
Using the UML to Describe the BSP
Model of Parallel Computation

M. Scherger, J. Baker, and J. Potter
Department of Computer Science

Kent State University
Kent, Ohio, U.S.A. 44242

Abstract – A Unified Modeling Language (UML)
description of the BSP model of parallel computation
is presented. This UML description identifies BSP
classes and objects and specifies various object and
inter-object relationships, dependencies, and
behaviors. This was achieved by describing various
views of the BSP model using many of the UML
structural and behavioral diagrams. The use to the
UML to describe the BSP model has been highly
effective for further parallel modeling techniques,
comparisons to other parallel models, BSP parallel
system software research, and BSP algorithm
development.

Keywords: parallel models, BSP, object oriented,
parallel architectures.

1 Introduction

The Unified Modeling Language (UML)
developed by Booch et al. [1] has become the
standard modeling tool for specifying,
visualizing, constructing, and documenting
software intensive systems. The UML is a
modeling language capable of providing
several different views of a system for
various target software and hardware
disciplines. This is achieved by presenting
different diagrams detailing various
structural, object behavioral, activity, and
usage interactions of the components in the
model; each intended to detail a particular
aspect of component interaction.

The Bulk Synchronous Parallelism model of
parallel computation is highly regarded as a
computational model of parallel computing
[3]. BSP is a model of parallel computation

that abstracts from low-level program
structures in favor of supersteps. A superstep
is defined as a set of independent local
computations followed by a global
communication phase and a barrier
synchronization step. The model consists of:

• A set of processor-memory pairs.
• A communication network that

delivers messages in a point-to-point
manner.

• A mechanism for the efficient barrier
synchronization for all or a subset of
the processes.

• There are no special combining,
replicating, or broadcasting facilities.

Some of BSP’s fundamental properties are
that programs are simple to write, the model
is independent of target architectures, and the
performance of a program on a given
architecture is predictable [4]. This is
achieved by considering computation and
communication at the level of the entire
program and executing computer [4].

The original description in [3, 4, 5, 6, 7]
provides a conceptual view of the principle
components and basic component
interactions of the BSP model. Using the
UML to describe BSP transforms this
conceptual description into an object oriented
model for further BSP research in algorithm
development and predictability, system
software design and implementation,
hardware simulation and modeling. This

object-oriented description of BSP details the
principle objects and inter-object behaviors
by using the UML structural and behavioral
diagrams.

The remainder of this paper will first give a
conceptual description of the BSP model of
parallel computation and also present the
BSP predictability parameters used in
algorithm predictability analysis. Next the
basic object of the BSP model are presented
and organized into classes for basic structural
modeling. The structure UML descriptions
are presented including a class hierarchy of
the various objects in BSP. Once the
structural elements are defined, the object
responsibilities are outlined ad the basic use-
case diagrams of BSP are presented. Other
behavioral UML diagrams are presented that
describe the sequence diagrams for the BSP
predictability parameters.

2 The BSP Model

The following is a conceptual description of
the BSP model of parallel computation. As
stated in the introduction, the model consists
of a set of processor-memory pairs, a
communication network for point-to-point
messages, and a mechanism for efficient
barrier synchronization for a set (all) of the
processes.

The BSP model has a vertical and horizontal
structure illustrated in figure 1. The vertical
structure consists of a series of supersteps.
Each superstep is composed of a set of virtual
processes performing local computation.
This is followed by a process communication
phase in which the processes communicate
using point-to-point communication for the
movement of data between the local
memories of the processes. Finally, a barrier
synchronization phase is performed to wait
for all communication actions to complete.

The horizontal structure of the BSP model
arises by utilizing concurrency among a fixed
number of virtual processes. Processes do
not have a particular order and can be
mapped to a fixed number of processors in
any manner. The parameter p is used to
denote the number of virtual parallelism in a
program, i.e. the number of virtual processes.

Virtual Processors

Local
Computation

Global
Communication

Barrier
Synchronization

Figure 1: Basic phases of BSP programming.

For algorithm analysis, there are four
predictability parameters defined in the BSP
model.

1. wi is the time for local computation in
process i.

2 . h is the maximum number of
incoming or outgoing messages per
processor.

3. g is the permeability of the network
to continuous traffic addressed to
uniform destinations.

4. l is the cost of performing a barrier
synchronization.

There are other predictability parameters
often defined in the BSP model such as s, the
number of flops/s when implemented on a
particular machine and m the length of a

message. However, BSP makes no
distinction between a message of length 1
(one) or of length m.

