
ST ARAN parallel processor system hardware

by KENNETH E, BATCHER

Goodyear Aerospace Corporation
Akron, Ohio

INTRODUCTION

The parallel processing capability of STARAN* resides in
n array modules (n<32). Each array module contains 256
small processing elements (PE's). They communicate with
a multi-dimensional access (MDA) memory through a
"flip" network, which can permute a set of operands to
allow inter-PE communication. This gives the programmer
a great deal of freedom in using the processing capability
of the PE's. At one stage of a program, he may apply this
capability to many bits of one or a few items of data; at
another stage, he may apply it to one or a few bits of many
items of data.

The remainder of this paper deals with the MDA memories,
the STARAN array modules, the other elements of
STARAN, and the results of certain application studies.

MULTI-DIMENSIONAL ACCESS (MDA) MEMORIES

A common implementation of associative processing is to
treat data in a bit-sequential manner. A small one-bit PE
(processing element) is associated with each item or word
of data in the store, and the set of PE's accesses the data
store in bit-slices; a typical operation is to read Bit i of
each data word into its associated PE or to write Bit i
from its associated PE.

The memory for such an associative processor could be
a simple random-access memory with the data rotated 90
deg, so that it is accessed by bit-slices instead of by words.
Unfortunately, in most applications, data come in and
leave the processor as items or words instead of as bit-slices.
Hence, rotating the data in a random-access memory
complicates data input and output.

To accommodate both bit-slice accesses for associative
processing and word-slice accesses for STARAN input/output
(I/O), the data are stored in a multi-dimensional access
(MDA) memory (Figure 1). It has wide read and write
busses for parallel access to a large number (256) of memory
bits. The write mask bus allows selective writing of memory
bits. Memory accesses (both read and write accesses) are

* TM, Goodyear Aerospace Corporation, Akron, Ohio.

controlled by the address and access mode control inputs;
the access mode selects a stencil pattern of 256 bits, while
the address positions the stencil in memory.

For many applications, the MDA memory is treated as
a square array of bits, 256 words with 256 bits in each
word. The bit-slice access mode (Figure 2A) is used in the
associative operations to access one bit of all words in
parallel, while the word access mode (Figure 2B) is used in
the I/O operations to access several or all bits of one word
in parallel.

The MDA memory structure is not limited to a square
array of 256 by 256. For example, the data may be formatted
as records with 256 8-bit bytes in each record. Thirty-two
such records can be stored in an MDA memory and accessed
several ways. To input and output records, one can access
32 consecutive bytes of a record in parallel (Figure 3A).
To search key fields of the data, one can access the cor
responding bytes of all records in parallel (Figure 3B).
To search a whole record for the presence of a particular
byte, one can access a bit from each byte in parallel
(Figure 3C).

The MDA memories in the STARAN array modules
are bipolar. They exhibit read cycle times of less than 150
nsec and write cycle times of less than 250 nsec.

STARAN ARRAY MODULES

A STARAN array module (Figure 4) contains an MDA
memory communicating with three 256-bit registers (M,
X, and Y) through a flip (permutation) network. One
may think of an array module as having 256 small processing
elements (PE's), where a PE contains one bit of the M
register, one bit of the X register, and one bit of the Y
register.

The M register drives the write mask bus of the MDA
memory to select which of the MDA memory bits are
modified in a masked-write operation. The MDA memory
also has an unmasked-write operation that ignores M and
modifies all 256 accessed bits. The M register can be loaded
from the other components of the array module.

In general, the logic associated with the X register can
perform any of the 16 Boolean functions of two variables;

405

406 National Computer Conference, 1974

READ/WRITE CONTROL

I
MOA

MEMORY

(65,536 BITS)

i i 1

__ WRITE-MASK BUS (256)

_ WRITE BUS (256)

READ BUS (256) _

1

ADDRESS BUS

ACCESS MODE BUS

Figure 1—Multi-dimensional access memory

that is, if Xi is the state of the ith X-register bit, and /,• is
the state of the ith flip network output, then:

Xi <- 4>(xi, ft) (i=0, 1, ., 255)

where <f> is any Boolean function of two variables. Similarly,
the logic associated with the Y-register can perform any
Boolean function:

V*H>(3ti,fi)(i=0, 1, ••••> 255)

where yi is the state of the ith Y-register bit. The pro
grammer is given the choice of operating X alone, Y alone,
or X and Y together.

