
An Associative Implementation Of Graham's Convex Hull Algorithm

Maher M. Atwah and Johnnie W. Baker Selim Akl
Mathematics and Computer Science Computing and Information Science

Kent State University Queen's University
Kent, OH 44242 Kingston, Ontario K7L 3N6, Canada

matwah,jbaker@mcs.kent.edu akl@qucis.queensu.ca

Abstract { This paper presents a new parallel al-
gorithm for the convex hull problem. This algorithm is
a parallel adaptation of the Graham Scan Algorithm.
The computational model selected for this algorithm
is the associative computing model (ASC) which sup-
ports massive parallelism through the use of data par-
allelism and constant time associative search and max-
imum functions. Also, ASC can be supported on ex-
isting SIMD computers. This algorithm requires O(n)
space, O(n logn) average cost, and O(n2) worst case
cost. The algorithm has been implemented and tested
on random data.

Introduction

The convex hull of a �nite set of a set S of n pla-
nar points is an important geometric concept. It can
be de�ned as the smallest convex polygon for which
each point in S is either on the boundary of the con-
vex polygon or in its interior. We assume that no
two points in S have the same x or y coordinates and
that no three points in S lie on the same straight line
as these assumptions make the algorithm easier to de-
scribe. However, the algorithmgiven in this paper can
be easily modi�ed to eliminate the necessity of these
assumptions. The convex hull plays a central role in
the �eld of computational geometry. This geomet-
ric concept �nds practical applications in many areas
including pattern recognition, image processing, engi-
neering, computer graphics, design automation, and
operations research. The Graham Scan Algorithm [1]
is an important sequential algorithm used for comput-
ing the convex hull. It requires O(n) space and has a
worst case time of O(n lgn) (i.e. n log

2
n) due to an

initial sorting step which sorts the points in Cartesian
coordinates.

The parallel version of the Graham Scan pre-
sented here appears to be the �rst parallel version of
this algorithm. Like its sequential version, it also ex-
amines three points at a time and checks if the mid-
dle point can be eliminated as a possible convex hull
point. Also, points initially kept may be eliminated
later during backtracking. This algorithmmatches the
average cost O(n lgn) of the Graham Scan but has a
worst case cost of O(n2). This algorithm has been im-
plemented on a SIMD computer and tests on random
data support the O(n lgn) average cost.

The remainder of this paper is partitioned as fol-
lows. Section 2 describes the associative model. In
Section 3, a parallel adaptation of the sequential Gra-
ham Scan for the Associative Model [2] is presented.
Section 4 presents the timing results for the new con-
vex hull algorithm given in this paper which have been
implemented on the WAVETRACER (DTC) [3]. The
�nal section contains a summary.

Associative Computing Model

The associative computing model (ASC) is an exten-
sion of the general associative processing techniques
developed for the associative STARAN SIMD com-
puter in the 1970's for massively parallel computation.
As our algorithm will demonstrate, ASC provides an
e�cient computational model for algorithms requiring
massive parallelism. Details of how this model can be
implemented on existing SIMD computers are given in
[4]. In particular, a high level language based on ASC
detailed in [4] has been installed on the STARAN,
ASPRO, WAVETRACER, and Connection Machine
CM-2.

A brief summary of the features of the ASCmodel
is presented here. Additional information and proper-
ties of this model may be found in [2]. ASC consists
of an array of cells, each containing a processor and
its local memory. Cell memory holds variables used
for data-parallel operations. These cells are connected
by bus to the instruction stream (IS) which stores a
copy of the program being executed and broadcasts
program instructions to all active cells. For our algo-
rithm, only one IS is required, but the more general
ASC model described in [2] allows multiple instruction
streams. It is convenient to assume that variables and
constants that need to be globally available to all cells
are stored in the memory of the IS and may be broad-
cast to all active cells. The IS also has the ability to
read and store a value from a speci�c cell. The IS
variables are called sequential variables and cell vari-
ables are called parallel variables. In addition to data-
parallel execution, the ASC model supports constant
time functions for associative searching and selection,
logical operations, and maximumand minimum. Con-
stant time searching permits the simultaneous exam-
ination of all active cells and the identi�cation of all
those that meet the search criteria. These identi�ed
cells are called responders and become the new set of



active cells. By altering the criteria, di�erent cells be-
come responders. The IS has the ability to detect the
presence of responders in unit time. It is also possible
to access active cells sequentially and to return to the
set of cells which were active preceding the search or to
activate all cells. The maximum or minimum value of
a parallel variable (or the cell address containing that
value) can be computed for all active cells in constant
time. While not used here, the cells may be connected
by means of a simple network.

