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ABSTRACT

In this paper, we propose a set of novel regression-based ap-
proaches to effectively and efficiently summarize frequent item-
set patterns. Specifically, we show that the problem of minimiz-
ing the restoration error for a set of itemsets based on a proba-
bilistic model corresponds to a non-linear regression problem.
We show that under certain conditions, we can transform the
non-linear regression problem to a linear regression problem.
We propose two new methods, k-regression and tree-regression,
to partition the entire collection of frequent itemsets in order
to minimize the restoration error. The K-regression approach,
employing a K-means type clustering method, guarantees that
the total restoration error achieves a local minimum. The tree-
regression approach employs a decision-tree type of top-down
partition process. In addition, we discuss alternatives to estimate
the frequency for the collection of itemsets being covered by the
k representative itemsets. The experimental evaluation on both
real and synthetic datasets demonstrates that our approaches sig-
nificantly improve the summarization performance in terms of
both accuracy (restoration error), and computational cost.

Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database Applications - Data Mining

General Terms: Algorithms, Performance

Keywords: frequency restoration, pattern summarization, regres-
sion

1. INTRODUCTION
Since its introduction in [3], frequent pattern mining has re-

ceived a great deal of attention and quickly evolved into a ma-
jor research subject in data mining. The tools offered by fre-
quent pattern mining research span a variety of data types, in-
cluding itemsets, sequences, trees, and graphs [25, 4, 31, 5]. Re-
searchers from many scientific disciplines and business domains
have demonstrated the benefits from frequent pattern analysis—
insight into their data and knowledge of hidden mechanisms [10].
At the same time, frequent pattern mining serves as a basic tool
for many other data mining tasks, including association rule min-
ing, classification, clustering, and change detection [14, 32, 13,
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15]. Recently, standard frequent mining tools, like Apriori, have
been incorporated into several commercial database systems [18,
30, 23].

The growing popularity of frequent pattern mining, however,
does not exempt it from criticism. One of the major issues facing
frequent pattern mining is that it can (and often does) produce an
unwieldy number of patterns. So-called complete frequent pat-
tern mining algorithms try to identify all the patterns which occur
more frequently than a minimal support threshold (θ) in the de-
sired datasets. A typical complete pattern mining tool can easily
discover tens of thousands, if not millions, of frequent patterns.
Clearly, it is impossible for scientists or any domain experts to
manually go over such a large collection of patterns. In some
sense, the frequent patterns themselves are becoming the “data”
which needs to be mined.

Indeed, reducing the number of frequent patterns has been a
major theme in frequent pattern mining research. Much of the
research has been on itemsets; itemset data can be generalized
to many other pattern types. One general approach has been to
mine only patterns that satisfy certain constraints; well-known
examples include mining maximal frequent patterns [21], closed
frequent patterns [19] and non-derivable itemsets [8]. The last
two methods are generally referred to as lossless compression
since we can fully recover the exact frequency of any frequent
itemsets. The first one is lossy compression since we cannot re-
cover the exact frequencies. Recently, Xin et al. [27] generalize
closed frequent itemsets to discover a group of frequent itemsets
which δ-cover the entire collection of frequent itemsets. If one
itemset is a subset of another itemset and its frequency is very
close to the frequency of the latter superset, i.e., within a small
fraction (δ), then the first one is referred to as being δ-covered by
the latter one. However, the patterns being produced by all these
methods are still too numerous to be very useful. Even the δ-
cover method easily generates thousands of itemset patterns. At
the same time, methods like top-k frequent patterns [11], top-k
redundancy-aware patterns [26], and error-tolerant patterns [29]
try to rank the importance of individual patterns, or revise the fre-
quency concept to reduce the number of frequent patterns. How-
ever, these methods generally do not provide a good representa-
tion of the collection of frequent patterns.

This leads to the central topic of this paper: what are good
criteria to concisely represent a large collection of frequent item-
sets, and how can one find the optimal representations efficiently?
Recently, several approaches have been proposed to tackle this
issue [2, 28, 24]. Two key criteria being employed for evaluating
the concise representation of itemsets are the coverage criterion
and frequency criterion. Generally speaking, the coverage crite-
rion assumes the concise representation is composed of a small
number of itemsets with the entire collection of frequent item-
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sets represented or covered by those itemsets. Typically, if one
itemset is a subset of another, then we refer to the first one as
being covered (or represented) by the latter one. The frequency
criterion refers to the capability of the frequency of any frequent
itemset to be inferred (or estimated) from the concise representa-
tion. Following these criteria, we summarize the previous efforts.

