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INTRODUCTION 

The parallel processing capability of STARAN* resides in 
n array modules (n<32). Each array module contains 256 
small processing elements (PE's). They communicate with 
a multi-dimensional access (MDA) memory through a 
"flip" network, which can permute a set of operands to 
allow inter-PE communication. This gives the programmer 
a great deal of freedom in using the processing capability 
of the PE's. At one stage of a program, he may apply this 
capability to many bits of one or a few items of data; at 
another stage, he may apply it to one or a few bits of many 
items of data. 

The remainder of this paper deals with the MDA memories, 
the STARAN array modules, the other elements of 
STARAN, and the results of certain application studies. 

MULTI-DIMENSIONAL ACCESS (MDA) MEMORIES 

A common implementation of associative processing is to 
treat data in a bit-sequential manner. A small one-bit PE 
(processing element) is associated with each item or word 
of data in the store, and the set of PE's accesses the data 
store in bit-slices; a typical operation is to read Bit i of 
each data word into its associated PE or to write Bit i 
from its associated PE. 

The memory for such an associative processor could be 
a simple random-access memory with the data rotated 90 
deg, so that it is accessed by bit-slices instead of by words. 
Unfortunately, in most applications, data come in and 
leave the processor as items or words instead of as bit-slices. 
Hence, rotating the data in a random-access memory 
complicates data input and output. 

To accommodate both bit-slice accesses for associative 
processing and word-slice accesses for STARAN input/output 
(I/O), the data are stored in a multi-dimensional access 
(MDA) memory (Figure 1). It has wide read and write 
busses for parallel access to a large number (256) of memory 
bits. The write mask bus allows selective writing of memory 
bits. Memory accesses (both read and write accesses) are 
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controlled by the address and access mode control inputs; 
the access mode selects a stencil pattern of 256 bits, while 
the address positions the stencil in memory. 

For many applications, the MDA memory is treated as 
a square array of bits, 256 words with 256 bits in each 
word. The bit-slice access mode (Figure 2A) is used in the 
associative operations to access one bit of all words in 
parallel, while the word access mode (Figure 2B) is used in 
the I/O operations to access several or all bits of one word 
in parallel. 

The MDA memory structure is not limited to a square 
array of 256 by 256. For example, the data may be formatted 
as records with 256 8-bit bytes in each record. Thirty-two 
such records can be stored in an MDA memory and accessed 
several ways. To input and output records, one can access 
32 consecutive bytes of a record in parallel (Figure 3A). 
To search key fields of the data, one can access the cor
responding bytes of all records in parallel (Figure 3B). 
To search a whole record for the presence of a particular 
byte, one can access a bit from each byte in parallel 
(Figure 3C). 

The MDA memories in the STARAN array modules 
are bipolar. They exhibit read cycle times of less than 150 
nsec and write cycle times of less than 250 nsec. 

STARAN ARRAY MODULES 

A STARAN array module (Figure 4) contains an MDA 
memory communicating with three 256-bit registers (M, 
X, and Y) through a flip (permutation) network. One 
may think of an array module as having 256 small processing 
elements (PE's), where a PE contains one bit of the M 
register, one bit of the X register, and one bit of the Y 
register. 

The M register drives the write mask bus of the MDA 
memory to select which of the MDA memory bits are 
modified in a masked-write operation. The MDA memory 
also has an unmasked-write operation that ignores M and 
modifies all 256 accessed bits. The M register can be loaded 
from the other components of the array module. 

In general, the logic associated with the X register can 
perform any of the 16 Boolean functions of two variables; 
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Figure 1—Multi-dimensional access memory 

that is, if Xi is the state of the ith X-register bit, and /,• is 
the state of the ith flip network output, then: 

Xi <- 4>(xi, ft) (i=0, 1, ., 255) 

where <f> is any Boolean function of two variables. Similarly, 
the logic associated with the Y-register can perform any 
Boolean function: 

V*H>(3ti,fi)(i=0, 1, ••••> 255) 

where yi is the state of the ith Y-register bit. The pro
grammer is given the choice of operating X alone, Y alone, 
or X and Y together. 

If X and Y are operated together, the same Boolean 
function, <f>, is appled to both registers: 

2i<—<j> (Xi, fi) 

Vi*-4> fa, fi) 

The programmer also can choose to operate on X 
selectively, using Y as a mask: 

X&-$ (Xi, fi) (where yi = 1) 

(where yi=0) 

Another choice is to operate on X selectively while 
operating on Y: 

Zi<—<£ (xi} ft) (where t/< = 1) 

Xi<r-Xi (where y% = 0) 

Vi^4> (Vi, fd 

In this case, the old state of Y (before modification by <f>) 
is used as the mask for the X operation. 