Associative Adaptation of the Graham
Scan

An associative version of Graham's Algorithm is pre-
sented next. This algorithm is like the original Gra-
ham Scan in the sense that it examines three points
at a time and determines if the middle point can be
deleted as a possible convex hull point and that points
initially kept may be deleted as a middle point during
backtracking later. Note that the Associative Graham
Scan checks the candidates for convex hull points on
both the right and left sides using the three succes-
sive point technique used by the sequential Graham
Scan. All point to the left and right of the current x-
min or x-max, respectively, in parallel checks itself for
deletion with respect to the current x-min or x-max
and its past x-min or x-max, respectively. If one or
both of the previous x-min or x-max is deleted then
the pointer to the previous x-min or x-max in the
current x-min or x-max, respectively, is reset recur-
sively to point to the grandparent x-min or x-max,
respectively. However, if additional old x-min or x-
max points is deleted, the current x-min or x-max
updates its previous x-min or x-max pointer to the
most recent x-min or x-max point, respectively, that
remain undeleted. This provides the backtracking as-
pect of the sequential Graham Scan Algorithm.

Let S be a set of n planar points that are stored
in the local memory of the PEs with at most one point
per PE. Each point p has its two coordinates stored
in the PE variables x and y. Also, each PE stores the
variables uppermax and lowermin and a two boolean
variables called delete and processed. In addition,
the IS stores four variables min, max, prevmin and
prevmax. The variables prevmin and prevmax are
used to store the previous min and previous max, re-
spectively. Let min and max be the points with the
current smallest x coordinate and the current largest
x coordinate in the set of active PEs, respectively.
Also, let Pmin and Pmax be the PEs that are hold-
ing min and max as their point, respectively. Gener-
ally, we will use Pq to denote the PE that is holding
q as its point. If a PE is found to contain min as
its point (i.e., the PE is Pmin currently), it sets the
variable lowermin to prevmin. Similarly, the vari-
ables uppermax is set to prevmax for each PE that
is found to contain max as its point. The variables
lowermin and uppermax are set for each Pmin and
Pmax directly after min or max have been found and
are reset to another point later only if the point they
store get deleted. In this case, the new point stored

in lowermin or lowermax, respectively, is the most
recent of the previous prevmin or prevmax point,
respectively, which have not been deleted. This as-
sociative version of Graham's Algorithm is presented
in Figure 1. This algorithm �nds all the upper con-
vex hull points from min to max and it assumes that
there are at least three points to start with. The lower
convex hull can be found and computed in reverse or-
der by a simple modi�cation of this algorithm. Note
that the variables min, max, prevmin, prevmax,
lowermin and uppermax hold both the x and y co-
ordinate for a point. It is convenient to also denote
the coordinates of min as (xmin; ymin) and of max
as (xmax; ymax).

The Associative Graham Scan �nds min and
max of the remaining points each time it loops and
it deletes any point that lies below min;max (see
Figure 2). Next, all the undeleted points that are
to the left of min are activated. Each active point
is deleted if it lies below lowermin;min or below
lowermin;max. As shown in Figure 3, p1 is deleted
since it lies below lowermin;min. Similarly, all un-
deleted points that are to the right of max are acti-
vated. If any active point lies below min; uppermax
or belowmax; uppermax, it is deleted. Figure 4 shows
that p2 is deleted since it lies below max; uppermax.
Note that the variable lowermin and uppermax
maybe di�erent for each active point.

This algorithm (see Figure 1) gives the steps of
how the upper convex hull is found. To accomplish
point deletion we will use a function called Delete-
p(p1; p2; p3) which takes three lexicographical sorted
points p1, p2 and p3 with p1 � p2 � p3 as input. It
returns \true" and deletes p2 if p2 lies on or below
the line connecting p1 and p3; otherwise, it simply re-
turn \false". The function works by �rst �nding the
two slopes m1 and m2 of p1p2 and p2p3, respectively
and tests if m1 is less than or equal to m2. The func-
tionDelete-p(p1; p2; p3) also returns false when two or
more of the three points are the same. The Associa-
tive Graham Scan algorithm also shows how to sort
the output list L. For the purpose of sorting, each
PE will need a pointer next so that at the conclusion
of the algorithm, each vertex on the upper hull can
indicate the next vertex on the upper hull. The list
L can then be easily constructed after the algorithm
executes. The �rst element of L is w, the leftmost
point in the set S. The next element is the value of
the next variable of the PE storing w. The processor
holding this element will contain the third element in
its next �eld. The processor holding the last element
in L contains NULL in its next �eld.

