
Proceedings of the 11th International Conference
On Parallel and Distributed Computing Systems
November 3-6, 1999, Boston, MA, USA

302-288
-1-

Simulation of Enhanced Meshes with MASC, a MSIMD Model
Johnnie W. Baker and Mingxian Jin

Department of Math and Computer Science
Kent State University, Kent, OH 44242-0001

Voice: (330)-672-4004 Fax: (330)-672-7824
{jbaker, mjin}@mcs.kent.edu

Abstract: MASC (for Multiple Associative Computing) is a
joint control parallel, data parallel model that provides a
practical, highly scalable model that naturally supports small to
massive parallelism and a wide range of applications. In this
paper, we present efficient algorithms for a MASC model with a
2-D mesh to simulate enhanced meshes. Let MASC(n, j) denote
a MASC model with n processing elements and j instruction
streams. It is shown that a MASC(n, j) model with a 2-D mesh is

strictly more powerful than a n × n MMB (Mesh with

Multiple Broadcasting) when j =Ω(n). Simulation of a n × n
MMB by MASC(n, j) with a 2-D mesh runs in O(1) time and

requires no extra memory. Simulating a n × n BRM (Basic
Reconfigurable Mesh) with MASC(n, j) with a 2-D mesh takes

O(n) extra time with O(n) extra memory when j = Ω (n) .
The reverse simulations of MMB or BRM with MASC with a
2-D mesh is also given. These simulations not only provide
information about the power of the MASC model and also
provide an automatic conversion of numerous algorithms
designed for enhanced meshes to the MASC model.

Key Words: parallel models of computation, associative
computing, simulation, mesh with multiple broadcasting,
enhanced meshes, MSIMD

1. Introduction

The MASC (for Multiple Associative Computing)
model for parallel computation is a generalized version of
an associative style of computing that has been in use
since the introduction of associative SIMD computers in
the early 1970's [9]. It provides a practical, highly
scalable model that naturally supports small and massive
parallelism and a wide range of applications. MASC is a
MSIMD type model that provides one or more instruction
streams (ISs), each of which is sent to a unique set in a
dynamic partition of the processing elements (PEs). This
allows the task currently being executed to be partitioned
into multiple tasks, using control parallelism. Most
parallel applications are essentially data parallel in nature,
but have several nontrivial regions where significant
branching occurs. With MASC, control parallelism can be
used to execute each of these different branches
simultaneously, effectively utilizing the PEs. Briefly, this
model supports data parallel execution of instructions,
constant-time searching, constant-time maximum and
minimum operations (assuming that words have constant
length), one or more ISs, and synchronization of the ISs
using control parallelism. The associative feature of the
model allows data in the local memories of processors to

be located by content rather than by address. A possible
implementation for the MASC model is discussed in [1].

The power of a computational model is indicated
both by the efficiency of algorithms it can support and by
the efficiency with which it can simulate other
computational models. In this paper, we present efficient
simulation algorithms between enhanced meshes and
MASC. We also give some results based on these
simulations. The simulations of MASC with the well-
known enhanced mesh models provide a better
understanding the power of the MASC model. In addition,
they provide a method for converting algorithms designed
for enhanced meshes to the MASC model.

This paper is organized into five sections. In
particular, Section 2 gives a brief description of enhanced
meshes and Section 3 provides an overview of the MASC
model. Section 4 discusses the simulation algorithms in
both directions. Section 5 gives the concluding remarks.

2. Enhanced Meshes

 The mesh-connected computer (MCC) has been of
considerable interest to researchers in parallel
computation due to its regular structure and simple
interconnection topology which is particularly well suited
for VLSI implementation. The main drawback of MCC is

its large diameter. For example, on a n × n 2-D MCC,

routing a data may take Ω(n) time in the worst case.