If X and Y are operated together, the same Boolean
function, <f>, is appled to both registers:

2i<—<j> (Xi, fi)

Vi*-4> fa, fi)

The programmer also can choose to operate on X
selectively, using Y as a mask:

X&-$ (Xi, fi) (where yi = 1)

(where yi=0)

Another choice is to operate on X selectively while
operating on Y:

Zi<—<£ (xi} ft) (where t/< = 1)

Xi<r-Xi (where y% = 0)

Vi^4> (Vi, fd

In this case, the old state of Y (before modification by <f>)
is used as the mask for the X operation.

For a programming example, the basic loop of an unmasked
add fields operation is selected. This operation adds the
contents of a Field A of all memory words to the contents
of a Field B of the words and stores the sum in a Field S
of the words. For w-bit fields, the operation executes the
basic loop n times. During each execution of the loop, a
bit-slice (a) of Field A is ready from memory, a bit-slice (6)
of Field B is read, and a bit-slice (s) of Field S is written

A - BIT-SLICE ACCESS MODE B - WORD ACCESS MODE

256 256

Figure 2—Bit-slice and word access modes

into memory. The operation starts at the least significant
bits of the fields and steps through the fields to the most
significant bits. At the beginning of each loop execution,
the carry (c) from the previous bits is stored in Y, and X
contains zeroes:

Zi=0

Vi = Ci

The loop has four steps:

Step 1: Read Bit-slice a and exclusive-or (©) it to X selec-

ACCESS TO 32 CONSECUTIVE BYTES
OF A RECORD

32

MMMMMMMSMSST

2048

ACCESS TO CORRESPONDING BYTES
OF ALL RECORDS

2048

C - ACCESS TO ONE BIT OF EVERY
BYTE IN A RECORD

32

2048

Figure 3—Accessing 256-byte records

ST ARAN Parallel Processor System Hardware 407

, 256

HDA

HEMORY

(256 X 256)

,
4 - 256

MASK

256
• • 1 *

- « — C

ADDRESS

I 0 D E

NOTE: C - CONTROL SI6NALS

<< - 256

M

REG

*

I

I—' '

INPUT

, 2 5 6

' ' f '
SELECTOR

t
C

«—c

<• 256

, 256

'

FLIP

NETWORK

, ' 256

c c c c

T I M

CONTROL

SIGNALS

A

, 2 5 6

X

REG

LOGIC

. ' 256

MIRROR.

' SHIFT

CONTROL

8 ADDRESS LINES

PLUS ACTIVITY-OR

MASK

256
* — 7 *

- « — C

,
r ' \

RESOLVER

' 256

Y

REG

LOGIC

:
1

- 256

, ^ 2 5 6

- — C

r

1
OUTPUT

Figure 4—ST ARAN array module

tively and also to Y:

y&-Vi@a,i

The states of X and Y are now:

Step 2: Read Bit-slice 6 and exclusive-or it to X selectively
and also to Y:

X%4—X% © y iO i

2/i<—yi@hi

Registers X and Y now contain the carry and sum bits:

Xi = aiCi®aibi@biCi=c'i

yi=ai®bi@d:=Si

Step 8: Write the sum bit from Y into Bit-slice s and also
complement X selectively:

Si<r-yi

Xi< x% ffi y%

The states of X and Y are now:

X% — C i&Si

y*=Si

Step 4-' Read the X-register and exclusive-or it into both

X and Y:

2 / i ^ Ju% \jj •€%

yi<r-yi@Xi

This clears X and stores the carry bit into Y to prepare
the registers for the next execution of the loop:

Xi=0

yi^c'i

Step 3 takes less than 250 nsec, while Steps 1, 2, and 4
each take less than 150 nsec. Hence, the time to execute
the basic loop once is less than 700 nsec. If the field length
is 32 bits, the add operation takes less than 22.4 microsec
plus a small amount of setup time. The operation performs
256 additions in each array module. This amounts to 1024
additions, if four array modules are enabled, to achieve a
processing power of approximately 40 MIPS (million-
instructions-per-second).