To establish correctness, it is only necessary
to consider deletions under the lines min;max,
lowermin;min, and max; uppermax. This algo-
rithm applies the Graham Scan middle point elimi-
nation technique with parallel backtracking to both
the points selected as min on the left and those se-
lected as max on the right. A proof similar to [1,
page 904-5], adjusted to replace deletion of points



Procedure Associative Graham Scan (S, H)
Input: A set S, of points given as (x; y) coordinates.
output: A list L, of the vertices of the convex hull.

1. Initialize processed and delete in each PE to false.

2. While there is an unprocessed PE such that its
point p is not deleted

(a) All active PEs are used to locate min and
max, the points p in the active PEs whose x-
coordinate has the minimum and maximum
value, respectively.

(b) Pmin and Pmax sets processed = true.

(c) If it is �rst time through the while-loop

i. Pmin sets lowermin = min, Pmax

sets uppermax = max and Pmax sets
next = NULL.

ii. Else Pmin sets lowermin = prevmin
and Pmax sets uppermax = prevmax.

(d) Activate all PEs that contain delete = false

(e) The SC broadcasts min and max found ear-
lier to all active PEs.

(f) Restrict the active PEs to those satisfying
xmin < x < xmax. Each active PE sets
delete = true if p lies below min;max.

(g) Restrict the active PEs to those satisfying
x � xmin. Each active PE sets delete =
true if p lies below lowermin;max or below
lowermin;min.

(h) Restrict the active PEs to those who satisfy
x � xmax. Each active PE sets delete =
true if p lies below min; uppermax or below
max; uppermax.

(i) If Pmin delete = true then the SC sets
min = prevmin.

(j) If Pmax delete = true then the SC sets
max = prevmax.

(k) The SC sets prevmin = min and
prevmax = max and broadcasts them to
all active PEs.

(l) Restrict the active PEs to those satisfying
x < xmin and delete = false. From the set
of active PEs select the one that hold the
largest x value, call that point r. Pmin sets
lowermin = r and Pr sets next = min.

(m) Restrict the active PEs to those satisfying
x > xmax and delete = false. From the set
of active PEs select the one that hold the
least x value, call that point r. Pmax sets
uppermax = r and Pmax sets next = r.

(n) Activate all the PEs that are unprocessed
and have delete = false.

3. Pmin sets next = max.

Figure 1: Associative Graham Scan Algorithm.

during backtracking with parallel point deletion, can
be used to show that the list L (list R) of undeleted
points selected as the value ofmin (respectively, max)
maintain the invariant that the points in L (R, re-
spectively) form the vertices of a convex polygon in
clockwise (counterclockwise, respectively) order. Let
w-start and e-start be the values ofmax and min, re-
spectively, at the end of the �rst pass. After at most n

2

passes, there are at most two points, so let w-end and
e-end be the values of max and min, respectively. At
this stage both w-start and w-end are in L and both
e-start and e-end are in R. Moreover, all points in R
and L lie on or above w�start; e�start and on or be-
low the line (or point) w�end; e�end. It follows that
the points in L [R form the upper convex hull of S.

Note that the Associative Graham Scan Algo-
rithm marks two unprocessed points as "processed"
during each pass through the WHILE loop, with the
possible exception of the last pass. As a result, in
a worst case (e.g., if all points of S are vertices of
the convex hull), the WHILE loop will be executed n

2

times. Since each pass through the WHILE loop re-
quires constant time, this algorithm has O(n) running
time and O(n2) cost in the worst case. However, it
seems reasonable to expect that the Associative Gra-
ham Scan will normally delete roughly one-half (or at
least some constant fraction) of the remaining unpro-
cessed and undeleted points during each pass through
the WHILE loop. Based on this, the average running
time of this algorithm is O(lgn) and its average cost
is O(n lgn), which is optimal.

max

min

Figure 2: First major step.

max
min

lowermin
p1

Figure 3: Second major step.