To overcome the large diameter problem, an
enhancement of the MCC has been proposed which gives
the processors the ability to broadcast using buses. Such
meshes are referred to as enhanced meshes. At any given
time, only one processor is allowed to broadcast an item
on a bus. The datum will be read by all of the remaining
processors on that bus. The two types of buses used for
enhanced meshes are fixed buses and reconfigurable
buses[3]. A mesh can be enhanced with a fixed bus using
the single global bus model in which all processors are
connected to a single bus. The other fixed mesh model is
the mesh with multiple broadcasting (MMB) in which the
basic mesh architecture is enhanced with row and column
buses. At each step, broadcasts can occur along one or
more rows or else along one or more columns. The row
and column buses can not be used in the same step. The
reconfigurable bus models allow buses to be created

-2-

dynamically on the mesh while a problem is being solved.
The number, shape, and length of these buses are not
fixed and are defined by the algorithm, as needed.
Assume each processor has four ports referred to as N, S,
E, and W. The model that allows up to two disjoint pairs
of ports to be connected is called the general reconfi-
gurable mesh. In this paper, we will use only the basic
reconfigurable mesh (BRM) in which every processor
may set at most one connection involving one of the pairs
{N,S} or {E,W}. Further details can be found in [7].

Simulations between enhanced meshes and CRCW

PRAM has been given in [7]. They show that a n × n
MMB can be simulated by a CREW PRAM(n, m) in O(1)
time with O(n) extra memory. Similarly, if α denotes the

inverse Ackermann function, they show that a n × n
BRM can be simulated by a Common CRCW PRAM(n,
m) with O(α(n)) extra time and O(n) extra memory.

3. The MASC Model

MASC is a hybrid control parallel, data parallel
model of parallel computation with an array of PEs and an
array of ISs. This is illustrated in Figure 1. This model
also includes three real or virtual networks; namely, a PE
network used for communications among PEs, an
instruction stream broadcast/reduction network used for
communication between an IS and a set of cells, and an IS
network used for IS communications. The array of MASC
machine with n PEs and j ISs is written as MASC(n, j).
Normally, j is expected to be much smaller than n. Each
PE is capable of performing local arithmetic, logical
operations, and the other usual functions of a sequential

processor other than issuing instructions.

Figure 1. The MASC model

A cell is composed of a PE and its local memory.
Each PE can only access its own local memory. An IS is
logically a processor which has a bus connection to each
cell. Each IS has a copy of the program being executed
and issue an instruction to all cells in constant time. Each
cell listens to only one IS and initially all cells listen to
the same IS. The cells can switch to another IS in
response to commands from the current IS. A cell is
active, inactive, or idle. An active cell executes the

program issued from the IS to which it is currently
assigned while an inactive cell listens to but does not
execute these instructions. An IS can instruct an inactive
cell to become active again. Since each PE has a
corresponding cell, we will use the concepts of a PE and a
cell interchangeably when no confusion arises.

The MASC model supports the global reduction
operations of OR and AND of binary values and of
maximum and minimum of integer or real values for each
IS and its active PEs in constant time (assuming the word
length is considered to be a constant). Additionally, the
MASC model supports a constant time associative search
(assuming the word length is a constant) which allows
data in the local memories of processors to be located by
content rather than by address. The cells whose data value
match the search pattern are called responders and the
unsuccessful ones are called non-responders. The IS can
activate either the responders or the non-responders. Each
IS can select (or ''pick one'') arbitrary responder from the
set of active cells in constant time. This IS can also
instruct the selected cell to broadcast a data item on the
bus and all other cells listening to this IS receive this
value in constant time.

The assumption that an arbitrary subset of reductions
and broadcasts on bus-based architectures can occur in
constant time is supported by experimental evidence and
is consistent with other researchers[5][7][11]. Also, the
''pick one'' operation can be implemented using a
hardware circuit to select one of the active processors in
what is reasonable to assume is constant time. While
inexact, experimental tests with Goodyear's STARAN
(with 1024 PEs) and Goodyear/Loral/Martin-Marietta's
ASPRO (with approximately 1800 PEs) have shown that
a resolver network can select one of the active PEs in
about 5 clock cycles.

A standard associative language, called ASC, has
been implemented for MASC(n,1) across many platforms
including Goodyear/Loral/Martin-Marietta's ASPRO, the
WaveTracer, and Thinking Machine's CM-2, and provides
true portability for parallel algorithms[10]. In addition, an
efficient ASC simulator has been implemented on both
PCs and workstations running UNIX. It provides an
efficient and easy way to design programs for algorithms
that utilize massively parallelism. An object-oriented
version of this language that supports multiple ISs is
currently under development.

The MASC model supports algorithm development
and analysis. A wide range of different type of algorithms
and several large programs have been implemented using
ASC language. For some examples of algorithms for this
model, see [1][4][6][9][10].