The array module components communicate through a
network called the flip network. A selector chooses a 256-bit
source item from the MDA memory read bus, the M register,
the X register, the Y register, or an outside source. The bits
of the source item travel through the flip network, which
may shift and permute the bits in various ways. The per
muted source item is presented to the MDA memory write
bus, M register, X register, Y register, and an outside
destination.

The permutations of the flip network allow inter-PE
communication, A PE can read data from another PE
either directly from its registers or indirectly from the MDA

408 National Computer Conference, 1974

memory. One can permute the 256-bit data item as a whole
or divide it into groups of 2, 4, 8, 16, 32, 64, or 128 bits and
permute within groups.

The permutations allowed include shifts of 1, 2, 4, 8, 16,
32, 64, or 128 places. One also can mirror the bits of a group
(invert the left-right order) while shifting it. A positive shift
of mirrored data is equivalent to a negative shift of the
unmirrored data. To shift data a number of places, multiple
passes through the flip network may be required. Mirroring
can be used to reduce the number of passes. For example,
a shift of 31 places can be done in two passes: mirror and
shift 1 place on the first pass, and then remirror and shift
32 places on the second pass.

The flip network permutations are particularly useful
for fast-fourier transforms (FFT's). A 2" point FFT requires
n steps, where each step pairs the 2" points in a certain way
and operates on the two points of each pair arithmetically
to form two new points. The flip network can be used to
rearrange the pairings between steps. Bitonic sorting (2)
and other algorithms (3) also find the permutations of the
flip network useful.

Each array module contains a resolver reading the state
of the Y register. One output of the resolver (activity-or)
indicates if any Y bit is set. If some Y bits are set, the other
output of the resolver indicates the index (address) of the
first such bit. Since the result of an associative search is
marked in the Y register, the resolver indicates which if
any wTords respond to the search.

OTHER STARAN ELEMENTS

Figure 5 is a block diagram of a typical STARAN system
with four array modules. Each array module contains an
assignment switch that connects its control inputs and
data inputs and outputs to AP (associative processor)
control or the PIO (parallel input/output) module.

The AP control unit contains the registers and logic
necessary to exercise control over the array modules assigned
to it. It receives instructions from the control memory and
can transfer 32-bit data items to and from the control
memory. Data busses communicate with the assigned array
modules. The busses connect only to 32-bits of the 256-bit-
wide input and output ports of the array modules (Figure 4),
but the permutations of the array module flip networks
allow communication with any part of the array. The AP
control sends control signals and MDA memory addresses
and access modes to the array modules and receives the
resolver outputs from the array modules.

Registers in the AP control include:

1. An instruction register to hold the 32-bit instruction
being executed.

2. A program status word to hold the control memory
address of the next instruction to be executed and the
program priority level.

3. A common register to hold a 32-bit search comparand,
an operand to be broadcast to the array modules, or
an operand output from an array module.

4. An array select register to select a subset of the
assigned array modules to be operated on.

5. Four field pointers to hold MDA memory addresses
and allow them to be incremented or decremented
for stepping through the bit-slices of a field, the
words of a group, etc.

6. Three counters to keep track of the number of execu
tions of loops, etc.

7. A data pointer to allow stepping through a set of
operands in control memory.

8. Two access mode registers to hold the MDA memory
access modes.

The parallel input/output (PIO) module contains a PIO
flip network and PIO control unit (Figure 5). It is used for
high bandwidth I/O and inter-array transfers.

The PIO flip network permutes data between eight 256-bit
ports. Ports 0 through 3 connect to the four array modules
through buffer registers. Port 7 connects to a 32-bit data
bus in the PIO control through a fan-in, fan-out switch.
Ports 4, 5, and 6 are spare ports for connections to high
bandwidth peripherals, such as parallel-head disk stores,
sophisticated displays, and radar video channels. The
spare ports also could be used to handle additional array
modules. High bandwidth inter-array data transfers up to
1024 bits in parallel are handled by permuting data between
Ports 0, 1, 2 and 3. Array I/O is handled by permuting
data between an array module port and an I/O port. The
PIO flip network is controlled by the PIO control unit.

The PIO control unit controls the PIO flip network and
the array modules assigned to it. While AP control is
processing data in some array modules the PIO control can
input and output data in the other array modules. Since
most of the registers in the AP control are duplicated in
PIO control, it can address the array modules associatively.