1.1 Prior Work on Frequent Pattern
Summarization

The Spanning Set Approach [2]: In this work, the authors de-
fine a formal coverage criterion and propose to use K itemsets as
a concise representation of a collection of frequent itemsets. Ba-
sically, the K itemsets are chosen to maximally cover the collec-
tion of frequent itemsets. They further show that finding such K
itemsets corresponds to the classical set-cover problem and thus
is NP-hard. The well-known greedy algorithm is applied to find
the concise representation.
The major problem with this approach is that the frequency

(or the support measure) is not considered. Indeed, how to effec-
tively integrate a frequency criterion with the coverage criterion
is an open problem pointed out by the authors in [2].
The Profile-Based Approach [28]: Yang et al.’s work [28] is
the first attempt to answer the call from [2]. Their concise rep-
resentation is derived from the K clusters formed by all frequent
itemsets. All frequent itemsets in a cluster are covered and esti-
mated by a so-called pattern profile, which contains three com-
ponents. The first component is an itemset which is the union of
all the frequent itemsets in the cluster. For instance, if a cluster
contains three frequent itemsets, {a, c}, {a, d, e} and {c, f, g},
then their first component is the itemset {a, c, d, e, f, g}. Let D
be the set of transactions in which these itemsets occur. Then, the
second component is the total number of transactions in D, and
the third component (also referred to as the distribution vector)
records all the relative frequencies for each individual item in D.
Given this, a frequent itemset in the cluster is estimated based
on the independence assumption: for instance, the frequency of
{a, c} is estimated as p({a, c, d, e, f, g}) × p(a) × p(c), where
p({a, c, d, e, f, g}) is the relative size ofD in the entire database,
and p(a), p(c) are the relative frequencies for items a and c in
D. To form the K clusters, they propose applying the Kullback-
Leibler divergence of the distribution vectors to pairs of pattern
profiles. Initially, the profile for an individual frequent itemset
is derived by treating it as a single-member cluster. Given this,
they apply hierarchical agglomerative and k-means clustering to
partition the collection of itemsets into K clusters.
The Markov Random Field Approach [24]: Wang et al. tar-
get better estimation of the frequent itemsets. They propose the
construction of a global Markov random field (MRF) model to
estimate the frequencies of frequent itemsets. This model utilizes
the dependence between items, specifically, the conditional inde-
pendence, to reduce their estimation error. Specifically, this ap-
proach processes all the frequent itemsets in a level-wise fashion.
In each level, it identifies those frequent itemsets which cannot
be estimated well by the current model, i.e., the estimation er-
ror is higher than a user-defined tolerance threshold (δ), and add
those itemsets into the model. Then, it will re-train the model
after each level if any new itemsets are added. In the empirical
study, their model shows better estimation accuracy than earlier
approaches.
Though the last two approaches make significant progress to-

wards restoring frequencies for frequent itemsets, they fall short
of being effective and efficient for pattern summarization from
several perspectives. First, with regard to effectiveness, the key
question is how we can minimize the estimation error (restora-

tion error) given the collection of itemsets. Both approaches,
however, are very heuristic in nature and so do not provide any
theoretical justification of why their methods can achieve such
goal. As for efficiency, both approaches are computationally ex-
pensive. For instance, Yang et al.’s method must repetitively ac-
cess the original database, and the heuristics they introduce to
avoid such access do not maintain good estimation results. Wang
et al.’s approach repetitively invokes the expensive probabilis-
tic learning procedures, such as the Junction tree inference and
MCMC procedure [24]. Finally, neither method considers cov-
erage rate; it is not clear how their methods can integrate with the
spanning set approach to provide frequency estimation in addi-
tion to the coverage criterion. In other words, the open problem
raised by [2] has yet to be answered.

1.2 Problem Definition
Based on our discussion, we see that the effective and efficient

restoration of the frequency of summarized frequent itemsets re-
mains a significant open problem. Before we formally define this
problem, we present some basic notation.

Let I be the set of all items I = {o1, o1, · · · , om}. An itemset
or a pattern P is a subset of I(P ⊆ I). A transaction database is
a collection of itemsets, D = {d1, d2, · · · , dn}, such that di ⊆
I , for all i = 1, 2, · · · , n. The collection of transactions that con-
tains P is represented as DP = {di|P ⊆ di and di ∈ D}. The
frequency of an itemset P is denoted as f(P ) = |DP |/|D|. Let
Fα be the collection of frequent itemsets with minimum support
α: Fα = {P : |DP | ≥ α}.

DEFINITION 1. (Restoration Function and Restoration Er-
ror) A restoration (estimation) method for a set of itemsets S is

a function mapping S to a value between 0 to 1: f̂ : S → [0, 1].
The restoration quality can be measured by a p-norm for the rel-

ative error (or alternatively the absolute error):

Ep =
X

P∈S

|
f̂(P ) − f(P )

f(P )
|p =

X

P∈S

|1 −
f̂(P )

f(P )
|p

For computational purpose, the 2-norm is chosen in this study.
Clearly, the best restoration quality a restoration method can achieve
is Ep = 0. However, using this measure, this would mean either
we record the frequency of each itemset or the restoration method
scans the original database. Such methods provide neither a suc-
cinct representation nor better interpretation of the collection of
itemsets. We would like a restoration function to be more con-
cise.

To build a concise restoration function for S, certain proba-
bilistic models with a list of parameters Θ = (θ1, · · · , θm) are
commonly employed. Generally speaking, the fewer the number
of parameters, the more concise the model is. For instance, in
[28], a probabilistic model employs the independence assump-
tion for all the items in a set of S. The number of parameters for
this model is bounded by the number of items in S. For a more
complex model, such as the MRF model [24], the number of
parameters can change depending on the number of constraints
being incorporated into the model. Given this, we can see that
finding a concise restoration function needs to consider both the
feature selection and model fitting issues [12].

