
Real-Time Scheduling in Command and Control

Will. C. Meilander Jerry L. Potter Kathy J. Liszka Johnnie W. Baker
Kent State Univ. Kent State Univ. The Univ. of Akron Kent State Univ.
willcm@mcs.kent.edu potter@mcs.kent.edu liszka@computer.org jbaker@mcs.kent.edu

ABSTRACT

Real-time tasks for command and control systems are too large
or too complex for one processor to handle. Simply adding more
CPUs does not result in a linear increase in performance. Current
comparative analysis of parallel algorithms does not accurately
reflect the increased cost of scheduling when more processors
are added. A case is made that associative processors
effectively handle real-time command and control type problems
and avoid most of the difficulties introduced by multiprocessors.
These results suggest that when comparing different
architectures, comparative analysis should consider the ALU and
control unit {CU} separately.

 Keywords
Real-time scheduling, command and control, parallel processing,
associative processing, air traffic control.

1. INTRODUCTION .
Scheduling complexity analysis is a very general problem that is
studied in many contexts. It may be utilized to provide assurance
of a system's ability to complete a set of tasks within a time
deadline for a worst case set of input conditions under a set of
predefined constraints. The inability to complete a set of tasks in
a given time frame forces us to alternative architectures in
seeking a solution. In many real-time systems the task is too
large or too complex for one processor to handle. When you run
out of “real time”, you go to multiple processors (MPs) resulting
in systems that substantially increase the size and complexity of
the task. (We regard MPs as parallel architectures with multiple
CPUs, e.g. MIMD, SMPs, NUMAs, Clusters, etc.) Indeed, when
the number of current processors is in the 16-32 range, adding
even one more processor can add more complexity to the system
than the additional computing power contributes [6]. Finding
solutions to the general problem is not trivial for practical
situations. Specifically, in command and control systems, most
real-time, MP scheduling is considered to be a NP-hard problem
[6]. Often those components of MP systems that add complexity
have not been thoroughly addressed or studied in a practical
sense. These factors must be looked at seriously to truly analyze
the performance of real-time command and control systems.

We claim that the current state of comparative analysis does not

accurately reflect the impact on scheduling of adding additional
instruction streams (IS) when additional processors are added.
We observe that single instruction stream, multiple data stream
associative processors (APs) avoid most of the problems
introduced by MPs. This paper will discuss the needs of real-
time command and control systems in Section 2 using air traffic
control, a real-time relational database management problem, as
a practical example. Section 3 describes the associative
processor architecture. We propose it as a practical solution to
static scheduling in these types of systems which yields a
current optimal schedule. We use air traffic control as a real
world example to demonstrate the difference between MPs and
APs as solutions for typical command and control problems in
Section 4. We consider AP advantages/disadvantages in
Section 5 and state our conclusions in the last section.

2. REAL-TIME COMMAND AND
CONTROL REQUIREMENTS
In general applications for real-time systems need to be fast,
predictable, reliable and adaptable [7]. Air traffic control
systems, like DABS/IPC, AAS, and STARS have been unable
to meet their requirements in FAA's $41 billion modernization
program[10]. In fact, the DABS/IPC and AAS programs have
been cancelled without completion. STARS is having problems
and delays in attempts to put it into the field. We will address
the four points that impact the success, or lack thereof, in these
systems.

2.1 Fast
CPU and memory speeds have been rapidly increasing since the
development of the first command and control systems. CPU
speeds have increased from one megahertz to one gigahertz.
Memory speeds have increased from two microsecond access
time to the current ten nanosecond access time. Yet the
tremendous increase in stated computer capability has not
brought about an expected and needed increase in performance.
Specifications are still not met. Developers are trying to
explain why increased computer speed is not the sole solution
to their problems. G. Pfister states the real problem succinctly
in the penultimate paragraph of his book [9]: “Once a processor
is fast enough to continuously saturate a memory system, what
difference does the architecture make? For computer
performance in a wide and increasingly broad class of
applications, ‘It’s the memory stupid!’ ”

2.2 Predictable
The AAS program, initiated as it became obvious that
DABS/IPC was failing, started with two nearly half billion
dollar "proof" studies to establish predictability. The studies
spent the money, but proof of predictability was never shown.
Nevertheless, an implementation was started which continued,
for about ten years, until June 1994 when the program was
officially "terminated" We later show examples of

predictability using an AP and discuss why the AP performance
can be reliably predicted. Predictability is needed for in all
software. For example one is advised in [11] to "…develop
high-confidence systems with predictable properties at a
predictable cost."