It is convenient to assume that variables and
constants that need to be globally available to multiple
cells are stored in the memory of the ISs and may be
broadcast to all active cells. The ISs have the ability to

PEMemory

IS

IS

C
E
L
L

N
E
T
W
O
R
K

I
S

N
E
T
W
O
R
K

PEMemory

PEMemory

Cells

•
•
•

 • • •

-3-

read and store a value from a specific cell. The IS
variables are called scalar variables while the cell
variables are called parallel variables. To make a clear
distinction between these two variable types, we add a Ò$Ó
suffix to the parallel variable identifiers.

Previous MASC simulations include simulation of
PRAM with MASC[12] and self-simulation[13]. Let
PRAM(n, m) denote a PRAM with n processors and m
shared memory. Without its network, MASC(n, j) can
simulate priority CRCW algorithms that use only O(j)
shared memory location in constant time with high
probability. Also, MASC(n, 1) can simulate priority
CRCW algorithms that use only a constant number m of
global memory locations in constant time. Using both
network algorithms and ISs to move data, MASC(n, j) can
simulate priority CRCW PRAM(n,m) in O(min{n/j, m/j,
route(n)}) with high probability, where route(n) is the
average time for a general network routing. In the other
direction, combining CRCW PRAM requires O(j) time to
simulate MASC(n,j) since the ISs must be simulated
sequentially. The self-simulation ability of MASC also
allows the model to support a virtual machine with more
PEs and ISs than are actually available, letting a
programmer assume that enough PEs and ISs exist for
their current program. MASC(n, j) with n PEs and j ISs
can simulate MASC(N,J) with N PEs and J ISs in O(N/n
+ J) extra time and with O(N/n + J) extra memory for
each PE, where N ≥ n and J ≥ j. This establishes that the
algorithms for this model are highly scalable.

4. Simulations of Enhanced Meshes

In this section, algorithms are presented for MASC
to simulate enhanced meshes and to be simulated by
enhanced meshes. We shall discuss simulations of
enhanced meshes with MASC in Section 4.1 and 4.2; and
then show the reverse simulation in Section 4.3.

Unless noted otherwise, we assume in our
simulation algorithms that the mesh network for

MASC(n, j) has size n × n and is in rowÐmajor order

and that j = n . The ith PE in the MASC array will be
denoted PEi (1≤ i ≤ n) and the ith IS will be denoted ISi

(1≤ i ≤ n) . Unless noted otherwise, the size of all

enhanced meshes considered is n × n and is in row-
major order. The processor in row i and column j (1 ≤ i, j

≤ n) of an enhanced mesh is referred as to P(i, j).

For enhanced meshes, instructions used in algorithms
consists of performing an arithmetic or boolean operation,
communicating with a neighbor, broadcasting a value on
a bus, or reading a value from a bus. In the MASC
model, each PE is assumed to have exactly the same
computation power as the PEs of an enhanced mesh. This
assumption will simplify the simulations and require that
the register and word length of both models be O(lg n),

the word length assumed for enhanced meshes. Some
researchers argue that the word length in parallel
computers should always be lg n or larger[3] so that it can
store the ID number of each PE. Since a parallel computer
could have over 1.8× 1019

 PEs before lg n is larger than
64, this simplifying assumption seems to be reasonable,
based on the size of current parallel computers. In order to
compare the enhanced mesh models with the MASC
models fairly, we assume the MASC buses have the same
power as those of the enhanced meshes. In particular, the
ID number of a PE or an IS can be broadcast on a bus and
stored in constant time. Since both the MASC model used

here and the enhanced mesh have a n × n mesh
network, it is natural to map the processors in MASC to
those in the same position in MMB. Since both models
have identical mesh networks, the mesh operations can be
simulated automatically. Therefore, the remaining work
required is to simulate with MASC the operation of
broadcasting over buses in an enhanced mesh.

Simulating an enhanced mesh with a global bus with
MASC(n, 1) is trivial. All we need to do is to let all PEs

listen to IS1 . Then any algorithm running on a n × n
mesh with a global bus can run in MASC(n,1) with mesh
connection in the same time. On the other hand, the
reduction operation of maximum requires only O(1) time
for MASC(n, 1) but non-constant time for the mesh with a
global bus[2]. This gives the following obvious theorem.