Implementation Results

The preceding algorithm was implemented on the
WAVETRACER (DTC) SIMD Computer with 4096



uppermax

max
min

p2

Figure 4: Third major step.

processors [5, 6]. When additional processors are re-
quired, the WAVETRACER automatically provides
the required number of virtual processors, with each
actual processor supporting either k or k � 1 virtual
processors. This causes a constant slowdown in actual
running time of approximately 1

k
. The actual imple-

mentation allows us to examine some factors which
cannot be determined solely by theoretical analysis.
The results are shown in Table 1 for sets from 50 to
20000 points in size. These points were obtained by
randomly generating their x and y coordinates in the
range 0 to 5000. The result in Table 1 is obtained
for each input size by taking the mean of the time to
compute the convex hull points from over 60 di�erent
random generated data sets. Since there is no built in
clock for the WAVETRACER, the running time for
each random generated data set is obtained by tim-
ing 100 executions of the algorithm and then dividing
by 100. The running time obtained did not include
the time for loading the data into the PEs or out-
putting the results. The performance of this algorithm
is compared to other recently developed associative al-
gorithms for the convex hull in [5, 6]. Notice that if we
plot a graph for the timings of the Associative Gra-
ham Scan as a function of input size and a graph for
the logarithmic graph y = c lgn with c = 0:036 the
two graphs closely agree. This was predicted earlier
in this paper where it was argued that in the average
case the Associative Graham Scan runs in O(lgn).

Input Graham Scan Nr. Hull log
2

Size Time in Sec Points (Input Size)

100 .21 7 6.6
500 .33 8 9
1000 .37 10 10
3000 .39 12 11.6
5000 .42 12 12.3
10000 .44 13 13.3
15000 .45 13 13.9
16000 .42 14 14
20000 .32 16 14.3

Table 1: Time to compute the Convex Hull for n
points.

Summary

A parallel version of the Graham Scan Algorithm de-
signed for the associative computing model with one
instruction stream is presented in this paper. This
algorithm assumes n processors and has O(lgn) aver-
age case cost and O(n2) worst case cost. We imple-
mented this algorithm on the WAVETRACER (DTC)
Computer and ran extensive tests on it. These tests
con�rm that this is an excellent algorithm for the the
associative model. One advantage of this algorithm is
that it does not require the use of interconnection net-
work operations, which are known to be much slower
than local operations [7, page 958]. While optimal
time is obtained in the average case, its performance
degrades less rapidly as the number of convex hull
points are increased than associative versions of other
classical convex hull algorithms tested. It appears
that this is the �rst parallel version of the classical
Graham Scan Algorithm. This algorithm will pro-
vide a new algorithm for massively parallel computers
that can support the associative model. Moreover, it
may be easy to execute this algorithm on other com-
putational models that can support massively paral-
lelism. For example, it is not di�cult to see that this
algorithm can be computed on a mesh with multiple
broadcasts [6]. While in practice, the number of pro-
cessors in a parallel computer may be too small to
store each planar point in a separate processor as re-
quired by the associative model, this problem is easily
overcome with the use of virtual parallelism [8]. In
fact, this solution is supported automatically by the
WAVETRACER Computer.

References

[1] Cormen, T. H., C. E. Leiserson, R. L. Rivest. In-
troduction To Algorithms. MIT Press and McGraw-
Hill. 1989.
[2] Potter, J., J. Baker, A. Bansal, S. Scott, C.
Leangsuksun and C. Asthagiri. "ASC: An Associative
Computing Paradigm." Special Issue on Associative
Processing, IEEE Computer. 27(11): 19-25, 1994.
[3] WAVETRACER. The MultiC Programming Lan-
guage. Preliminary Documentation. January 6, 1991.
[4] Potter, J. Associative Computing: A Program-
ming Paradigm for Massively Parallel Computers.
Plenum Publishing, New York. 1992.
[5] Atwah, M. M. Computing the Convex Hull on the
Associative Model.Masters Thesis. Kent State Univer-
sity 1994.
[6] Atwah, M., J. Baker and S. Akl. "Parallel Ver-
sions of Classical Convex Hull Algorithms for the
Associative Model and Comparisons of their Perfor-
mances". Paper in progress.
[7] Reif, J. H., editor. Synthesis of Parallel Algo-
rithms. M. Kaufmann Publishing, San Mateo, Calif.
1993.
[8] Maresca, M. "Polymorphic Processor Arrays."
IEEE Trans. Parallel Distributed Syst. 4(5): 490-505,
1993.


