
AN ASSOCIATIVE DYNAMIC CONVEX HULL

ALGORITHM

MAHER M. ATWAH JOHNNIE W. BAKER

Mathematics and Computer Science Mathematics and Computer Science

Kent State University Kent State University

Kent, OH 44242 Kent, USA, OH 44242, USA

matwah@mcs.kent.edu jbaker@mcs.kent.edu

Abstract

This paper presents a new parallel algorithm for the

dynamic convex hull problem. This algorithm is a

parallel adaptation of the Jarvis March Algorithm.

The computational model selected for this algorithm

is the associative computing model (ASC) which sup-

ports massive parallelism through the use of data par-

allelism and constant time associative search and max-

imum functions. Also, ASC can be supported on ex-

isting SIMD computers.

1 Introduction

The convex hull of a �nite set of a set S of n planar

points is an important geometric concept. It can be

de�ned as the smallest convex polygon for which each

point in S is either on the boundary of the convex

polygon or in its interior. We assume that no two

points in S have the same x or y coordinates and that

no three points in S lie on the same straight line as

these assumptions make the algorithm easier to de-

scribe. However, the algorithm given in this paper

can be easily modi�ed to eliminate the necessity of

these assumptions. The convex hull plays a central

role in the �eld of computational geometry. This ge-

ometric concept �nds practical applications in many

areas including pattern recognition, image processing,

engineering, computer graphics, design automation,

and operations research.

The Jarvis March [7] algorithm computes the con-

vex hull of a set S of planar points by identifying

the hull edges. The overall time complexity is O(nh),

where h is the number of vertices in the convex hull.

In the worst case, h equals n and the complexity is

O(n2).

2 Associative Computing

Model

The associative computing model (ASC) is an exten-

sion of the general associative processing techniques

developed for the associative STARAN SIMD com-

puter in the 1970's for massively parallel computation.

As our algorithm will demonstrate, ASC provides an

e�cient computational model for algorithms requiring

massive parallelism. Details of how this model can be

implemented on existing SIMD computers are given in

[10]. In particular, a high level language based on ASC

detailed in [10] has been installed on the STARAN,

ASPRO, WAVETRACER, and Connection Machine

CM-2.

A brief summary of the features of the ASC model

is presented here. Additional information and proper-

ties of this model may be found in [9]. ASC consists

of an array of cells, each containing a processor and

its local memory. Cell memory holds variables used

for data-parallel operations. These cells are connected

by bus to the instruction stream (IS) which stores a

copy of the program being executed and broadcasts

program instructions to all active cells. For our algo-



rithm, only one IS is required, but the more general

ASC model described in [9] allows multiple instruction

streams. It is convenient to assume that variables and

constants that need to be globally available to all cells

are stored in the memory of the IS and may be broad-

cast to all active cells. The IS also has the ability to

read and store a value from a speci�c cell. The IS

variables are called sequential variables and cell vari-

ables are called parallel variables. In addition to data-

parallel execution, the ASC model supports constant

time functions for associative searching and selection,

logical operations, and maximum and minimum. Con-

stant time searching permits the simultaneous exam-

ination of all active cells and the identi�cation of all

those that meet the search criteria. These identi�ed

cells are called responders and become the new set of

active cells. By altering the criteria, di�erent cells be-

come responders. The IS has the ability to detect the

presence of responders in unit time. It is also possible

to access active cells sequentially and to return to the

set of cells which were active preceding the search or to

activate all cells. The maximum or minimum value of

a parallel variable (or the cell address containing that

value) can be computed for all active cells in constant

time. While not used here, the cells may be connected

by means of a simple network.

3 Dynamic Convex Hull

In this section we introduce a dynamic convex hull

algorithm. This algorithm is based on parallel adap-

tation of the Jarvis March algorithm [5]. The new

algorithm re�nes the results obtained by Chazelle [6].

This problem can be stated as follows: Given a

number of points that are moving in Euclidean space,

we want to maintain for this set of points the con-

vex hull. Each of the convex hull algorithms we have

examined thus requires all of the data points to be

present before any processing begins. In many ge-

ometric applications, particularly those that run in

real-time, this condition cannot be met and some com-

putation must be done as the points are being re-

ceived. In other words, we call an algorithm that

cannot look ahead at its input o�-line, while one that

operates on all the data collectively is called on-line.

A dynamic convex hull is needed [12], when a

population is to be estimated using statistics [7, 8], or

simulating chemical reactions. In addition, a dynamic

algorithm is needed in applications such as graphics,

air tra�c control, and robotics.

