This electronic document has been provided by the Kent State University Interlibrary Loan Department. This material may be protected by United States Copyright Law (Title 17, U.S. Code).

ILLiad TN: 224462
||||||||||||||||||||||||||||||||||
Borrower: KSU
Lending String: ${ }^{\text {W }}$ WSU, OSU,SEA, TKN,KKU
Patron: Yuan, Man
Journal Title: Proceedings of the 1975 Sagamore Computer Conference on Parallel Processing ; papers presented on August 19-22, 1975.

Volume: Issue:
Month/Year: 1975Pages: 167-eoa
Article Author:
Article Title: K.E. Batcher; The Multi-Dimensional Access Memory in STARAN

Imprint: Silver Spring, Md. ; IEEE Computer Socie
ILL Number: 89127594
-

NOTICE: THIS MATERIAL MAY BE PROTECTED BY COPYRIGHT LAW (TITLE 17 U.S. CODE)
Sent By:

DUNBAR LIBRARY - INTERLIBRARY LOAN
WRIGHT STATE UNIVERSITY
DAYTON, OH 45435-0001
PHONE: (937)775-4110

FAX: (937)775-2356
EMAIL: dill@www.libraries.wright.edu
If there are problems with this ARIEL document:

- Missing Pages: Page \#s \qquad
- Edges cut off: Page \#s \qquad
- Unable to read: Page \#s \qquad
- Other: \qquad
Please return this page to us via ARIEL or FAX, or you may call us and we will fix the problem.
THANK YOU FOR SELECTING THE
DUNBAR LIBRARY - INTERLIBRARY LOAN DEPARTMENT
by sigerson. sword. or
by sms3.wright.edu
(Sun Java(tm) System Messaging Server 6.3-8.01 (built Dec 16 2008; 64bit))
with ESMTP id OM1LOOGBOKW72U10@sms3.wright.edu for requests@sword.org; Wed,
28 Mar 2012 09:45:43-0400 (EDT)
Date: Wed, 28 Mar 2012 09:45:44 -0400
From: Dunbar Interlibrary Loan dill@www.libraries.wright.edu
Subject: Please fill request
To: requests@sword.org
X-Virus-Scanned: by bsmtpd at muohio.edu
Rule breakdown below
pts rule name description
*** Generated by ILLiad

Request sent by PAUL LAURENCE DUNBAR LIBRARY WRIGHT STATE UNIVERSITY

Call Number/BARCODE NUMBER: 82467110401
1.pp scan med 3-28-12

Journal Title: Proceedings of the 1975 Sagamore Computer Conference on Parallel p rocessing ; papers presented on August 19-22, 1975.
Article Author:
Article Title: K.E. Butcher; The Multi-Dimensional Access Memory in STARAN

Journal Vol: Journal Issue:
Journal Month: Journal Year: 1975
Article Pages: 167-eoa
Notes:

Branch Location:
Borrower: KSU

Patron: Yuan, Man
Mail

Library- Interlibrary Loan (OHIOLINK)
Kent State University (208)
P.O. Box 5190

One Eastway Drive
Fax:
Ariel: Yes 131.123.20.192

This request has been forwarded from ILL by steve - Lending. Iliad Transaction Number: 224462

Summary*
THE MULTI-DIMENSIONAL ACCESS MEMORY IN STARAN

By Kenneth E. Batcher

Digital Technology Department Goodyear Aerospace Corporation Akron, Ohio

Each array module in the STARAN ${ }^{+}$associative array processor contains a 256×256 multidimensional access (MDA) memory (see illustration). Parallel vector arithmetic and associative searchoperationsaccess memory data by bit-slices, while input, output, and scalar arithmetic operations access memory data by words. The MDA memories use standard random-access memory (RAM), integrated-circuit chips in a novel configuration. Use of standard, high-volume, low pin-count memory devices in place of custom LSI devices reduces costs significantly.

To achieve multidimensional access, data are stored in a scrambled pattern; bit B of word W is stored in bit-location B of memory chip $B \oplus W$ where \oplus indicates a component-by-component ex-clusive-or.

Data are accessed by specifying a stencil shape with an 8 -bit access mode and a stencil position with an 8 -bit global address. The 256 memory bits covered by a stencil can be fetched or stored in one memory cycle.

The address bus structure of the MDA memory has 16 address lines (as opposed to 8 lines for a conventional RAM). For $\mathrm{k}=1,2, \ldots, 8$ address line x_{k} is fed by the $k^{\text {th }}$ bit of the global address,
while address line y_{k} is fed by the exclusive-or of the $\mathrm{k}^{\text {th }}$ bits of the access mode and the global address. Address pin k of memory chip ($c_{1} c_{2} \ldots c_{8}$) is connected either to x_{k} if $c_{k}=0$ or to y_{k} if $c_{k}=1$.

Memory data are scrambled and unscrambled by a scramble/unscramble network, which can also shift and perform other useful permutations on data fetched from memory.

When memory data are fetched or stored with access mode M and global address G, processing element P accesses bit $(\bar{M} \cdot G) \oplus(M \cdot P)$ of memory word ($\mathrm{M} \cdot \mathrm{G}) \oplus(\overline{\mathrm{M}} \cdot \mathrm{P})$, where logical negation is indicated by "-" and the logical product ("and") is indicated by ".".

Bit-slice access is obtained with $\mathrm{M}=(00000000)$ and word access is obtained with $\mathrm{M}=(11111111)$. Other access modes allow data to be accessed in other ways.
*This is a summary of a paper that has been submitted for publication in the IEEETC Special Issue on Parallei Processing
${ }^{+}$TM, Goodyear Aerospace Corporation, Akron, Ohio

Block Diagram of STARAN Array Module