In this study, we will investigate how to identify the best pa-
rameters for the restoration function utilizing probabilistic mod-
els based on the independence assumption and its extension (the
factor-graph model). Note that our work is distinguished from
the existing work [28, 24] since we formalize the restoration
problem as an optimization problem and seek methods to di-
rectly optimize the restoration error. By comparison, the existing
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methods do not recognize the optimization nature of this problem
and simply develop some heuristics for the restoration purpose.
Given this, we introduce our first research question as follows.
Research Problem 1: Given a set of itemsets S and assuming

a single probabilistic model either based on the independence

assumption or conditional independence assumption, what is the

best restoration method, i.e., the optimal parameters, which can

minimize the restoration error?

Research problem 1 will answer the question of how well a
single probabilistic model can maximally restore the frequency
for a collection of itemsets. However, using a single probabilistic
model to restore the frequency of the entire collection of frequent
itemsets, Fα, can lead to very high restoration error. The general
strategy to handle this problem is to partition the entire collec-
tion into several parts and to restore the frequencies for each part
independently. Research problem 2 studies how to find a good
partition of Fα so that total restoration error can be minimized.
Research problem 3 studies the situation where the individual
parts are given. This essentially corresponds to the open problem
raised in [2].
Research Problem 2: In this problem, we study the best parti-
tion of Fα so that the total restoration error can be minimized.
Assuming we can partition the entire collection of frequent item-

sets into K disjoint subsets:

Fα = F 1
α ∪ F 2

α ∪ · · · ∪ F K
α

where F i
α ∩ F j

α = ∅ for i 6= j, and we can build a restoration

function for each partition individually, how can we minimize

the total restoration error (the sum of the restoration errors from

each restoration function)?

min
F1

α,··· ,F K
α

K
X

i=1

X

Pi∈F i
α

(1 −
f̂i[Θi](Pi)

f(Pi)
)2.

Here, f̂i is the restoration function for partition F i
α, and Θi is

the optimal parameter set for f̂i to minimize the restoration error

in partition F i
α, i.e., to minimize

P

Pi∈F i
α
(1 − f̂i[Θi](Pi)

f(Pi)
)2.

Research Problem 3: In [2], to approximate Fα, K representa-
tive itemsets A1, A2, · · · , AK are chosen:

Fα ≈
k

[

i=1

2Ai = 2A1 ∪ 2A2 ∪ · · · ∪ 2Ak

where, 2Ai is the power set of Ai, i.e., containing all the subsets
of Ai. Given the K representative itemsets, how we can derive a

good restoration function to estimate the frequencies of the item-

sets being covered by the K itemsets?

1.3 Our contributions:
In this paper, we propose a set of novel regression-based ap-

proaches to effectively and efficiently summarize frequent item-
set patterns. Specifically, our contributions are as follows.

1. We show that to minimize the restoration error for a set
of itemsets, seeking the optimal restoration function based
on a probabilistic model corresponds to a non-linear re-

gression problem. We show that under certain conditions,
we can transform the non-linear regression problem to the
linear regression problem, which can be solved efficiently.

2. We propose two new methods, the K-regression approach

and the tree-regression partition approach to partition the
entire collection of frequent itemsets Fα to minimize the

restoration error. The K-regression approach employs a K-
means type clustering method. The K-partition achieved
by K-regression is guaranteed to achieve a local minimum
of the total restoration error. The tree-regression partition
approach employs a decision-tree type of top-down par-
titioning process. It tries to produce K disjoint subsets
of itemsets, where the total restoration error can be mini-
mized.

3. We discuss how to apply the K-regression approach to es-
timate the frequency for the collection of itemsets being
covered by theK representative itemsets. Our method pro-
vides a positive answer for the open problem raised in [2].

4. We have evaluated our approaches on both real and syn-
thetic datasets. Our approaches show significance perfor-
mance improvement in terms of both summarization accu-
racy (restoration error), and summarization computational
cost.

2. REGRESSION FOR OPTIMAL

RESTORATION FUNCTIONS

2.1 Regression for Independence
Probabilistic Model

The restoration function based on the independence proba-
bilistic model for a given set of itemsets S is as follows. Under
the independence assumption, all the items in S are totally inde-
pendent. In addition, we also assume such independence is held
only for a fraction of the entire database D, where the fraction
is denoted as p(S). The relative frequency for an item ai in S
is denoted as p(ai). Then for an itemset Is ∈ S, we can apply
the independence assumption to estimate the frequency of Is as
follows:

f̂(Is) = p(S) ∗
Y

aj∈Is

p(aj)

As an example, to estimate the frequency of {a, c, d} ∈ S, we
have:

f̂({a, c, d}) = p(S) ∗ p(a) ∗ p(c) ∗ p(d)