For a programming example, the basic loop of an unmasked 
add fields operation is selected. This operation adds the 
contents of a Field A of all memory words to the contents 
of a Field B of the words and stores the sum in a Field S 
of the words. For w-bit fields, the operation executes the 
basic loop n times. During each execution of the loop, a 
bit-slice (a) of Field A is ready from memory, a bit-slice (6) 
of Field B is read, and a bit-slice (s) of Field S is written 

A - BIT-SLICE ACCESS MODE B - WORD ACCESS MODE 

256 256 

Figure 2—Bit-slice and word access modes 

into memory. The operation starts at the least significant 
bits of the fields and steps through the fields to the most 
significant bits. At the beginning of each loop execution, 
the carry (c) from the previous bits is stored in Y, and X 
contains zeroes: 

Zi=0 

Vi = Ci 

The loop has four steps: 

Step 1: Read Bit-slice a and exclusive-or (©) it to X selec-
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2048 

ACCESS TO CORRESPONDING BYTES 
OF ALL RECORDS 
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Figure 3—Accessing 256-byte records 
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Figure 4—ST ARAN array module 

tively and also to Y: 

y&-Vi@a,i 

The states of X and Y are now: 

Step 2: Read Bit-slice 6 and exclusive-or it to X selectively 
and also to Y: 

X%4—X% © y iO i 

2/i<—yi@hi 

Registers X and Y now contain the carry and sum bits: 

Xi = aiCi®aibi@biCi=c'i 

yi=ai®bi@d:=Si 

Step 8: Write the sum bit from Y into Bit-slice s and also 
complement X selectively: 

Si<r-yi 

Xi< x% ffi y% 

The states of X and Y are now: 

X% — C i&Si 

y*=Si 

Step 4-' Read the X-register and exclusive-or it into both 

X and Y: 

2 / i ^ Ju% \jj •€% 

yi<r-yi@Xi 

This clears X and stores the carry bit into Y to prepare 
the registers for the next execution of the loop: 

Xi=0 

yi^c'i 

Step 3 takes less than 250 nsec, while Steps 1, 2, and 4 
each take less than 150 nsec. Hence, the time to execute 
the basic loop once is less than 700 nsec. If the field length 
is 32 bits, the add operation takes less than 22.4 microsec 
plus a small amount of setup time. The operation performs 
256 additions in each array module. This amounts to 1024 
additions, if four array modules are enabled, to achieve a 
processing power of approximately 40 MIPS (million-
instructions-per-second). 

The array module components communicate through a 
network called the flip network. A selector chooses a 256-bit 
source item from the MDA memory read bus, the M register, 
the X register, the Y register, or an outside source. The bits 
of the source item travel through the flip network, which 
may shift and permute the bits in various ways. The per
muted source item is presented to the MDA memory write 
bus, M register, X register, Y register, and an outside 
destination. 

The permutations of the flip network allow inter-PE 
communication, A PE can read data from another PE 
either directly from its registers or indirectly from the MDA 
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memory. One can permute the 256-bit data item as a whole 
or divide it into groups of 2, 4, 8, 16, 32, 64, or 128 bits and 
permute within groups. 

The permutations allowed include shifts of 1, 2, 4, 8, 16, 
32, 64, or 128 places. One also can mirror the bits of a group 
(invert the left-right order) while shifting it. A positive shift 
of mirrored data is equivalent to a negative shift of the 
unmirrored data. To shift data a number of places, multiple 
passes through the flip network may be required. Mirroring 
can be used to reduce the number of passes. For example, 
a shift of 31 places can be done in two passes: mirror and 
shift 1 place on the first pass, and then remirror and shift 
32 places on the second pass. 

The flip network permutations are particularly useful 
for fast-fourier transforms (FFT's). A 2" point FFT requires 
n steps, where each step pairs the 2" points in a certain way 
and operates on the two points of each pair arithmetically 
to form two new points. The flip network can be used to 
rearrange the pairings between steps. Bitonic sorting (2) 
and other algorithms (3) also find the permutations of the 
flip network useful. 

Each array module contains a resolver reading the state 
of the Y register. One output of the resolver (activity-or) 
indicates if any Y bit is set. If some Y bits are set, the other 
output of the resolver indicates the index (address) of the 
first such bit. Since the result of an associative search is 
marked in the Y register, the resolver indicates which if 
any wTords respond to the search. 

OTHER STARAN ELEMENTS 

Figure 5 is a block diagram of a typical STARAN system 
with four array modules. Each array module contains an 
assignment switch that connects its control inputs and 
data inputs and outputs to AP (associative processor) 
control or the PIO (parallel input/output) module. 