Thus the cost of a superstep is defined by the
following equation:

lgh
processes

MAX
w

processes

MAX
ii ++)()(

or more commonly expressed as:

lhgw ++

The standard BSP cost model is the sum of
the cost of each superstep. A further
discussion of the predictability parameters
and other BSP cost models can be referenced
in [4, 6, 7, 8].

There have been several implementations of
the BSP model, including implementations
on the Cray T3E, IBM SP2, SGI Origin 2000,
and various clusters of workstations. One
such implementation is the BSPlib define in
[5]. The BSPlib defines the operations of
processes, communication, and barrier
synchronization using an API of
(approximately) 20 functions. Although a
complete description and example of these
functions is outside the scope of this paper,
they do further illustrate the properties and
requirements of the BSP model.

Initialization Functions
bsp_init() – Simulate dynamic processes
bsp_begin – Start of SPMD code
bsp_end() – End of SPMD code

Inquiry Functions
bsp_pid() – Find my process id
bsp_nprocs() – Number of processes
bsp_time() – Local time

Synchronization Functions
bsp_sync() – Barrier synchronization

DRMA Functions

bsp_pushregister() – Make region global visible
bsp_popregister() – Remove global visibility
bsp_put() – Push to remote memory
bsp_get() – Pull from remote memory

BSMP Functions
bsp_set_tag_size() – Choose tag size
bsp_send() – Send to remote queue
bsp_get_tag() – Match tag with message
bsp_move() – Fetch from queue

Halt Functions
bsp_abort() – One process halts all

High Performance Functions
bsp_hpput()
bsp_hpget()
bsp_hpmove()

3 BSP Structural Diagrams

The structural diagrams of the UML provide
the model with a foundation of classes,
objects, aggregations, and inheritance.
Figure 1 presents an example class for the
BSP process.

+begin()
+end()
+get_id()
+get_numprocs()
+get_time()
+put()
+get()
+synchronize()
+send()
+recv()
+abort()
+push_register()
+pop_register()
+set_tag()
+get_tag()

-id : int
-comm_buffer

BSP Process

Figure 2: BSP Process Class Structure

The BSP process class is modeled after the
BSPlib functions. Each BSP process has an

process identification number and a
communication buffer as class attributes and
remain as private data members. The BSP
process public methods are primarily
implementations of the BSPlib API
functions. Other classes for the BSP model
include Interconnection Network, Processor,
and Local Memory can be similarly
described. However these classes are
primarily abstract and ultimately depend on
the implementation of the BSP model on a
parallel computer and interconnection
network.

The classes in the BSP model can be
combined and organized into a UML
aggregation diagram as shown in the figure 2.

BSP Process
Interconnection

Network

Memory Processor

Figure 3: The BSP process using the UML
aggregation diagram.

Assuming virtual BSP processes, top BSP
process class has a one-to-one relationship
with the process memory and processor
classes. Also there is a one-to one
relationship with the BSP process and
Interconnection Network class.

4 BSP Behavioral Diagrams
The UML behavioral diagrams define class
responsibilities by using the UML use cases.
Behavioral diagrams also can define the
object state transitions by using the UML

state diagrams and event constraints by using
the UML sequence diagrams.

Two such BSP actors are the BSP process
class and the Interconnection Network class.
The responsibilities and behaviors of the BSP
process and Interconnection Network class
are described in figure 4.

BSP
Process

Interconnection
Network

Perform Local
Computation

Send / Recv
Messages for h

Relation

Participate in Barrier
Synchonization

Manage Participating
Processes to Global
Consistent State for

Barrier Synchronization

Route Process Point-to-
Point Messages

Figure 4: Example BSP actors and use case
diagrams.

The superstep and BSP predictability
parameters can also be defined using the
UML sequence diagram; one is presented in
this paper illustrating the basic superstep and
BSP parameters is shown in figure 5.

Each superstep begins with each process (two
shown in this example) performing
computation on their respective local
memories. Note that “Process *” is used to
denote that multiple BSP Processes are
involved during the progression of a

superstep as defined by the h-relation. This
is characterized by the parameter w1 and w2

respectively. This is followed by a series of
point-to-point communications as defined by
the h-relation for each BSP process. Each
process must initiate communication with the
interconnection network, transfer data to the
other process, (possibly) receive data from
another process, and then finalize
communication. This is characterized by the
predictability parameters h and g.