Given this, our optimal restoration function corresponding to
the parameter set Θ=(p(S), p(a1), · · · , p(an)), which mini-
mizes the total restoration error, is given as follows:

min
Θ

X

Is∈S

(1−
f̂ [Θ](Is)

f(Is)
)2 = min

Θ

X

Is∈S

(1−
p(S) ∗

Q

ai∈Is
p(ai)

f(Is)
)2

This corresponds to a nonlinear least square optimization prob-
lem. We can further formulate it as a regression problem. For
each itemset Is ∈ S, we define the dependent variable, y, to
be the frequency of Is, f(Is), and the independent variables,
1{a1∈Is}, · · · ,1{an∈Is}, to be the indicators of items in Is, i.e.,
1{ai∈Is} = 1 if ai ∈ Is, and 1{ai∈Is} = 0, otherwise. Given
this, the regression function can be written:

y = f(Is) ≈ f̂ [Θ](x1, · · · , xn) = p(S)∗
n

Y

i=1

p(ai)
1{ai∈Is} (∗)

Several well-knownmethods, includingGauss-Newton method,
themethod of steepest descent, and theMarquardt algorithm, can
be deployed to identify the optimal parametersΘ to minimize the
total restoration error [22]. However, these algorithms are gener-
ally very computationally expensive. Therefore, in this study, we
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consider another commonly used alternative approach, to trans-
form the nonlinear regression into linear regression. Applying a
logarithmic transformation on both side of (∗), we have

log f(Is) ≈ log p(S) +
n

X

i=1

xi log p(ai)

Assuming S has a total of l itemsets, I1,· · · ,Il, then we can rep-
resent our linear regression problem as follows:

2

6

6

6

4

log f(I1)
log f(I2)

.

.

.
log f(Il)

3

7

7

7

5

≈

2

6

6

6

4

1 1{a1∈I1} · · · 1{an∈I1}

1 1{a1∈I2} · · · 1{an∈I2}

.

.

.
.
.
.

. . .
.
.
.

1 1{a1∈Il}
· · · 1{an∈Il}

3

7

7

7

5

2

6

6

6

6

6

4

log p(S)
log p(a1)
log p(a2)

.

.

.
log p(an)

3

7

7

7

7

7

5

We denote the left most vector as Y, the matrix as X, and the
right most vector as β. Thus, the system of linear equations is
denoted as

Y ≈ X · β

The parameters β with the least square error,

min
β

||X · β − Y ||2 = min
β

l
X

i=1

(log
f̂(Ii)

f(Ii)
)2,

can be derived by the standard linear regression technique [12]:

β = (XT
X)−1

X
T
Y

Clearly, linear regression provides an elegant solution for find-
ing the optimal parameters for the restoration function. However,
we need to consider several important issues regarding the linear
and nonlinear regression.
The Bounded Parameter Problem: An important problem fac-
ing both nonlinear and linear regression is that each parameter in
Θ is bounded:

0 ≤ p(S) ≤ 1, 0 ≤ p(ai) ≤ 1, ∀ai ∈ A

However, the general solutions for regression will not take this
into consideration. A simple analysis can show that the identi-
fied parameters will always be non-negative. Thus, we only have
to deal with the problem that the parameters can be potentially
larger than 1. Here, we discuss two alternative strategies: The
first strategy is based on the assumption that the main goal of a
restoration function is to minimize the restoration error. Given
this, the bounded parameter problem is not significant. But, we

still would like the estimator f̂ to be bounded, i.e., f̂ ≤ 1. The
simple solution is to introduce the wrapped restoration function,

f̂ ′:

f̂ ′ = f̂(f̂ ≤ 1); f̂ ′ = 1(f̂ > 1)

We note that the total restoration error introduced by the wrapped

restoration function (f̂ ′) is always smaller than the original restora-

tion function f̂ .
The other strategy is to find the optimal parameters which sat-

isfy the bounded parameter constraint. This problem is referred
to as the bounded-variable (or bound constraint) least square prob-
lem [9]. Several methods have been developed to numerically
search for the optimal solution.
The Optimality of Linear Regression: Logarithmic transfor-
mation and linear regression provide an elegant solution for the
optimal restoration function. However, we note that the crite-
rion optimized in the linear regression is different from the orig-
inal total restoration error. Thus, a key question is how the op-
timal parameters identified in linear regression can minimize the

restoration error. To answer this question, we need to analyze the
relationship between these two criteria, which we denote as CN

(for nonlinear regression) and CL (for linear regression):

CN =

l
X

i=1

(1 −
f̂(Ii)

f(Ii)
)2 and CL =

l
X

i=1

(log
f̂(Ii)

f(Ii)
)2

First, we can see that they both tend to minimize the difference

between f̂(Ii) and f(Ii). Clearly,

(1 −
f̂(Ii)

f(Ii)
)2 → 0 ⇔

f̂(Ii)

f(Ii)
→ 1 ⇔ (log

f̂(Ii)

f(Ii)
)2 → 0

This only suggests their convergence tendency. Taylor expansion
provides a more detailed analysis:

log(1 + x) = x − x2/2 + x3/3 − · · · , for |x| < 1.