Theorem 1. MASC (n, 1) with a 2-D mesh is more

powerful than a n × n mesh with a global bus. Any

algorithm on a n × n mesh with a global bus can be
executed on MASC(n, 1) with a 2-D mesh with a running
time that is at least as fast.

We next focus on the other two enhanced meshes
models, namely, the meshes with multiple broadcasting
(MMB) and the basic reconfigurable meshes (BRM).

4.1. Simulating MMB with MASC

Each PEi (1 ≤ i ≤ n) in MASC with a 2-D mesh stores
its position in the mesh network in two parallel variables,
row$ and column$. These positions are the same as that of
the corresponding MMB processor. In particular, for all i,
processor PEi simulates the MMB-processor P(ri , c i),

where i = (ri Ð 1) n + ci , ri = i / n , and ci = (i Ð1)

mod n + 1. The desired simulation is a sequence of steps
in which every processor in MASC is responsible for
simulating the corresponding MMB processor.

As mentioned above, we only need to deal with the

simulation of broadcasting in MMB. Since n instruction
streams are assumed, we assign ISi to both the ith row
and the ith column. In one step, an IS can switch from
instructing its row of PEs to instructing its column of PEs.

-4-

Initially, all PEs listen to IS1 . In order to simulate a
MMB row broadcast, the algorithm proceeds as follows.
First all PEs switch to their assigned row IS. Each PE row
should have at most one PE that needs to broadcast. The
IS for each row checks to see if there is a PE that needs to
broadcast a value and, if true, instructs this PE to place its
broadcast value on the MASC bus. The broadcast
operation is completed in constant time. The simulation of
broadcast operations along column buses is done
analogously. The only difference is that PEs switch to
their assigned column IS.

Since each of the above steps take O(1) time, we
have the total running time to be O(1). Each PE has two
local variables to store its row and column indices. The
resulting extra memory for all PEs is O(n), which is a
minor cost. If these two variables are already resident in
each PE, they can be omitted. Another additional cost is

the n instruction stream processors that provide
instructions to the PEs. However, since the total number
of PEs and ISs is still O(n), this is also an insignificant
cost in the simulation. Moreover, the role that the ISs play

in the MASC model is similar to the role that the 2 n
buses play in the MMB model. Due to the scalability of
the MASC model, we can always use the self-simulation
results in [13] to reduce the number of ISs required for
this simulation to smaller number.

This simulation establishes that an algorithm

running on a n × n MMB can be executed on
MASC(n, j) with a 2-D mesh in asymptotically the same

time when j =Ω (n). As a result, MASC (n, j) with a 2-

D mesh is at least as powerful as a n × n MMB, when

j=Ω (n). In particular, cost optimal algorithms for
MMB are also cost optimal when executed through
simulation on MASC. This raises the question as to
whether this particular MASC model has the same power
as the MMB model or is strictly more powerful.

We next show that there is a problem that can be
solved faster using this MASC model than using the

MMB model. Consider a n × n table and various

partitions of these values into n sets with n values,
each of which contains exactly one value from each
column and one value from each row of the table. An
example of such a partition can be obtained using the
wrap-around diagonals of this table. The problem is to
efficiently calculate the maximum value for each set in

any partition of this table. With MASC(n, n) , the n
numbers of this table can be stored in n PEs with one
value in each PE. Then all PEs with data for the ith set

listen to ISi (1 ≤ i ≤ n) and locate the maximum value
for that set in O(1) time. However, the MMB requires Ω

(n log n) time due to the necessary data movement and

the Ω(log n) time needed to find the maximum of one set
[7]. This gives the next theorem. The corollaries follow
by making obvious adjustments to the preceding
explanations.

Theorem 2. MASC (n, j) with a 2-D mesh is strictly

more powerful than a n × n MMB when j = Ω(n).

Any algorithm for a n × n MMB can be executed on

MASC(n, j) with j = Ω(n) and a 2-D mesh with a
running time at least as fast as the MMB time.

Corollary 3. For any constant c, MASC (n, 1) with a n×c
mesh connection is more powerful than a n×c MMB. Any
algorithm for a n×c MMB can be executed on a
MASC(n,1) with a n×c mesh connection with a running
time that is at least as fast as on the MMB.