2.3 Reliable
Command and control systems operate under severe reliability
requirements. If the workload increases due to an unusual or
unexpected load, the system may crash. Many air traffic
controllers have seen their screens go blank because of computer
overload in the ATC system. We read “The President’s airplane
is missing for one minute.”[15] This is the result of computer
overload. Primary radar data would have followed the
President’s plane but the data was necessarily abandoned
to prevent computer overload. Missing data of this kind is
expected and accepted by air traffic controllers daily.
During periods of overload, each system is configured to ignore
aircraft in defined sectors, while using only selected information
from other sectors. Further, the ATC system also ignores certain
classes of aircraft flights to help alleviate system overload.
Failures such as these can result in loss of life, which can be
prevented if adequate computational capacity is available.

2.4 Adaptable
All programmable real-time systems are subject to change. The
first installation rarely satisfies all requirements: glitches seem to
arise out of nowhere, the environment may be slightly or
substantially different than anticipated, new needed functions are
added, the expected load is significantly greater than planned,
etc. It is essential that the system can be adapted to react to new
situations.

A primary goal of any modernization effort should be the ability
to easily expand to handle new tasks as they are needed. This
was demonstrated in the first AP installation in the Knoxville
terminal in 1971 [4] (and it is even more important in 1999 [11]).
The initial requirements were for automatic track initiation,
conflict detection, and conflict resolution. That program was
developed and demonstrated in about six months. A program for
automatic voice advisory (AVA) of approaching traffic for VFR
flights was added[8]. AVA was completed in about three months.
Approximately 75 pilots participated in AVA. Another
requirement, that of terrain avoidance, was added and completed
in about four months. The total AP programming and support
effort was about four man-years and yielded 2,200 instructions. It
was clear that additional tasks could be added easily in the AP.
Current ATC systems cannot do today what was done using an
AP at Knoxville in 19711.

3. ASSOCIATIVE PROCESSORS
Associative processors access their data associatively, that is,
they access objects in the local memory of each processing
element (PE) by content rather than by address. The term
associative means that an entire record is selected by matching
one or more of its fields. Associative access is accomplished by
broadcasting an item and having all active PEs search a specified
field in their local memory. An associative processor, such as
the ASPRO built by Lockheed-Martin, consists of an array of

1 An explanation for why this solution was not adopted can be
found in appendices C and D of [12].

cells, each conceptually containing a PE and a local memory.
Cell memory holds information such as track data (ex. ground
speed, heading, altitude). A control processor stores the
program and broadcasts program instructions to all active cells.
In this tabular data structure with many related records,
associative searches may find multiple records for a given
search query. The idea is to perform the operations in constant
time by performing pattern matches in parallel. For example, it
is possible to select a group of tracks in response to a request
from a specific air traffic controller with the execution of a
single instruction string. Those track records that match the
request successfully are called responders, while those track
records that do not produce a match are called non-responders.
The basic idea of accessing data associatively is not new
[1,2,3], but advances in technology in the past two decades have
made this a viable technique for developing new approaches to
efficient data parallel programming [5]. In addition to database
management the AP can support a wide range of applications
including string matching, convex hull, 2D knapsack etc [19].

4. MPs VS APs FOR REAL-TIME
COMMAND AND CONTROL
Single CPU systems suffer from the classic von Neumann
bottleneck, that is, moving instructions and data across a limited
bandwidth path from memory to CPU. It is widely recognized
that the key to increased capacity is the delivery of more data
per time unit from memory to CPU. The standard approach to
high capacity real-time command and control applications has
been to use MPs. Yet the MPs suffer from the same von
Neumann malady, but on a grander scale. When applications
are what is called embarrassingly parallel, MPs should provide
an increase in performance. But usually data must be shared
among processors, requiring some kind of communication
network and an additional level of algorithmic complexity to
coordinate this process. Clever use of a communication
network and a good parallel algorithm may reduce some of the
inefficiency introduced, but the von Neumann bottleneck still
exists. We present a different solution that greatly increases
memory bandwidth while reducing software and hardware
complexity.