Thus, we have

CL =
l

X

i=1

(log
f̂(Ii)

f(Ii)
)2 =

l
X

i=1

(log (1 +
f̂(Ii) − f(Ii)

f(Ii)
))2

=
l

X

i=1

(
f̂(Ii) − f(Ii)

f(Ii)
− (

f̂(Ii) − f(Ii)

f(Ii)
)2/2 + · · ·

=
l

X

i=1

(
f̂(Ii) − f(Ii)

f(Ii)
)2 + O((

f̂(Ii) − f(Ii)

f(Ii)
)3)

where O(z) represents the term having the same order of magni-

tude as z. Note that here we assume | f̂(Ii)−f(Ii)
f(Ii)

| < 1, i.e., f̂(Ii)

does not overestimate f(Ii) by a factor of two: f̂(Ii) < 2f(Ii)
Under this condition, CL can be reasonably close to CN . In Sec-
tion 5, we empirically evaluate the restoration accuracy by the
linear regression method and our results will show our method
indeed achieves very small restoration errors.
Validity of Independence Assumption: An interesting question
is the validity of the restoration function model. Since we apply
the independence assumption to model the set of itemsets S, is
it a probabilistically valid model? Statistical tests [6], such as
Person’s Chi-Square test and Wilks’ G2 statistics, can be used
to test the independence hypothesis. For the restoration purpose,
we generally do not explicitly perform these tests. The better the
independence model fits the data, the more accurate the estima-
tion will be. Therefore, we will try to find an optimal partition for
a set of itemsets, such that each partition can fit the model nicely,
i.e. all its itemsets can be estimated accurately. This essentially
corresponds to finding several independence models to represent
S. Finding the optimal partition to minimize the total restoration
error is the central topic of Section 3.

3. OPTIMAL PARTITION FOR

RESTORATION
As we mentioned before, using a single probabilistic model to

restore the frequency for all the frequent itemsets Fα is likely to
result in high restoration error. Instead, we can try to partition
Fα into several clusters, and then construct the optimal restora-
tion function for each cluster. In this section, we introduce two
heuristic algorithms which try to find the optimal partition of
Fα so that the total restoration error can be minimized. Sub-
section 3.1 introduces the k-Regression approach which employs
a k-means type clustering method. The k-partition achieved by
k-regression is guaranteed to achieve a local minimum of the to-
tal restoration error. Subsection 3.2 discusses the tree-regression
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partition approach which employs a decision-tree type of top-
down partitioning process.

3.1 K-Regression Approach
Algorithm 1 employs a k-means type clustering procedure.

Initially, the entire collection of frequent itemsets Fα is randomly
partitioned into k groups (Line 1). Then, we apply the regression
approach to find the optimal parameters which can minimize the
restoration error for each group (Line 2). The regrouping step
(Lines 4-7) will apply all the k computed restoration functions to
estimate the frequency for each itemset (Line 5) and assign it to
the group whose restoration function results in the smallest error
(Line 6). After the regrouping, we will again apply the regres-
sion approach to compute the new restoration function for each
newly-formed group (Line 8). We will compute the total restora-
tion error by adding the restoration error of the k groups. This
process is repeated (Lines 4-9) until the total restoration error
converges, generally by testing if the improvement for the total
restoration error is less than a certain threshold.

Algorithm 1 K-Regression(Fα, K)

1: randomly cluster Fα into K disjoint groups: F 1
α,

F 2
α,· · · ,F

K
α ;

2: apply regression on each group, F i
α to find the restoration

function f̂ [Θi] with optimal parameters Θi;
3: repeat

4: for all itemset Is ∈ Fα do

5: compute the estimation error for each restoration func-

tion, ǫi = |f(Is) − f̂ [Θi](Is)|, ∀i, 1 ≤ i ≤ K;
6: reassign Is to the group which minimizes ǫi;
7: end for

8: apply regression on each new group, F i
α to find the

restoration function f̂ [Θi] with optimal parameters Θi;
9: compute the new total restoration error;
10: until the total restoration error converges to a local minimum

or the improvement is very small
11: output the K groups, F 1

α, · · · , F K
α , and their restoration

functions, f̂ [Θ1], · · · , f̂ [ΘK ]

Note that the k-regression is generic in the sense that it may be
applied with any of the approaches discussed in Section 2—the
independence model or its generalization and their correspond-
ing regression (nonlinear and linear). In the following, we in-
vestigate several important issues for k-Regression.
Convergence Property for K-Regression: The major differ-
ence which distinguishes the k-regression algorithm from the k-
means algorithm is that k-regression repetitively computes the
optimal parameters for each newly formed group using regres-
sion and use the estimation error to determine the reassignment
for each itemset. Will this algorithm converge? We provide a
positive answer for this question. Let Ei be the restoration error
the regression approach tries to optimize for each local cluster.
For instance, if we apply the nonlinear regression, we directly

optimize Ei =
P

Pi∈F i
α
(1− f̂i[Θi](Pi)

f(Pi)
)2. If we apply the linear

regression, we optimize Ei =
P

Pi∈F i
α
(log f̂i[Θi](Pi)

f(Pi)
)2. Given

this, we define the total restoration error E =
PK

i=1 Ei.