Corollary 4. MASC(mn, j) with a m×n mesh connection
is more powerful than a m×n MMB, when j is Ω(max{m,
n}). Any algorithm on a m×n MMB can be executed on
MASC(mn, Ω(max{m, n})) with a m×n mesh connection
with a running time at least as fast as on the MMB.

4.2. Simulating BRM with MASC

 A reconfigurable mesh is a very powerful parallel
computational model. A 2-D reconfigurable mesh was
shown to be at least as powerful as the CRCW PRAM
model in [14]. Later, it was proved to be strictly more
powerful than the CRCW model in [8]. These indicate
that simulation of the reconfigurable mesh with MASC
has the potential to be a significant tool for evaluating the
power of this model.

Consider a n × n BRM and a MASC(n, j) with

mesh connection, where j = n . Again, we view the
desired simulation as a sequence of steps in which each
PE in MASC is responsible for simulating one of the
BRM processors. Since both models have a 2-D mesh
connection, each processor in both models stores a row
and column number that correspond to their position in
the mesh. The MASC PE at location (ri , ci) in the mesh
simulates the PE in the same position in the BRM.

Besides the above parallel variables row$ and
column$, several other MASC variables will be needed.
The parallel variable, connection$ stores the reconfi-
guration status of the corresponding BRM processor P(ri ,
ci). In particular, the variable connection$ in PEi stores 0
when the corresponding BRM processor P(ri , ci) has its
{E,W} ports connected and stores 1 otherwise. The
MASC parallel variable leader$ stores the column (or
row) number of the leftmost (or topmost) BRM processor
which shares the same subbus with the BRM processor
corresponding to PEi , when connected in EW (or NS)
direction. All the values in this parallel variable are
initialized to 0 before each subbus broadcasts.

-5-

All PEs on the same subbus will have the same
leader$ value with one exception. This exception occurs
with horizontal subbuses when two subbuses terminate at
a common PE. In this case, the common PE will have the
leader$ value that identifies its left subbus but will be
located in the column that identifies its right subbus. An
analogous situation occurs for vertical subbuses. To
simplify this discussion of the algorithm involving BRM,
we assume that no two horizontal (or vertical) subbuses
share a common PE. However, the algorithm techniques
used are general and also work for this special case.

Now we need to deal with the simulation of

broadcasting in BRM. Since there are n ISs assumed,
let ISi be assigned to the ith row and the ith column.
Initially, all PEs listen to IS1 . They can switch to their
row or column IS in one step. Also, in one step, an IS can
switch from instructing its row PEs to instructing its
column PEs. Recall that in one time unit, a BRM
processor can connect one opposite pair of ports, namely
{N,S} or {E,W}. Since the algorithms for broadcasting on
the row and column subbuses are similar, we will cover
only the algorithm for the row (or horizontal).

The first part of this algorithm handles the
preprocessing needed to set up the row subbuses when the
subbus configuration has been changed. Each PEi initially
switches and listens to its row IS. Then each PEi sets its
connection$ variable to 0 if the BRM-processor P(ri , ci)
it simulates has its connection set to {E, W} and to 1
otherwise. Next, all PEs store 0 in their leader$ variable.
Then the local links of the mesh connection are used to
check the connection status of their horizontal neighbors.
All those PEs that do not receive a value of 0 are
deactivated since they are not on a horizontal subbus. The
algorithm next loops through the subbuses in each row
sequentially from right to left, but the rows are processed
in parallel. The left-most PE is identified in each subbus.
This PE is called the leader of the subbus, and then its
column number is broadcast to all PEs in the subbus and
is stored in the leader$ variable in these PEs.

The second part of this algorithm simulates a
broadcast. First, the PEs that are on subbuses are activated
and the rest remain inactive. These PEs are precisely the
ones with a nonzero value in their leader$ variable. Next,
those PEs that wish to broadcast are instructed to set their
broadcast flag. The broadcasts of the subbuses in the same
row are processed sequentially from right to left, but the
rows are processed in parallel.