We use the air traffic control application as an example to show
the significant difference in effectiveness of MPs and APs. The
data for this application is a set of large relational databases
such as operational flight plans, aircraft characteristics, weather
and so forth. In the operational flight plan table, each row
represents the plan for a single flight with fields such as (but not
limited to) flight identity, next checkpoint, expected arrival at
next checkpoint, aircraft type, heading, speed, and altitude [4].
Another table contains track data about the flight in progress
with a common key field such as flight identity to link the two
tables. Thus, the relational database structure can be used to
provide a rigorous mathematical model for system definition
and data processing in the ATC system.

Using an MP to solve the demands of the relational approach
adds a great deal of complexity that is often ignored in
theoretical analysis. For example, each of the four basic
database functions, enter/read/modify/delete must be preceded
by a search. In order for this to be feasible, the database must
be sorted and indexes must be maintained on many fields of the
database. In sharp contrast, an AP is a content addressable
system, eliminating the need for any type of sorting/indexing

software. In an MP, task-scheduling software is required.
Stankovic et al state in [6] "…complexity results show that most
real-time multiprocessing scheduling is NP-hard." An AP is a set
processor. It has a single instruction stream and is statically
scheduled, eliminating the need for dynamic scheduling
software. With an AP, data distribution is inherent in the data
structure, while an MP requires data distribution software.
Record or table locking software must be used in the MP
environment to provide concurrency, consistency and data
integrity. AP tables need never be locked since only one
instruction executes at any time. Finally, for an MP to handle a
relational model the data pointers which are used in profusion to
link data parameters must be continuously maintained and
updated. Data pointers are unnecessary in APs because, unlike
other architectures, the conceptual and physical representations
of data stored in AP can be identical.

Many experts agree that the key to faster data processing is to
deliver more bits of data to the CPU in the same amount of time.
In an AP, this is easily accomplished by simply adding more
cells, i.e., PEs plus memory. In an MP, adding more CPUs is the
conventional solution. However, in MPs both data and
instructions share the memory-CPU path. As more instruction
streams are added when processors are added, eventually more
software must be added to control them, significantly increasing
scheduling and communications and substantially increasing the
complexity of the underlying algorithm. Yet, in many situations,
a linear improvement in execution time is expected for MP
environments. That is, if a task takes ten minutes to execute on a
single CPU, it is expected to take only one minute if 10 CPUs are
used.

This type of logic is possibly promoted by examples often
included in introductory computer science books of
embarrassingly parallel problems such as the Manhattan
telephone book problem[16]. This example asserts that the time
it takes one computer to locate a name in this directory can be
reduced by 100 if 100 computers are used. For MPs, this
example ignores the costs of synchronization, query broadcasts,
resynchronization, reduction of results, etc. Further, observe
that if the database is dynamic then many of the data
management overhead costs mentioned earlier are also incurred.

The usual definition of speedup is speedup = Ts/Tp where Ts is
the time for a sequential algorithm and Tp is the time for a

parallel equivalent. A fallacy that is encouraged by the
preceding example is that speedup = (number of processors)/k
where k is a constant ≥ 1. This is equivalent to the statement
that the speedup is linear with the number of processors or that
Tp=k*Ts/(number of processors). Unfortunately many
computer scientists seem to believe some version of the above
fallacy holds for MPs..

A difficulty in devising a metric for comparing the performance
of APs and MPs is the current practice of treating CPUs and
PEs as equivalent. However each CPU in an MP has both a
control unit (CU) that supports an instruction stream (IS) and an
ALU that supports a data stream (DS), while the AP has one
CU and a multiplicity of ALUs called PEs. In terms of
hardware gates, each CPU is roughly equivalent to 800 PEs in
an AP. We feel it is essential to consider both the number of
ALUs or DSs and the number of ISs in metrics designed to
compare the performance of APs and MPs.