The control memory holds AP control programs, PIO
control programs, and microprogram subroutines. To
satisfy the high instruction fetch rate of the control units
(up to 7.7 million instructions per second), the control

I HOST COMPUTER

INTERFACE

~1

SEQUENTIAL

MEMORY

,4
MODULE

i_r

T=r:
__i i _ .

Figure 5—Typical STARAN block diagram

STARAN Parallel Processor System Hardware 499

memory has five banks of bipolar memory with 512 32-bit
words in each bank. Each bank is expandable to 1024 words.
To allow for storage of large programs, the control memory
also has a 16K-word core memory with a cycle time of 1
microsec. The core memory can be expanded to 32K words.
Usually the main program resides in the core memory, and
the system microprogram subroutines reside in bipolar
storage. For flexibility, users are given the option of changing
the storage allocation and dynamically paging parts of the
program into bipolar storage.

A Digital Equipment Corporation (DEC) PDP-11
minicomputer is included to handle the peripherals, control
the system from console commands, and perform diagnostic
functions. I t is called sequential control to differentiate it
from the STARAN parallel processing control units. The
sequential control memory of 16K 16-bit words is augmented
by a 8KX 16-bit "window" into the main control memory.
By moving the window, sequential control can access any
part of control memory. The window is moved by changing
the contents of an addressable register.

The STARAN peripherals include a disk, card reader,
line printer, paper-tape reader/punch, console typewriter,
and a graphics console.

Synchronization of the three control units (AP control,
sequential control, and PIO control) is maintained by the
external function (EXF) logic. Control units issue commands
to the EXF logic to cause system actions and read system
states. Some of the system actions are: AP control start/
stop/reset, PIO control start/stop/reset, AP control in
terrupts, sequential control interrupts, and array module
assignment.

The design of STARAN allows it to be connected to other
computers (host computers) as a special-purpose peripheral.
The interface can take many different forms. One could
connect to an I/O channel of the host. Alternately, one
could connect to the memory bus of the host so that it can
address STARAN memory directly and/or allow STARAN
to address its memory directly. For example, the STARAN
at Rome Air Development Center (4) is connected to an
I/O channel of a Honeywell HIS-645 computer. At Goodyear
Aerospace, another STARAN is interfaced to the direct
memory access port of an XDS 2 5 computer.

APPLICATIONS

Several representative application areas—fast Fourier
transforming, sonar post-processing, string search, file
processing, and air traffic control—are discussed below.
Other application-oriented work which has been performed
under contract to various government agencies, include
image processing, data management, position locating and
reporting, bulk filtering and radar processing.

Fast fourier transform

The Fast Fourier Transform (FFT) is a basic operation
in digital signal processing which is being widely used in

the real-time processing of radar and sonar signals. The
structure of the FFT algorithm is such that it can be seg
mented into many similar concurrent operations. Parallel
implementation of the FFT can provide orders of magnitude
speed increases over sequential computer execution times.
The organization of STARAN lends itself to efficient manip
ulation of data in the FFT.

The Air Force supplied real radar data (on tapes) to GAC
to be transformed by the STARAN system. A 512-point,
16-bit FFT was performed on this real data in 2.7 milli
seconds using only two MDA arrays. A 1024-point transform
on real input data could be performed in about 3.0 milli
seconds using all four arrays available at GAC's STARAN
evaluation and training facility. For comparison purposes,
the following is a list of reported execution times for a
1024-point, real input, FFT:

Sequential Computers

XDS Sigma 5 660 msec
IBM 360/67 446 msec
UNIVAC 1108 190 msec (complex)
UNIVAC 1108 (with array 29.2 msec (complex)

processor attachment)

Special Purpose FFT Systems

Time/Data 90 System 28 msec
ELSYTEC 306/HFFT 18 msec
SPECTRA SYSTEM '900' 9.2 msec

Sonar post-processing

Sensor data processing can be split into two major
categories—signal processing and post-processing. Signal
processing is the area of the system where operations such
as the FFT are performed; post-processing involves the
sorting and editing of the signal processor output data to
determine tactical information such as whether a real
target is in the coverage area and where the target is.