The AP control unit contains the registers and logic 
necessary to exercise control over the array modules assigned 
to it. It receives instructions from the control memory and 
can transfer 32-bit data items to and from the control 
memory. Data busses communicate with the assigned array 
modules. The busses connect only to 32-bits of the 256-bit-
wide input and output ports of the array modules (Figure 4), 
but the permutations of the array module flip networks 
allow communication with any part of the array. The AP 
control sends control signals and MDA memory addresses 
and access modes to the array modules and receives the 
resolver outputs from the array modules. 

Registers in the AP control include: 

1. An instruction register to hold the 32-bit instruction 
being executed. 

2. A program status word to hold the control memory 
address of the next instruction to be executed and the 
program priority level. 

3. A common register to hold a 32-bit search comparand, 
an operand to be broadcast to the array modules, or 
an operand output from an array module. 

4. An array select register to select a subset of the 
assigned array modules to be operated on. 

5. Four field pointers to hold MDA memory addresses 
and allow them to be incremented or decremented 
for stepping through the bit-slices of a field, the 
words of a group, etc. 

6. Three counters to keep track of the number of execu
tions of loops, etc. 

7. A data pointer to allow stepping through a set of 
operands in control memory. 

8. Two access mode registers to hold the MDA memory 
access modes. 

The parallel input/output (PIO) module contains a PIO 
flip network and PIO control unit (Figure 5). It is used for 
high bandwidth I/O and inter-array transfers. 

The PIO flip network permutes data between eight 256-bit 
ports. Ports 0 through 3 connect to the four array modules 
through buffer registers. Port 7 connects to a 32-bit data 
bus in the PIO control through a fan-in, fan-out switch. 
Ports 4, 5, and 6 are spare ports for connections to high 
bandwidth peripherals, such as parallel-head disk stores, 
sophisticated displays, and radar video channels. The 
spare ports also could be used to handle additional array 
modules. High bandwidth inter-array data transfers up to 
1024 bits in parallel are handled by permuting data between 
Ports 0, 1, 2 and 3. Array I/O is handled by permuting 
data between an array module port and an I/O port. The 
PIO flip network is controlled by the PIO control unit. 

The PIO control unit controls the PIO flip network and 
the array modules assigned to it. While AP control is 
processing data in some array modules the PIO control can 
input and output data in the other array modules. Since 
most of the registers in the AP control are duplicated in 
PIO control, it can address the array modules associatively. 

The control memory holds AP control programs, PIO 
control programs, and microprogram subroutines. To 
satisfy the high instruction fetch rate of the control units 
(up to 7.7 million instructions per second), the control 
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Figure 5—Typical STARAN block diagram 
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memory has five banks of bipolar memory with 512 32-bit 
words in each bank. Each bank is expandable to 1024 words. 
To allow for storage of large programs, the control memory 
also has a 16K-word core memory with a cycle time of 1 
microsec. The core memory can be expanded to 32K words. 
Usually the main program resides in the core memory, and 
the system microprogram subroutines reside in bipolar 
storage. For flexibility, users are given the option of changing 
the storage allocation and dynamically paging parts of the 
program into bipolar storage. 

A Digital Equipment Corporation (DEC) PDP-11 
minicomputer is included to handle the peripherals, control 
the system from console commands, and perform diagnostic 
functions. I t is called sequential control to differentiate it 
from the STARAN parallel processing control units. The 
sequential control memory of 16K 16-bit words is augmented 
by a 8KX 16-bit "window" into the main control memory. 
By moving the window, sequential control can access any 
part of control memory. The window is moved by changing 
the contents of an addressable register. 

The STARAN peripherals include a disk, card reader, 
line printer, paper-tape reader/punch, console typewriter, 
and a graphics console. 

Synchronization of the three control units (AP control, 
sequential control, and PIO control) is maintained by the 
external function (EXF) logic. Control units issue commands 
to the EXF logic to cause system actions and read system 
states. Some of the system actions are: AP control start/ 
stop/reset, PIO control start/stop/reset, AP control in
terrupts, sequential control interrupts, and array module 
assignment. 

The design of STARAN allows it to be connected to other 
computers (host computers) as a special-purpose peripheral. 
The interface can take many different forms. One could 
connect to an I/O channel of the host. Alternately, one 
could connect to the memory bus of the host so that it can 
address STARAN memory directly and/or allow STARAN 
to address its memory directly. For example, the STARAN 
at Rome Air Development Center (4) is connected to an 
I/O channel of a Honeywell HIS-645 computer. At Goodyear 
Aerospace, another STARAN is interfaced to the direct 
memory access port of an XDS 2 5 computer. 

APPLICATIONS 

Several representative application areas—fast Fourier 
transforming, sonar post-processing, string search, file 
processing, and air traffic control—are discussed below. 
Other application-oriented work which has been performed 
under contract to various government agencies, include 
image processing, data management, position locating and 
reporting, bulk filtering and radar processing. 