The increased complexity of the MP2 algorithm may basically
be described as multiprocessor data management overhead
software and includes:

• Dynamic real-time task scheduling
• Task assignment to individual processors
• Data assignment and distribution
• Data moves between common memory and processors
• Data moves between processor memories
• Data sorting and indexing
• Re-indexing and re-sorting when changes are made to

the data set
• Bus arbitration software or hardware
• Multi-tasking and multi-thread software
• Data pointers
• Pointer update processing
• Table or record locking
• Cache coherency management
• Memory coherency management
• Sequential consistency management
• Iterative data processing loops at individual processors
• Iterative access to individual data items for processing

Table 1 shows our comparative analysis between a sequential
solution and an AP solution to processes that are common in
command and control. The order of the tasks shown in Table
1 does not include MP costs due to data management
overhead. In an AP solution to parallel problems, more
memory-to-CPU bandwidth can be supplied simply by adding
more cells. Since additional instruction streams are not added,
the software so essential to a multiprocessor system is
unnecessary in an associative processor. In an AP with n
processors, most tasks which require O(n) time in a sequential
processor can be executed in O(1) and typically tasks with
O(n2) operations in a sequential processor can be executed in
O(n) in an AP. Even more significant are the additional data
management overhead tasks that must be performed to
effectively use MPs. The costs of these tasks are often ignored
when evaluating the efficiency and performance of MPs for

2 We distinguish data management overhead software from data
processing software. Data management overhead is the
organizing and moving of data without changing the data. Data
processing, on the other hand, operates to effect programmed
modifications to the data.

Operation MP AP

Report to track correlation O(n2) O(n)
Conflict detection O(n2) O(n)
Conflict resolution O(n2) O (n)
Terrain avoidance O(n2) O (n)
VFR automatic voice advisory O(n2) O (n)
Cockpit situation display O(n2) O (n)
Track smooth and predict O(n) O (1)
Coordinate transform O(n) O (1)
Flight plan update O(n) O (1)
Flight plan to track conformance O(n) O (1)
Display data selection O(n) O (1)

Table 1 – Comparison of some required command
and control functions, exclusive of data
management overhead software.

real-time systems. Table 2 lists our analysis of these tasks and
the number of operations required for n tasks using p processors.
Note that “0” for the AP does not indicate constant time but
means that these operations simply are not required when an
associative processor is used

We cite a real example with a comparison of radar tracking times
using the L304 dual processors and an ASPRO associative
processor. Figure 1 shows the tracking time comparison for a
small track environment. Information for Fig. 1 from program
reviews at Grumman Aerospace in November 1979.

2000 Tracks - 4000 Reports
 Routine Instruction Time in milliseconds

 count Predicted Measured
Association Pair 415 * 640
Aq Comp and sort 1012 * 14
Correlation 788 22.16 4.5
Tent.. Track 555 16.68 12.5
Track update 661 14.84 8.9
Hrtup 407 2.68 2.9
Range pred. 640 37.04 24.77
Association Gates 443 9.12 8
Kalman Tracking 1026 46.64 39.2
Track Quality 209 7.28 5.06
Air/Surface 326 * 0.66
Estab Track 407 0.88 0.71
Final bookkeeping 243 15.98 6.6
Total 7132 767.8
 Table 3 – Tracking predictability of an AP
 * Not predicted

Table 3 gives the instruction count and both the predicted and
measured time in milliseconds for the ASPRO with a large
(4k/2k) report/track environment. Information for Fig. 1 from
program reviews at Grumman Aerospace in January 1980. The
deadline time for this process was 5 seconds. Ignoring the
established deadline time, the L304 dual processor required 212
seconds to complete this task. As Table 3 shows, the ASPRO

time was 0.768 seconds, or a 276 times throughput
improvement. It should be noted that the L304 memory speed
was 900 nanoseconds whereas the memory speed in ASPRO
was 450. nanoseconds, Thus, the comparable improvement
factor was 138. The L304 software was the culmination of
many years of effort and, to optimize performance, was written
in machine assembly code. On the other hand the ASPRO
software, also assembly code, was developed in about six
months by the same people who developed the dual processor
code. They commented favorably on the simplicity of AP
software.