Part 1 of the algorithm requires O(n) for each ISi

to assign a leader for each of its subbuses in the worst
case. The other operations of switching, activation,
deactivation and finding the maximum take constant time.
Local communication between neighbors in mesh
connection takes constant time as well. In part 2, once the
leader of a subbus has been found, a broadcast over the

subbus takes constant time. However, if there are several
subbuses in one row, and several broadcast requests
simultaneously, the row IS must handle these requests

sequentially. Since each row can have O(n) broadcast

requests, this operation requires O(n) time in the worst

case. The resulting worst case simulation time is O(n).
As for extra memory, each PE has three extra local
variables to store the data needed in the simulation, so the
total extra memory used is 3n or O(n) for all PEs, which

is insignificant. The other cost is that we need n extra
processors as ISs in MASC which are not needed in

BRM. However, we argue that n is asymptotically less
than the total number n of PEs, so this cost can also be
considered as an insignificant cost in the simulation. As
mentioned before, in practice, the self-simulation results

in [13] can be used reduce the n instruction streams to a
smaller number, due to the scalability of the MASC
model. Obviously, the preceding algorithm can be
executed by a MASC(n, j) model when j is Ω(n). This
yields the following theorem.

Theorem 5. MASC(n, j) with mesh connection where j∈

Ω(n) can simulate a n × n BRM with O(n) time
and O(n) extra memory.

4.3. Simulation of MASC with MMB and BRM

In this section, an algorithm is given to simulate
MASC(n, j) with enhanced meshes. The MMB model is
considered first. We make the same assumption for the
size of the models and mapping for processors between
the two models as before. Matching processors have the
same location on the 2-D mesh. Hence, each P(ri , ci) in
the MMB corresponds to PEi in the MASC, where ri = i

/ n and ci = (i Ð1) mod n + 1. To simulate n ISs in

the MASC, each of the n MMB-processors in the first

column, i.e., P(i,1) with 1≤i≤ n , is assigned to also
simulate an IS and to issue an instruction stream. A copy

of the program stored on each P(i, 1) (1≤i≤ n). The
MMB simulates the execution of the instruction of the ISs
sequentially. The MMB-processor P(i, 1) broadcasts an
ISi instruction to all the processors in the first column.
Next, this instruction is broadcast along each row to the
remaining MMB-processors. Each MMB-processor
allocates register (or memory) space for the two variables,
channel and active. The ID of the IS that the simulated
MASC-PE is listening to is stored in channel and whether
or not this MASC-PE active is stored in active. Each
MMB-processor checks these variables in order to decide
whether to execute the current instruction issued. Initially,
all PEs listen to IS1 , which is simulated by P(1, 1).

The MMB-processor executes a local computation
or memory access in one step exactly as a MASC-

-6-

processor does. Also, a 2-D mesh data movement
instruction by one IS is executed exactly as it is on the
MMB. However, more work is required for the MASC
reduction operations OR, AND, maximum, and minimum.
When a MMB-processor receives an instruction operation
for one of these reduction operations from an IS, e.g. IS i ,
it does nothing at this step provided it currently is
assigned to ISi and is active. Otherwise, it determines the
null value for this reduction operation and prepares to use
this value in the reduction operation. The null values are
as follows: 0 for OR, 1 for AND, MININT for maximum,
etc. Next, the optimal algorithm provided in [5] is used to
compute the reduction and get the value in P(1, 1). The
final step is to send this result from P(1, 1) to P(i, 1), the
processor simulating ISi , using the first column bus.

The slowest part of this algorithm is the operation of
the MASC reduction. According to [5], this reduction can
be performed optimally on the MMB in O(n1/6). Since

this occurs inside a loop that is executed n times, the

worst case time will be O(n ×n1/6) or O(n2/3) . There are
two extra variables for each MMB-processor used to
decide whether the processor executes the current
instruction and what value should be provided to the
instruction. Additionally, the MMB-processors in the first
column require extra memory to store a copy of the
program and to execute this program, which is constant
length. The total extra memory used is O(n).

Observe that an alternative to using the first column

of MMB-processors to simulate ISs in MASC is to use (n

+1) × n MMB in which the first column of processors
are used only to simulate ISs of MASC. This will remove
the load imbalance on the processors in the first column.

Since the BRM is more powerful than the MMB, it
can also execute the above simulation of MASC with a 2-
D mesh. As illustrated in the example in 4.1, problems
can easily be chosen which do not allow effective uses of
BRM subbuses. Since the primary use of BRM presently
is to provide a model intermediate in power between the
MMB and the reconfigurable mesh, a BRM reduction
algorithm that is faster than an optimal MMB reduction
algorithm is not known currently. We have established the
following theorem.

