
32(5):1338–1355, 2003.

[13] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to Algorithms. McGraw Hill, 1990.

[14] A. Das Sarma, S. Gollapudi, and R. Najork, M.and Panigrahy. A
sketch-based distance oracle for web-scale graphs. In WSDM ’10,
2010.

[15] D. Delling, P. Sanders, D. Schultes, and D. Wagner. Algorithmics of
large and complex networks. chapter Engineering Route Planning
Algorithms. 2009.

[16] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1):269–271, December 1959.

[17] J. Edmonds. Optimum branchings. J. Research of the National

Bureau of Standards, 71B:233–240, 1967.

[18] U. Feige. A threshold of ln n for approximating set cover. J. ACM,
45(4):634–652, 1998.

[19] C. Gavoille, D. Peleg, S. Pérennes, and R. Raz. Distance labeling in
graphs. J. Algorithms, 53(1):85–112, 2004.

[20] Cyril Gavoille, David Peleg, Stéphane Pérennes, and Ran Raz.
Distance labeling in graphs. J. Algorithms, 53(1):85–112, 2004.

[21] R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction
hierarchies: faster and simpler hierarchical routing in road networks.
In Proceedings of the 7th international conference on Experimental

algorithms, 2008.

[22] A. V. Goldberg and C. Harrelson. Computing the shortest path: A
search meets graph theory. In SODA ’05, 2005.

[23] A. V. Goldberg, H. Kaplan, and R. F. Werneck. Reach for a*:
Efficient point-to-point shortest path algorithms. In IN WORKSHOP

ON ALGORITHM ENGINEERING and EXPERIMENTS, pages
129–143, 2006.

[24] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and
H. Garcia-Molina. Proximity search in databases. In VLDB ’98, 1998.

[25] G. Gou and R. Chirkova. Efficiently querying large xml data
repositories: A survey. TKDE, 19(10):1381–1403, 2007.

[26] A. Gubichev, S. Bedathur, S. Seufert, and G. Weikum. Fast and
accurate estimation of shortest paths in large graphs. In CIKM ’10,
2010.

[27] R. J. Gutman. Reach-based routing: A new approach to shortest path
algorithms optimized for road networks. In ALENEX/ANALC, pages
100–111, 2004.

[28] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-hop: a high-compression
indexing scheme for reachability query. In SIGMOD’09, 2009.

[29] N. Jing, Y. Huang, and E. A. Rundensteiner. Hierarchical encoded
path views for path query processing: An optimal model and its
performance evaluation. TKDE, 10(3):409–432, 1998.

[30] S. Jung and S. Pramanik. An efficient path computation model for
hierarchically structured topographical road maps. TKDE,
14(5):1029–1046, 2002.

[31] J. Kleinberg, A. Slivkins, and T. Wexler. Triangulation and
embedding using small sets of beacons. In FOCS ’04, 2004.

[32] H. Kriegel, P. Kröger, M. Renz, and T. Schmidt. Hierarchical graph
embedding for efficient query processing in very large traffic
networks. In SSDBM ’08, 2008.

[33] C. Castillo M. Potamias, F. Bonchi and A. Gionis. Fast shortest path
distance estimation in large networks. In CIKM ’09, 2009.

[34] T. S. Eugene Ng and H. Zhang. Predicting internet network distance
with coordinates-based approaches. In INFOCOM, 2001.

[35] David P. Proximity-preserving labeling schemes and their
applications. Journal of Graph Theory, 33(3):167–176, 2000.

[36] I. Pohl. Bi-directional search. Machine Intelligence, 6:124–140,
1971.

[37] H. Refael and S. Danny. The set cover with pairs problem. In
FSTTCS 2005: Foundations of Software Technology and Theoretical

Computer Science, 25th Int’l Conference, 2005.

[38] H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable network
distance browsing in spatial databases. In SIGMOD’08, 2008.

[39] P. Sanders and D. Schultes. Highway hierarchies hasten exact
shortest path queries. In 17th Eur. Symp. Algorithms (ESA), 2005.

[40] J. Sankaranarayanan, H. Samet, and H. Alborzi. Path oracles for
spatial networks. PVLDB, 2, August 2009.

[41] R. Schenkel, A. Theobald, and G. Weikum. HOPI: An efficient
connection index for complex XML document collections. In EDBT,
2004.

[42] S. Shekhar, A. Fetterer, and B. Goyal. Materialization trade-offs in
hierarchical shortest path algorithms. In SSD ’97, 1997.

[43] G. Swamynathan, C. Wilson, B. Boe, K. Almeroth, and B. Y. Zhao.
Do social networks improve e-commerce?: a study on social
marketplaces. In WOSP ’08: Proc. 1st workshop on Online social

networks, 2008.

[44] Y. Tao, C. Sheng, and J. Pei. On k-skip shortest paths. In
SIGMOD’11, 2011.

[45] M. Thorup and U. Zwick. Approximate distance oracles. J. ACM,
52(1):1–24, 2005.

[46] M. V. Vieira, B. M. Fonseca, R. Damazio, P. B. Golgher, D. de C.
Reis, and B. Ribeiro-Neto. Efficient search ranking in social
networks. In CIKM ’07, 2007.

[47] F. Wei. Tedi: efficient shortest path query answering on graphs. In
SIGMOD’10, 2010.