To demonstrate the increase of task time with increasing aircraft
load, we consider a universal task in command and control: the
operation of correlation of incoming sensor reports with
established tracks. When a set of reports has been received from
the system sensors they are converted from sensor coordinates
to system coordinates. Assume a set of track records has been
previously developed and the reports must be correlated with
the predicted position of each established track. This
correlation process proceeds by comparing each report position
with each track position to find the best fit between each report
and every track. When the best fit has been found the report is
assigned to the “found” track. This proceeds until each report
has “found” its track. The process is an order n2 task where n is
the number of reports and tracks. For this example we ignore
multiple “finds” and false reports.

Process time can be reduced, using a 2-d sort for sorting the
tracks and reports into “sort boxes”. In the National Airspace
Enroute System [17], the boxes are 16 miles on a side. Then,
with the addition of two sort operations, it is only necessary to
compare each report with the contents of nine adjacent track
boxes. FAA found an excellent improvement of this process by
offsetting the report sort boxes by eight miles. Then correlation
could be made by comparing the contents of a report box with
the contents of only four adjacent track boxes, instead of nine.

Operation MP AP
Processor assignment O(p) 0
Program distribution O(p) 0
Data redistribution O(n) 0
Data load & Sort O(n log(n)) 0
Virtual memory O(n) 0
Memory/cache coherency ? 0
Serializability ? 0
Locality of reference ? 0
Bus arbitration ? 0
Multi-tasking multi-thread software ? 0
Data pointer management ? 0
Dynamic scheduling ? 0
Table or record locking ? 0

Table 2 Comparison of operations required for
software management tasks.

Figure 1. Track ing Time Comparision
E2C dual vs ASPRO

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

10 40 70 100 130 160 190 220

Num ber of Tracks

T
im

e
-s

ec
on

ds

E2C Dual P rocessor

0.107S taran

If we assume a track density d of one flight per sort box then four
comparisons are required. Observe that if the track density d is
increased to two flights per box then the number of comparisons
has increased to sixteen. Next observe that, in addition to the
two n*log(n) sort operations, the number of comparisons is equal
to (2*d)2 . Thus the task is increasing at a greater rate that the
square of the target density. By contrast the identical process in
an AP is linear with n since each report is compared with n tracks
simultaneously.

To further evaluate the comparative performance of APs and

MPs we consider a typical ATC task [4] of updating a flight plan
(FP) file and testing the FP for conformance with its sensor-
developed track, 4000 flights are chosen as a problem. This was
the AAS requirement. Memory access count is chosen as the
metric of performance. In Table 4, Xf, Yf, and Hf give the flight
plan (FP) position; xd, yd, and hd give the FP distance
increments per unit time; Xt, Yt, and Ht give the track
parameters corresponding to each flight; and hdg is the FP
heading. These results may seem surprising, but they are real.
Note that instructions for sorting, data distribution, task
assignment, etc. for the MP are not shown but increase the count
significantly. Values shown are a lower bound for the MP [4].

5.AP ADVANTAGES - DISADVANTAGES
Associative processing offers many advantages in the world of
real-time command and control. Among these are the substantial
reductions in hardware and software. The amount of hardware to
carry out the requirement is likely to be only one fifth that needed
for an equivalent MP solution, if one can be found. The reduction
in hardware is due to: 1) the elimination of most of the control
units required in the MP, 2) the reduction of memory needed for
the multitudinous pointers, index and sort tables that are
eliminated in the AP, and 3) the near elimination of the costly data
management software so essential to the MP hardware software
configuration. The AP offers a substantial software reduction, to
about 20% of the software needed in the MP. This is achieved by
eliminating internal loops so ubiquitous in the MP and through
elimination of the many time consuming data management
overhead operations which must be included to fairly measure the
MP performance. A major disadvantage of APs is the general
misunderstanding by most computer experts of the types of

problems that can be easily solved by such architectures.
Surprisingly, AP solutions for many problems are much simpler
than sequential solutions to the same problems. In discussing
parallel processing Patton writes, "While the world around us
works in parallel, our perception of it has been filtered through
300 years of sequential mathematics, 50 years of the theory of
algorithms and 28 years of Fortran programming."[20] A real
disadvantage of APs is that the APs advantages of hardware
simplicity and ease of programming are widely misunderstood.