THEOREM 1. Each iteration (Line 4-9) in the k-regression
algorithm will decrease the total restoration error monotonically,

i.e., the new total restoration error is always less than or equal

to the total restoration error. In other words, the k-Regression

algorithm will tend to converge the total restoration error to a

local minimum.

Proof:This result can be established based on the following ob-
servation. Let E be the total error based on the k groups and
their corresponding restoration functions. Consider the start of
a new iteration from Line 4. In the regrouping step, the estima-
tion error ǫi for each itemset is monotonically decreasing since

ǫi = arg mini |f̂(Is) − f(Is)|. If we use the current restoration
function and the new grouping to compute the intermediate to-
tal restoration error E′, we can easily have E ≥ E′. Then, the
regression will compute a new restoration function based on the
new group, which will minimize the restoration error for each
group. Thus, for the new total restoration error E′′, we have

E ≥ E′ ≥ E′′

2

Shrinking Property for the Covering Itemsets: Another inter-
esting property of k-regression relates to the covering itemsets.
For a group of itemsets F i

α, the covering itemset, denoted as Ai,
is the set of all the items appearing in F i

α. To use the covering
itemsets to represent the collection itemsets, we would like a low
false positive ratio: |2Ai ∩ F i

α|/|2
Ai |. Though the k-regression

algorithm does not directly minimize this criteria, a related quan-
tity, the size of the covering itemset, |Ai| will indeed monotoni-
cally decrease.

THEOREM 2. At each iteration in k-regression, the size of

the covering set of the newly-formed i group, F i
α, is less than or

equal to the size of the covering set for the previous i group.

Proof:This is based on the observation that if we reassign an
itemset Is to a new group i according to the minimal estimation
error, then Is must be covered by Ai, the covering set of the
original i group (Is ⊆ Ai). This is because if Is is not covered
by Is, the restoration function will estimate the frequency Is to
be 0. Clearly, any other groups which can cover Is will have
a better estimation accuracy. Given this, after regrouping, each
new member in group i is already covered by the original Ai.
Thus, the new covering set, which is the union of all the new
members in group i, will also be a subset of the original one. 2

This property shows that all the covering sets tend to shrink or
at least maintain the same size after each iteration. In Section 4,
we will utilize this property to derive the restoration function for
the given k representative itemsets of Fα.
Computational Complexity: The computational complexity de-
pends on the restoration function and its corresponding regres-
sion method. Here, we consider the restoration function based
on the independence probabilistic model and then apply linear
regression. Given this, the computational complexity for the k-
regression algorithm is O(L|Fα|N

2), where L is the number of
iterations, N is the total number of items in Fα, and O(|Fα|N

2)
is the complexity of a typical regression solver [9].

3.2 Tree-Regression Approach
This approach tries to provide a high level description of the

entire collection of frequent itemsets Fα through a decision tree
structure. For instance, Figure 1 shows a decision tree partition
for a set of itemsets. The non-leaf node records a condition for
an item x, such that all the itemsets of the left partition contain
x, and all of the itemsets of the right partition do not. The leaf
node is the final partition of the set of itemsets. Given this, the
problem is how to partition Fα into k disjoint parts, such the total
restoration error can be minimized (under the condition that each
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Figure 1: A decision-tree partition for a set of itemsets

part will have its own restoration function). Here, we introduce a
greedy algorithm for this purpose.
Algorithm 2 builds the decision tree partition in a top-down

and greedy fashion. At the root node, we will try to partition
the entire set of frequent itemsets Fα into two disjoint sets. The
criteria for choosing the best split condition, i.e., including item x
or not, is based on the total restoration error. Suppose the original
set of itemsets is split into two sets, and then we construct the
optimal restoration function for each of them independently. The
sum of the two restoration errors from the two sets is denoted
as the total restoration error. Once we identify the item x which
results in the best partition with minimal restoration error, we
will put the two new sets into a priority queue. The queue will
determine which set of itemsets will be partitioned next. The
reason for introducing such a queue is that we will only partition
Fα into k parts. We will always choose the set in the queue with
the highest average restoration error (the restoration error for the
set over the number of itemsets in the set) to be partitioned first.
This procedure (repetitively choosing set of itemsets from the
queue and split it into two parts) will continue until we have our
k partition.