Fast fourier transform 

The Fast Fourier Transform (FFT) is a basic operation 
in digital signal processing which is being widely used in 

the real-time processing of radar and sonar signals. The 
structure of the FFT algorithm is such that it can be seg
mented into many similar concurrent operations. Parallel 
implementation of the FFT can provide orders of magnitude 
speed increases over sequential computer execution times. 
The organization of STARAN lends itself to efficient manip
ulation of data in the FFT. 

The Air Force supplied real radar data (on tapes) to GAC 
to be transformed by the STARAN system. A 512-point, 
16-bit FFT was performed on this real data in 2.7 milli
seconds using only two MDA arrays. A 1024-point transform 
on real input data could be performed in about 3.0 milli
seconds using all four arrays available at GAC's STARAN 
evaluation and training facility. For comparison purposes, 
the following is a list of reported execution times for a 
1024-point, real input, FFT: 

Sequential Computers 

XDS Sigma 5 660 msec 
IBM 360/67 446 msec 
UNIVAC 1108 190 msec (complex) 
UNIVAC 1108 (with array 29.2 msec (complex) 

processor attachment) 

Special Purpose FFT Systems 

Time/Data 90 System 28 msec 
ELSYTEC 306/HFFT 18 msec 
SPECTRA SYSTEM '900' 9.2 msec 

Sonar post-processing 

Sensor data processing can be split into two major 
categories—signal processing and post-processing. Signal 
processing is the area of the system where operations such 
as the FFT are performed; post-processing involves the 
sorting and editing of the signal processor output data to 
determine tactical information such as whether a real 
target is in the coverage area and where the target is. 

The job of sorting the spectral lines that result from the 
FFT operations is a formidable task, especially in a multi-
sensor case. The trend has been for increasing the sensitivity 
of signal processing systems. The acoustic signal line sorting 
task that accompanies any increased sensitivity can be 
staggering. For instance, a 6 db improvement in sensitivity, 
in a classified Navy sonar system, would result in increasing 
the target load by a factor of 16 and the computer processing 
load by a factor of 250 or more. 

A digital sonar signal processing system, under develop
ment at the Naval Air Development Center (NADC), 
requires that subroutines operate on the target spectral 
lines (outputs from an FFT) and other input data to form 
outputs suitable for later use in classification algorithms. 
Since the system is a multi-sensor system, these subroutines 
must process a very large volume of data in real-time. The 
content addressability feature of STARAN provides the 
potential for significant performance gains due to the 
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Figure 6—TRANSPO '72 demonstration system 

requirement for many searches in these post-processing 
subroutines. 

As a consequence of this potential improvement, NADC 
issued a contract to GAC to assess the comparative run 
times for the STARAN versus a large-scale conventional 
computer (the CDC-6600). NADC-developed algorithms 
for the most time consuming operations in the post-processor 
system were programmed on the STARAN computer. Real 
data was then processed on both the STARAN and, by 
NADC, on a CDC-6600. 

The STARAN executed the programs, using the real 
data, 200 times faster than the CDC-6600. 

String search 

A processing function used by several agencies for locat
ing specific character strings (such as place names) in 
textual information, was developed for STARAN and 
tested on a sample data base. The same function was 
executed on a conventional computer (Sigma 5) for a timing 
comparison. The STARAN solution ran 100 times faster. 
This function is also applicable to nondefense applications 
such as patent, legal, and chemical information searches 
where cost of search may be a limiting parameter. 

File processing 

A personnel record file was used as a sample data base 
for demonstrating multiple-key searches. STARAN and a 

parallel-head disk were used for the demonstration. This 
work demonstrated that a query, simple or complex, can 
be processed in less than 120 milliseconds and that several 
queries may be batched and processed in the same processing 
time period. The simplicity of the software for retrieval 
and update was also demonstrated. 

Air traffic control 

In May 1972 a complete terminal automation system was 
demonstrated at the TRANSPO 72 exhibit at Dulles 
International Airport and later at private showings in 
Washington and Boston. Live radar and beacon sensor data 
were provided from the FAA site at Suitland, Maryland. 
The complete system is shown in Figure 6. The following 
ATC functions were demonstrated: beacon tracking, radar 
tracking, conflict prediction, conflict resolution, display 
processing, automatic voice advisory (AVA), and terrain 
avoidance. 

The TRANSPO demonstration illustrated the use of 
STARAN in a full repertoire of terminal automation func
tions including advanced features such as automatic track 
initiation of all the aircraft, automatic tag placement on the 
display, and automatic handoff from sector to sector. The 
live targets were supplemented with 256 simulated targets 
so that up to 400 targets (representative of larger terminal 
densities) could be provided. 

Average execution times for the most important functions 

conflict prediction 
conflict resolution 
tracking 
display processing 

90 msec 
25 msec 

100 msec 
160 msec 

The entire ATC program executed in less than 5 percent 
of real-time. 
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