Another supposed disadvantage of the AP that is often

mentioned is that when multiple branches occur in a program, the
AP must execute each of these branches sequentially. However,
one should remember that an AP can also execute each branch
over a set in parallel. Moreover, it should be recognized that
many of the branches required to reduce processing time in an
MP are nonexistent in the parallel AP program. In contrast,
when an MP executes a job control parallel program, each of the
branches are executed sequentially by one CPU in an MP. When
a data parallel program is executed by an MP with each of the
CPUs containing multiple records, then typically most if not all
of the CPUs execute some and perhaps all of the branches
sequentially.

We have shown that many of the supposed disadvantages are
minor or nonexistent. The simplicity of the hardware and
software will more than compensate for any AP disadvantages.
Some people cite life cycle cost as a measure of goodness for a
system. Because of the simplicity of the AP software and
hardware, the life cycle cost of the AP is very low. We believe
that an AP could have handled the data processing for the
canceled AAS system. How does one compare life cycle cost of
a system that cannot meet the system requirements with a system
that can?

6. CONCLUSION
The associative processor provides a much simpler hardware
solution with the very important benefit of much simpler
software. This simplicity is achieved because only one
instruction stream exists so that an entire set of n data items
(given p≥n, p is the number of processors) may be processed
with a single instruction. When p<n then each PE handles n/p

 Op# Function Memory Accesses ⇒ MP AP
1 Get next/all FP pointer 4,000 1
2 Get Xf, Yf, Hf, xd, yd, hd 24,000 144
3 Add operands and store Xf, Yf, Hf 12,000 144
4 Get associated track pointer 4,000 0
5 Get Xt, Yt, Ht, sin(hdg), cos(hdg) 20,000 120
6 Calculate displacement of track from FP 0 0

X’=(Xt-Xf)*cos(hdg)+(Yt-Yf)*sin(hdg)
Y’=(Yt-Yf)*cos(hdg)-(Xt-Xf)*sin(hdg)

7 Check X’>Klat, if true set alert flag ? 1
8 Check Y’>Klong if true, update FP ? 1

Position to Xt, Yt. 6 96
Total >64,006 506

 Table 4-Memory access count for flight plan conformance

data items and the running time is increased by a factor of n/p
also. Many people believe an AP must have one PE per data item
This is untrue and would seriously limit the capability of the AP.
Thus, AP software is even simpler than sequential processors
since 1) the inner most loops are not required, 2) many tasks such
as sorting and indexing are not required, 3) dynamic memory
allocation and release (i.e. garbage collection) are constant time
(they only take two parallel instructions), and 4) the I/O data
paths in an AP are just as wide as a memory to CPU data path.
The FAA application shown in Table 4 bears this out. This is
contrary to popular opinion, which holds that APs are more
difficult to program and are not as efficient as MPs.

Conventional comparative analysis indicates that APs are less
cost efficient than MPs. A problem in comparing the cost of AP
algorithms is that the cost of each is defined theoretically to be
the product of the number of algorithm steps and the number of
processors. The AP is penalized by this analysis since it
normally has a much larger number of PEs than the number of
CPUs in an MP. However, this cost ignores the fact that each
processor in an MP includes an instruction stream while the AP
we consider here has only one instruction stream. The interaction
between the instruction streams in an MP is the cause of the
costly data management overhead software and this cost is
ignored in this comparison between AP and MP algorithms. As
indicated earlier, this data management overhead software
running time may be far greater than the running time of either
the AP or MP algorithm. A fair comparison between the cost of
an AP and a MP algorithm should require the cost assigned to the
MP algorithm to also include the cost of executing the data
management overhead software on the MP during the execution
of the MP algorithm. As indicated earlier, the corresponding
overhead cost for executing the AP algorithm is insignificant.