Algorithm 2 TreeRegression(Fα, K)

1: Put Fα as the only element into priority queue Q;
2: repeat

3: let S the first partition in Q;
4: for all item x ∈ A do {A is the covering itemset of S}
5: split S into two parts using item x;
6: apply regression on each part to find the restoration

function with optimal parameters;
7: compute the restoration errors for each part and their

sum as the total restoration error for this partitioning;
8: end for

9: select the partitioning whose total error is the smallest;
10: score both S1 and S2, the two parts of S from the best

partitioning, with their average restoration error (total er-
ror over the number of itemsets in the parts);

11: put S1 and S2 into the priority Q (the higher the average
error, the earlier in the queue);

12: until Q has K parts
13: output the K parts in Q and the corresponding partitioning

conditions

As in the k-regression algorithm, the computational complex-
ity of the tree-regression algorithm depends on the format of the
restoration function and the corresponding regression method.
Assuming the restoration function is based on the independence
probabilistic model and then parameter-fitted using linear regres-
sion, the computational complexity for the tree-regression algo-
rithm isO(K(|Fα|N

2)N) = O(K|Fα|N
3), whereO(|Fα|N

2)
is the complexity of the regression solver, and the additional

N is the cost for testing each split condition. In general, the
tree-regression has higher computational cost than k-regression.
However, it provides a simpler description for the k-partition of
the entire collection of frequent itemsets.

4. RESTORATION FUNCTION FOR

K REPRESENTATIVE ITEMSETS
In [2], to approximateFα, k representative itemsetsA1, A2,· · · ,

AK are chosen: Fα ≈
Sk

i=1 2Ai= 2A1∪2A2∪· · · ∪2Ak where,

2Ai is the power set of Ai, i.e., containing all the subsets of Ai.
(How to extract these k representative itemsets is omitted. The
detail is in [2]). In this section, we consider how to derive a
good restoration function to estimate the frequencies of the item-
sets being covered by the k itemsets.

Here, the main issue is that an itemset can be covered by more
than one set of k representative itemsets. If we look at each pow-
erset of the representative itemsets as the grouping of itemsets,
these groups are not disjoint, but overlapped with each other.
Further, we assume each powerset has its own restoration func-
tion. The problem is that when we try to restore the frequency of
the itemsets, assuming we have only the k representative item-
sets, we will know which restoration function we should use for
recovery.

Our address this problem with a two-step procedure. In the
first step, we will try to construct a restoration function for each
representative itemset. Then, in the second step, we propose a
weighted average method to build a global restoration function.
For the first step, we consider two alternatives: 1) we simply ap-
ply all the itemsets which are subsets of Ai, i.e., 2

Ai , for regres-
sion to find the optimal restoration function; 2) we modify the
k-regression algorithm so that each itemset is grouped to only
the one itemset which covers it. Basically, in Line 1 of Algo-
rithm 1, for each itemset being covered by the k representative
itemsets, we will randomly assign it to one of the representative
itemsets which covers it. Then, based on Theorem 2 (the shrink-
ing property), the k-regression will assign each itemset to one
representation itemset and minimize the total restoration error.

For step two, the global restoration function combines the k
local restoration functions produced in step 1 to estimate the fre-
quency of an itemset. The frequency of a given itemset Is is
estimated to be the average of all the local functions, whose cor-
responding representative itemsets cover Is:

f̂(Is) =

P

Is⊆Ai
f̂i(Is)

P

Is⊆Ai
1

.

5. EXPERIMENTAL RESULTS
In this section, we study the performance of our proposed ap-

proaches, k-regression and tree-regression, on both real and syn-
thetic datasets. We will directly compare our approaches against
Yan et al.’s pattern profile method (the k-means approach) [28],
which has become the benchmark for other research [24]. We
implement both our approaches using C++ and R [1], which is
one of the most popular open-source programming environment
for statistical computing. The implementation of pattern profile
method is provided by the author of [24]. We use Chris Bolget’s
Apriori implementation to collect the frequent itemsets [7].

5.1 Experimental Setup
All tests were run on an AMD Opteron 2.0GHz machine with

2GB of main memory, running Linux (Fedora Core 4), with a
2.6.17 x86 64 kernel. We use four real datasets and two synthetic
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datasets |I| |T | |DB| density

chess 75 3,196 118,252 high

mushroom 119 8,124 186,852 medium

BMS-POS 1,658 515,597 3,866,978 low

BMS-WebView-1 497 59,602 149,005 low

T10I4D100K 1,000 100,000 ≈ 1,000,000 low

T40I10D100K 1,000 100,000 ≈ 4,000,000 medium-low

Table 1: dataset characters; |I| is the number of distinct

items; |T | is the number of transactions; |DB| is the size of
the transaction database in terms of the total items

datasets. The real datasets are chess, mushroom, BMS-POS and
BMS-WebView-1 [16]. The synthetic datasets are T10I4D100K
and T40I10D100K. All dataset information are publicly avail-
able at the FIMI repository (http://fimi.cs.helsinki.fi/). The main
characters of the datasets are summarized in table 1.
We evaluate the summarization performance in terms of the

restoration error and the summarization time. Even though our
approach seeks to optimize L2 error (i.e. 2-norm. See Definition
1), we report the average L1 (1-norm) error as below, to compare
our results with previous efforts [28].

E =
1

|S|

X

P∈S

|
f̂(P ) − f(P )

f(P )
| =

1

|S|

X

P∈S

|1 −
f̂(P )

f(P )
|

In addition, we note that in our approaches, we restore the fre-
quency for all frequent itemsets. Thus, we use S = Fα for a
given support. The pattern profile only restores the frequency for
all closed frequent itemsets. Thus, the corresponding S would be
the set of closed itemsets.