Theorem 6. MASC(n, n) with a 2-D mesh connection

can be simulated by a n × n MMB or BRM with
O(n2/3) time and O(n) extra memory.

5. Conclusions

 Simulations between enhanced meshes and the
MASC model have been presented in this paper. It is

shown that MASC(n, j) with a 2-D mesh can simulate a n

× n MMB in O(1) time with no extra memory when

j=Ω(n). We show that MASC(n, j) with a 2-D mesh can

simulate a n × n BRM in O(n) time with O(n) extra

memory when j =Ω(n). Simulation of MASC(n, j)

with a n × n MMB or BRM takes O(n2/3) time with
O(n) extra memory. We also show that MASC(n, j) with a

2-D mesh is more powerful than a n × n MMB when

j=Ω(n) . These results provide an effective ways in
understanding the power of the MASC model by
comparing it with the well-known enhanced meshes.
Also, the constant time simulations enable the algorithms
designed for enhanced meshes to be transferred to MASC
with the same running time.

Acknowledgments:

The authors wish to express their gratitude to Dr.
Kenneth Batcher and Dr. C. Greg Plaxton for several
helpful comments. This work was supported by a grant
from Ohio Board of Regents CS Enhancement Initiative.

References:
[1] N. Abu-Ghazaleh, P. Wilsey, J. Potter, R. Walker, J.

Baker, Flexible Parallel Processing in Memory:
Architecture + Programming Model, Proceedings of the
3rd Petaflow Workshop, February 1999, 7pgs, http://
www.capsl.udel.edu/conferences/TPF-3/agenda.shtml.

[2] A. Aggarwal, Optimal Bounds for Finding Maximum
on Array of Processors with k Global Buses, IEEE
Trans. on Computers, Vol. 35, 1986, pp.62-64.

[3] S. G. Akl, Parallel Computing: Models and Methods
(Prentice Hall, New York, 1997).

[4] M. Atwah, J. Baker, An Associative Dynamic
Convex Hull Algorithm, Proceedings of the 10th
IASTED International Conference on Parallel and
Distributed Computing Systems, 1998, pp. 250-254.

[5] D. Bhagavathi, S. Olariu, W. Shen, L. Wilson, A
Unifying Look at Semigroup Computations on Meshes
with Multiple Broadcasting, Parallel Processing
Letters, Vol. 4, 1994, pp. 73-82.

[6] M. Esenwein, J. Baker, VLCD String Matching for
Associative Computing and Multiple Broadcast Mesh,
Proceedings of the 9th IASTED International
Conference on Parallel and Distributed Computing
Systems, 1997, pp. 69-74.

[7] R. Lin, S. Olariu, Simulating Enhanced Meshes with
Applications, Parallel Processing Letters, 3(1), pp. 59-
70, 1993.

[8] S. Olariu, J. Schwing, J. Zhang, On the Power of
Two-dimensional Processor Arrays with Reconfigurable
Bus Systems, Parallel Processing Letters vol. 1, No. 1
(1991), pp. 29-34.

[9] J. Potter, J. Baker, S. Scott, A. Bansal, C.
Leangsuksun, C. Asthagiri, ASC: An Associative-
Computing Paradigm, Computer, 27(11), 1994, 19-25.

-7-

[10] J. Potter, Associative Computing: A Programming
Paradigm for Massively Parallel Computers (New
York, 1992).

[11] D. Parkinson, D. Hunt, K. MacQueen, The AMT
DAP 500, Proceeding of the 33rd IEEE Computer
Society International Conference, 1988, pp. 196-199.

[12] D. Ulm, J. Baker, Simulating PRAM with a MSIMD
Model (ASC), Proceedings of the International
Conference on Parallel Processing, 1998, pp.3-10.

[13] D. Ulm, J. Baker, Virtual Parallelism by Self
Simulation of the Multiple Instruction Stream
Associative Model, Proceedings of the International
Conference on Parallel and Distributed Processing
Techniques and Applications, 1996, pp. 1421-1430.

[14] B. Wang, G. Chen, Two-dimensional Processor
Array with Reconfigurable Bus System Is At Least As
Powerful As CRCW Model, Information Processing
Letters 36 (1990), pp. 31-36.