In order to more correctly assess the potential of the AP, a more
accurate method of comparing the cost of executing software on
the AP and MP is required. Such a comparison would also
consider the huge cost of the data management overhead
software on the MP. Also, the CPU of an MP is roughly
equivalent to one IS and one PE in an AP, but current complexity
evaluation techniques consider a CPU of an MP to be equivalent
to a PE of an AP. This costing model is unfair to the AP since
there are normally many more PEs than CPUs and each PE is
only a simple ALU while the CPU has the ability to operate
independently and is far more complex and powerful than the
PE. Additionally, the interaction between the ISs in these CPUs
is the cause of the costly data management overhead software.
Increasing the number of CPU's in an MP causes this overhead
cost to increase dramatically. The corresponding hidden
overhead cost due to increasing the number of PEs in an AP of
comparable power is minor. One approach to comparing current
AP and MP architectures would be to compare their running time
on a suite of basic software packages of the type often required
in real-time command and control problems, such as a real-time
tracking algorithm. Since the two architectures are quite different
and memory speed is the limiting factor in computer
performance, perhaps counting the number of memory accesses
that occur (including those in the data management overhead
software) would be a useful way to compare their costs.
However, as demonstrated by the difficulty encountered in
establishing air traffic control systems, developing the software
for the MP for this test is likely to be a very demanding task. An
alternate approach of defining a "toy problem" that contains

some of the critical ingredients of a real-time command and
control problem was initiated in [12].

We believe that, when correctly compared to other alternatives,
the AP architecture holds much promise for a wide range of
important real-time applications. These include the ATC
problem specifically and, more generally, real-time command
and control problems. These problems are representative of
dynamic database applications, which are rapidly expanding.
An AP provides an efficient approach to processing these types
of problems. However, in order to more correctly address the
potential of the AP, a more accurate method for comparing the
cost of executing software on the AP and the MP is required.

7. REFERENCES
[1] K. E. Batcher, STARAN parallel processor system
hardware, “Procs. National Computer Conf.,” pp. 405-410,
AFIPS, 1974.

[2] C. Foster, “Content Addressable Parallel Processors,” Van
Nostrand-Reinhold, New York, 1976.

[3] E. Jacks, “Associative Information Techniques,” Elsevier,
New York, 1971.

[4] W. C. Meilander, J. W. Baker, ATC Computers –
Yesterday, Today, Tomorrow, The 43rd Annual Air Traffic
Control Association Fall conference Procs, 1998, pp. 91-95,.

 [5] J. L. Potter, “Associative Computing – A Programming
Paradigm for Massively Parallel Computers,” Plenum
Publishing, New York, 1992.

 [6] J. A. Stankovic, M. Spuri, M. Di Natale, G. C. Buttazzo,
Implications of Classical Scheduling Results for Read-Time
Systems, Computer June, 1995, pp. 16-25.

[7] J. A. Stankovic, “Read-Time and Embedded Systems,” The
Computer Science and Engineering Handbook, Ed. Allen B.
Tucker, Jr., CRC Press, 1997, pp. 1709-1724.

[8] Richard Collins, “On Top”, Flying Magazine, December
1995.

[9] Gregory F. Pfister in “In Search of Clusters - The Coming
Battle in Lowly Parallel Computing”, Prentice Hall, 1998, pg
516.

[10] Editorial April 19, 1999, USA Today.

[11] Krishna Kavi et al "The Pressure Is On", Computer, Jan
1999, pp 30-33.

[12] Lu, Qian. "Complexity Analysis of ATC." Thesis for
Master's degree, Kent State University, Dec. 1997 Sponsored
by W. C. Meilander and Johnnie Baker

[15] Assoc. Press March 11, 1998

[16] Schneider and Gersting, "An Invitation to Computer
Science", p 228, PWS Publishing, Pacific Grove, 1998.

[17] FAA, NAS-MD-321, 7 July 1987, pg b-5

[18] //www.clbooks.com/ May 1995

[19] J. L. Potter and W. C. Meilander, " Array Processor
Supercomputers," IEEE Spectrum, vol.. 77, no. 12, pp. 1897-
1914, Dec. 1989.

[20] Peter C. Patton, "Microprocessors, Architectures and
Applications," IEEE Computer Mag., Vol 18, no. 6, pp 19-29,
June,1985