5.2 Results

Restoration Performance Evaluation on Real Datasets: Fig-
ure 2 shows the average restoration error for the four real datasets,
chess, mushroom, BMS-POS, BMS-WebView-1, with support
level 75%, 25%, 0.8%, and 0.2%, respectively. Their corre-
sponding number of frequent itemsets are 7635, 3781, 1695,
and 798, respectively. For each dataset, we compare the aver-
age restoration errors of the three methods: the pattern profile
method [28], the k-regression method, and the tree-regression
method. Here, we use simple linear regression for the indepen-
dence probabilistic model discussed in Subsection 2.1. For each
dataset, we vary the number of clusters from 10 to 100.
From Figure 2, we can see that the two new methods, tree-

regression and k-regression, achieve consistently and significantly
smaller restoration errors than the pattern profile method. Ta-
ble 2(e) shows the average restoration errors for figures 2(b) 2(a)
2(c) 2(d). On average, k-regression achieves lower error than
the pattern profile method by a factor of approximately 8, 17,
7, and 20 times for chess, mushroom, BMS-POS and BMS-
WebView-1, respectively. On average, tree-regression achieves
lower restoration error than the pattern profile method by a fac-
tor of 4 3, 5, and 3 times for chess, mushroom, BMS-POS and
BMS-WebView-1 datasets respectively. In addition, the run-
ning time of k-regression is generally much faster than that of
tree-regression, especially, when the number of distinct items is
relatively large. This is understandable since in tree-regression,
for each partition we will choose the best splitting item from all
the distinct items. Such iteration can be rather costly. Figure 3(a)
compares the running time of the three methods using BMS-POS
dataset. Due to space limitations, we omit other figures on the
running time using real dataset.

In summary, we can see that k-regression performs restoration
more efficiently and accurately.
Scalability Study using Synthetic Datasets: In this group of
experiments, we compare the performance of the pattern profile
methods and k-regression with respect to different support level
on the two synthetic datasets T10I4D100K and T40I10D100K.
Figure 3 shows the experimental results. Here, we choose the
number of clusters to be 20, 50 and 80 for both methods. For in-
stance, k-regression_20 means running the k-regression method
with 20 clusters. Figure 3(b) and 3(c) shows the restoration error
against the support level. Figure 3(d) and 3(e) shows the running
time against the support level.

In both datasets, k-regression performs much more accurate
estimation than the pattern profile method. On average, k-regression
has only 0.07% and 0.8% restoration error, while the pattern pro-
file method has 10% and 6.8% restoration error, on the
T10I4D100K and T40I10D100K dataset, respectively. In
terms of the running time, the k-regression method runs an av-
erage of 20 and 8 times faster than the pattern profile method
on the T10I4D100K and T40I10D100K dataset, respectively.
In addition, the restoration error of the pattern profile method
increases rapidly as the support level decreases, while the k-
regression method maintains almost the same level of accuracy.
Restoration Function for the K representative itemsets: In
this experiment, we compare the two alternatives in Section 4 to
restore the frequency for the itemsets which are subsets of the
given k-representative itemsets, produced by the greedy algo-
rithm introduced in [2]. The two methods are the k-regression
method and the method which distributes an itemset to all the
representative itemsets which covers it (referred to as the dis-

tribute method. We found that in most cases, the k-regression
method works as well as or better than the distributemethods. In
particular, in certain cases, such the mushroom datasets of Fig-
ure 4, the k-regression method performs significantly better than
the other one. Here, the mushroom is at 25% support level and
chess is at 75% support level. The reason we believe that the
distribute method works not as good as the k-regression is that it
does not utilize re-partitioning like the k-regression does. Thus,
the independence model is likely not to work well.

6. CONCLUSIONS
In this work, we have introduced a set of regression-based ap-

proaches to summarize frequent itemsets. We have shown how
the restoration problem can be formulated as a non-linear least
square optimization problem and how linear regression can be
applied to solve it efficiently. The two methods we proposed
successfully marry the well-know k-means and decision tree al-
gorithms with the linear regression problem. In addition, the k-
regression methods can be naturally applied to the open problem
of how to estimate the frequency for the collection of itemsets
being covered by k representative itemsets. The experimental
results on both real and synthetic datasets have shown that our
method can achieve orders of magnitude improvement in accu-
racy over the pattern profile approach, with much smaller running
time. We believe our approaches offer an interesting way to han-
dle estimation problems for other types of data as well. In the
future, we plan to investigate how our methods can be applied to
other patterns, include subtrees and subgraphs.
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(c) BMS-POS restoration error
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(d) BMS-WebView-1 restoration error

(e) average restoration error summarization

datasets pattern profile regression tree K-regression

mushroom 8.5% 2.7% 0.53%

Chess 0.69% 0.16% 0.09%

BMS-WebView-1 35.0% 7.5% 1.8%

BMS-POS 12.9% 4.6% 1.8%

Figure 2: Average Restoration Errors for Real Datasets
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(b) T10I4D100K restoration error
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(c) T40I10D100K restoration error
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Figure 3: Running Time and Synthetic Datasets
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