Process1

Interconnection
Network Process*2

w1 w2

Barrier start
Barrier start

Barrier end
Barrier end

l1

Send messages
for h relation

Send complete
Receive message

Send messages
for h relation

Send complete
Receive message

hg1 hg2

l2

Figure 5: The BSP superstep and
predictability parameters wi, h, g, and l using
the UML sequence diagram.

Finally, synchronization is performed using a
barrier method. This is characterized by the
parameter l.

5 Example Parallel Algorithm
As an example of using the UML sequence
diagram, consider the BSP algorithm for
allsums (parallel prefix sum). In this
algorithm, the partial sum of p integers is
stored on p processors (BSP processes). The
algorithm uses the logarithmic technique that
performs lg p supersteps such that during

the kth superstep, the processes in the range
2k-1 ≤ i ≤ p each combine their local partial
sums with process i-2k-1. The following
algorithm further outlines this method.

int bsp_allsums1(int x)
{
 int ii, left, right;
 bsp_pushregister(&left,

 sizeof(int));
 bsp_sync();
 right = x;
 for(ii=1; ii<bsp_nprocs(); ii*=2)
 {
 if(bsp_pid()+I < bsp_nprocs())
 bsp_put(bsp_pid()+ii,
 &right,
 &left,
 0,
 sizeof(int));
 bsp_sync();
 if(bsp_pid() >= ii)
 right = left + right;
 }
 bsp_popregister(&left);
 return(right);
}

Modeling this algorithm using 4 BSP
processes, it is shown that there are lg(4) = 2
supersteps. To begin, each BSP process has
a local number that participates in the prefix
sum. During the global communication
phase, this number is sent to it neighbor
during the first superstep. The each BSP
process participates in a barrier
synchronization which concludes the first
superstep. The process repeats for the second
superstep, etc. At the end of the algorithm,
each BSP process contains the prefix sum.

BSP
Process

1

BSP
Process

2

BSP
Process

3

BSP
Process

4

BSP Barrier
Synchronization

NetworkTime

1 2 3 4

1 3 5 7

1 3 6 10

Local Computation

Communication

Barrier
Synchronization

Local Computation

Communication

Barrier
Synchronization

Figure 6: UML sequence diagram for the
parallel prefix algorithm.

6 Conclusions

The Unified Modeling Language has
provided a structured and organized
communication vehicle to describe and
develop and object oriented description of the
BSP model of parallel computation.

By using the various UML structural and
behavioral diagrams and views, the same
model can be used for various disciplines of
parallel computing research such as parallel
architecture, parallel algorithm development,
and object oriented implementations of the
BSP model on parallel computing machinery.
The structural UML diagrams of the BSP
model provided the foundation classes and
class aggregations. The behavioral UML
diagrams of the BSP model provided the
responsibilities and requirements of the
classes in the model.

7 References

[1] Grady Booch, James Rumbaugh, and Ivar
Jacobson, The Unified Modeling
Language User Guide, Addison Wesley,
Reading, MA, 1999.

[2] Bruce Powel Douglass, Real-Time UML:
Developing Efficient Objects for
Embedded Systems, Addison Wesley,
Reading, MA, 1998.

[3] Todd Heywood and Claudia Leopold,
"Models of Parallelism", Abstract
Machine Models for Highly Parallel
Computers, John R. Davy and Peter M.
Dew, Eds., Oxford Science Publications,
Oxford, England, 1995, pp. 1-16.

[4] J. M. D. Hill and W. F. McColl,
“Questions and Answers About BSP”,
http://www.comlab.ox.ac.uk/oucl/users/bi
ll.mccoll/oparl.html

[5] J. M. D. Hill, et al. “BSPlib: The BSP
P r o g r a m m i n g L i b r a r y ” ,
http://www.comlab.ox.ac.uk/oucl/users/bi
ll.mccoll/oparl.html

[6] W. F. McColl, “Bulk Synchronous
Parallel Computing”, Abstract Machine
Models for Highly Parallel Computers,
John R. Davy and Peter M. Dew, Eds.,
Oxford Science Publications, Oxford,
England, 1995, pp. 41-63.

[7] W. F. McColl, Scalable Computing,
http://www.comlab.ox.ac.uk/oucl/users/bi
ll.mccoll/oparl.html

[8] L.G. Valiant, A bridging model for
parallel computation, “Communications
of the ACM”, 33(8): 103-111, August
1990.