The job of sorting the spectral lines that result from the
FFT operations is a formidable task, especially in a multi-
sensor case. The trend has been for increasing the sensitivity
of signal processing systems. The acoustic signal line sorting
task that accompanies any increased sensitivity can be
staggering. For instance, a 6 db improvement in sensitivity,
in a classified Navy sonar system, would result in increasing
the target load by a factor of 16 and the computer processing
load by a factor of 250 or more.

A digital sonar signal processing system, under develop
ment at the Naval Air Development Center (NADC),
requires that subroutines operate on the target spectral
lines (outputs from an FFT) and other input data to form
outputs suitable for later use in classification algorithms.
Since the system is a multi-sensor system, these subroutines
must process a very large volume of data in real-time. The
content addressability feature of STARAN provides the
potential for significant performance gains due to the

410 National Computer Conference, 1974

S U I T L A N D . MO

R A D A R S E N 5 0 R

B E A C O N A N D
R A D A R
C O M M O N
D I G I T I Z E R H!-»

R E C E I V E R
A S S E M B L Y
(O R A I

A V A

I N T E R F A C E

v o t e

R E S

A SSI

PONSE

M B L Y

S T A R A N

A S S O C I A T I V E

P R O C E S S O R

C O M P U T E R

D I S P L A Y

I N T E R F A C E

/ A R T S I I I

1 D I S P L A Y

Figure 6—TRANSPO '72 demonstration system

requirement for many searches in these post-processing
subroutines.

As a consequence of this potential improvement, NADC
issued a contract to GAC to assess the comparative run
times for the STARAN versus a large-scale conventional
computer (the CDC-6600). NADC-developed algorithms
for the most time consuming operations in the post-processor
system were programmed on the STARAN computer. Real
data was then processed on both the STARAN and, by
NADC, on a CDC-6600.

The STARAN executed the programs, using the real
data, 200 times faster than the CDC-6600.

String search

A processing function used by several agencies for locat
ing specific character strings (such as place names) in
textual information, was developed for STARAN and
tested on a sample data base. The same function was
executed on a conventional computer (Sigma 5) for a timing
comparison. The STARAN solution ran 100 times faster.
This function is also applicable to nondefense applications
such as patent, legal, and chemical information searches
where cost of search may be a limiting parameter.

File processing

A personnel record file was used as a sample data base
for demonstrating multiple-key searches. STARAN and a

parallel-head disk were used for the demonstration. This
work demonstrated that a query, simple or complex, can
be processed in less than 120 milliseconds and that several
queries may be batched and processed in the same processing
time period. The simplicity of the software for retrieval
and update was also demonstrated.

Air traffic control

In May 1972 a complete terminal automation system was
demonstrated at the TRANSPO 72 exhibit at Dulles
International Airport and later at private showings in
Washington and Boston. Live radar and beacon sensor data
were provided from the FAA site at Suitland, Maryland.
The complete system is shown in Figure 6. The following
ATC functions were demonstrated: beacon tracking, radar
tracking, conflict prediction, conflict resolution, display
processing, automatic voice advisory (AVA), and terrain
avoidance.

The TRANSPO demonstration illustrated the use of
STARAN in a full repertoire of terminal automation func
tions including advanced features such as automatic track
initiation of all the aircraft, automatic tag placement on the
display, and automatic handoff from sector to sector. The
live targets were supplemented with 256 simulated targets
so that up to 400 targets (representative of larger terminal
densities) could be provided.

Average execution times for the most important functions

conflict prediction
conflict resolution
tracking
display processing

90 msec
25 msec

100 msec
160 msec

The entire ATC program executed in less than 5 percent
of real-time.

REFERENCES

1. Batcher, K. E., "Flexible Parallel Processing and STARAN,"
1972 WE SCON Technical Papers, Session 1.

2. Batcher, K. E., "Sorting Networks and Their Applications," 1968
Spring Joint Computer Conference, AFIPS Proceedings, Vol. 32,
pp. 307-314.

3. Stone, H. S., "Parallel Processing with the Perfect Shuffle," IEEE
Transactions on Computers, Vol. C-20, No. 2, February 1971, pp.
153-161.

4. Feldman, J. D., RADCAP: An Operational Parallel Processing
Facility, Goodyear Aerospace Corporation.