To obtain dynamic algorithm for convex hull, we

must make substantial modi�cation to the static algo-

rithms presented [5]. We �rst state the requirements

for a dynamic algorithm. Following Chazelle [6], we

need to support four operations:

1. Insert a point M .

2. Delete a point M .

3. Report all the vertices of the convex hull in some

reasonable order.

4. Determine whether an arbitrary point M lies in-

side or outside the convex hull.

Note that in operation 1 the point M can be either a

new point or a point that is already in the structure.

Also, the operation "delete point M" always refers to

a vertex of the convex hull.

If we do not need to support deletions, it is

quite easy to make our algorithms dynamic since we

can continue to discard points which are not extreme

points of the hull. However, if points are to be deleted,

it is possible that some non-hull points will later be-

come extreme points of the hull, and in this case we

can no longer eliminate any points entirely. With a

dynamic algorithm, the number of processors needed

is determined by the maximum size of P , where P is

the number of processors available. In the discussion

that follows, we use N to indicate the largest number

of points that will be in P at any given time. Since

our algorithm is using one point per processor N will

be equal to P .

4 The Dynamic Algorithm

This algorithm considers only the upper convex hull;

the lower hull is the same as the upper hull with mi-

nor modi�cations. We have to note that when a point



is marked for deletion its value is still stored in that

PE and it can be retrieved by marking that PE not

deleted.

Let S be the current set of n planar point that are

stored in the local memory of the PEs with at most

one point per PE. Each point p has its two coordinates

x and y stored in the PE variables. Let e be the ex-

treme point of S with the largest x coordinate. Also,

let w be the extreme point of S with the smallest x

coordinate.

A minimum of three points is needed for the al-

gorithm to work. As the �rst point or points initially

are entered they are stored one per processor in the

array, the static algorithm given in [5] is used to com-

pute the upper hull. When a point is deleted, its value

is simply replaced by null in its own processor. New

points being entered are assigned to a processor with

a null value. As long as the total number of points

does not exceed N , there will be no over
ow.

After that, whenever a points M is inserted into

P the following steps takes place:

1. If M is below we then mark it for deletion.

2. If there is a point p equal to M then replace M

by null.

3. If step 1 & 2 fails then

(a) Find the greatest lower bound point (call it

glb) and the lowest upper bound point (call

it lub) from the set of the current convex hull

points.

(b) If M is below glb; lub then mark this point

for deletion.

(c) Else

i. Activate all PE such that the x-

coordinate is less than the x-coordinate

of M .

ii. Calculate the slope of all the active PEs

with respect to M .

iii. Restrict the active PEs to the one sat-

isfying slope = minslope. This PE is

called L and marked extreme.

iv. All the PEs that are below LM are

marked for deletion.

v. Activate all PE such that the x-

coordinate is greater than the x-

coordinate of M .

vi. Calculate the slope of all the active PEs

with respect to M .

vii. Restrict the active PEs to the one sat-

isfying slope = maxslope. This PE is

called G and marked extreme.

viii. All the PEs that are below MG are

marked for deletion.

Note that the greatest lower bound point for a

point M is a convex hull point with its x coordinate

value is smaller than the x coordinate ofM but larger

that all the x coordinate values of all the convex hull

points that are to the left of M see Figure 2). Also,

the lowest upper bound point for a point M is a con-

vex hull point with its x coordinate value is larger

than the x coordinate of M but smaller that all the

x coordinate values of all the convex hull points that

are to the right of M see Figure 2).

Figure 2 gives an example of inserting a pointM .

The dotted lines represent the old part of the convex

hull and the solid lines represent the new hull after

M has been inserted. Notice that glb and lub points

are marked for deletion since they fall below LM and

MG, respectively.

All the above steps require constant time. So,

inserting a point to the upper convex hull cost O(1)

time.

Point queries are very simple with this scheme

and it is performed as follows:

1. If M is below we then it is outside the upper hull

2. Else

(a) Find the greatest lower bound point (call it

glb) and the lowest upper bound point (call

it lub) from the set of the current convex hull

points.



(b) If M is below glb; lub then it is inside the

upper convex hull, otherwise it is outside the

upper convex hull.

As point insertion, point query cost O(1).

Deleting a point is di�erent than inserting a point

since, if points are deleted, it is possible that some

non-hull points will later become extreme points of

the hull. So, if there is a request to delete a point M

from S the following steps take place (M is a vertex

of the convex hull):

1. Replace M by null.

2. Find the greatest lower bound point (call it glb)

from the set of the current convex hull points.

3. Activate all the PE such that the x-coordinate is

greater than the x-coordinate of glb.

4. If any one of these PEs was marked for deletion

then mark it not deleted.

5. Run the static algorithm Figure 1 ([5]) on the set

of active PEs to recompute the upper hull.

All the steps cost O(1) except step 5, which in

the worst case will cost O(h), where h is the current

number of the vertices of the convex hull.

Reporting all the vertices of the convex hull

in clockwise (or counterclockwise) order cost O(h),

where h is the current number of the vertices of the

convex hull. Point reporting has the same cost as sort-

ing. First, we activate all the PEs that are marked

extreme. Then, we pick the point that contain the

smallest x-coordinate and so on until all the extreme

points are reported.

This algorithm cannot freely mix insertions and

deletions with queries and reports. Queries and report

requests cannot be entered after a series of insertions

and deletions until the new hull has been completely

calculated, and all queries and reports must be com-

pleted before a batch of insertions and deletions can

be entered.

Algorithm Associative Jarvis March

Input: A set S of coordinate points.

Output: An ordered list of the vertices of the up-

per convex hull.

1. Initialize j = 0.

2. All PEs are used to compute xmax and xmin,

the maximum and minimum value of the x-

coordinate of S.

3. Restrict the PEs to the one whose point(x,y) sat-

is�es x = xmin. This PE is marked extreme

and rank is set to j. The IS processor assigns

xcurrent = x, ycurrent = y and L[j] = (x; y).

4. While xcurrent < xmax (Compute the upper

hull of S)

(a) j = j + 1

(b) Restrict the active PEs to the points (x,y)

satisfying x > xcurrent; those PEs assign

slope = y�ycurrent

x�xcurrent

(c) All active PEs are used to compute

maxslope, the maximum slope value of all

active PEs.

(d) Restrict the active PEs to the point (x,y)

satisfying slope = maxslope. This PE is

marked extreme and assigns rank = j.

The IS processor assigns xcurrent = x,

ycurrent = y and L[j] = (x; y).

Figure 1: Associative Jarvis March Algorithm.



5 Conclusion

A parallel dynamic convex hull algorithm designed for

the associative computing model is presented in this

paper. This algorithm re�nes the results obtained in

[6]. In [6] all operations except point reporting re-

quires O(n
1

2 ) time and point reporting requires O(1)

time. In our algorithm, point insertion and query

takes O(1) time and point deletion and reporting take

O(h) time, where h is the number of the vertices of the

convex hull. In the worst case, h equals n and time

reporting and deletion is O(n). One advantage of this

algorithm is that it did not require the use of network

operations, which are known to be much slower than

local operations [11].

w

M

glb
lub

L
G

e

Figure 2: Dynamic Convex Hull: After inserting a

point M .

References

[1] S. G. Akl and G. T. Toussaint, E�cient Con-

vex Hull Algorithms for Pattern Recognition Ap-

plications, Proceedings of the 4th International

Joint Conference on Pattern Recognition, Kyoto,

Japan, 1978, 483-487.

[2] S. G. Akl, A Constant-Time Parallel Algorithm

for Computing Convex Hulls, BIT, 22, 1982, 130-

134.

[3] S. G. Akl. Parallel Computational Geometry.

Prentice Hall, Englewood Cli�s, New Jersey.

1992.

[4] S. G. Akl and K. A. Lyons, Parallel Computa-

tional Geometry, Prentice Hall, Englewood Cli�s,

New Jersey, 1993.

[5] M. M. Atwah, J. W. Baker, and S. Akl, An

Associative Implementation of Classical Convex

Hull Algorithms, Proceedings of Eighth IASTED

International Conference on Parallel and Dis-

tributed Computing and Systems, Chicago, IL,

October 1996, 435-438.

[6] B. Chazelle, Computational Geometry on a Sys-

tolic Chip, IEEE Trans. Comp., C-33(9), 1984,

774-785.

[7] R. A. Jarvis, On the Identi�cation of the Con-

vex Hull of a Finite Set of Points in the Plane,

Information Processing Letters, 2, 1973, 18-21.

[8] M. H. Overmars and J. Van Leeuwen, Dynam-

ically maintaining con�gurations in the plane,

Proc. 12th Annual SIGACT Symp., Los Angeles,

CA. May 1980.

[9] J. Potter, J. Baker, A. Bansal, S. Scott, C. Leang-

suksun and C. Asthagiri, ASC: An associative

computing paradigm, IEEE Computers, Novem-

ber 1994, 19-25.

[10] J. Potter, Associative Computing: A Program-

ming Paradigm for Massively Parallel Comput-

ers, Plenum Publishing, New York, 1992.

[11] J. H. Reif, Editor, Asynchronous PRAM Algo-

rithms, Synthesis of Parallel Algorithms, 22, 957-

997, Morgan Kaufman Publishing, San Mateo,

CA 1993.

[12] M. I. Shamos, Computational Geometry, Ph.D.

dissertation, Yale University, 1978.


