GATOR and SWAMP: GPU Computing for Sequence Alignment

SWAMP: Smith Waterman using Associative Massive Parallelism

Shannon Steinfadt & Johnnie W. Baker Dept. of Computer Science, Kent State University, Kent. Ohio 44242

Sequential Smithcomputation matrix. Every cell depends calculation of North. West and Northwest

ASC Model with a single Control Unit (Instruction Stream)

"Shifted" SWAMP matrix

Sequence Alignment similar characters

similar structure similar function

Ancestral Relationships Gene Functionality Aid in Drug Discovery

SLOW

Alignment O(m*n) time Smith-Waterman Heuristic Sequential

BLAST. FASTA

Rigorous Sequential

Alignment Quicker Can Miss Alignments Lose Sensitivity

Fast & Rigorous Sequential Alignment **SWAMP** O(m+n) time using m simple processors (PEs)

Sequence 1 Sequence 2

SWAMP finds the best local-alignment. SWAMP+ will return at most the top k non-intersecting, nonoverlapping segments (here k = 3).

ASC on Metal: Clear Speed X620

- "SIMD-like" model on a parallel accelerator
- 0 1 board, 2 chips, each with 96 processing elements for a total of 192 Processing Elements or Poly Execution Units (PEs)
- Each PE has 6KB local SRAM memory and dual 64-bit FPU's
- 25 W average power consumption
- 66+ GFLOP sustained performance on **DGEMM**
- Cn Language, SDK, and Visual Profiler

a) Clear Speed Advance X620 SIMD board with 2 chips and 192 PEs b) Single Chip Execution Units

ASC - a SIMD with Additional Features:

- o Locates data (searches) based on content. not memory location
- Processing elements (PEs) have own local memory
- Existing algorithms, programming language, compiler, and emulator
- Data configuration is tabular
- Fast communication; Tightly coupled, local raw data movement (NOT over LAN/WAN)
- Constant time search/respond operations and constant time global reduction operators:
 - Maximum / Minimum
 - "Any Responders?" - "Pick One"

NEED ASSOCIATIVE **OPERATORS FOR EACH "ASC** ON METAL" ARCHITECTURE

ASC on Metal: NVIDIA C870 Tesla GATOR: Genetic Alignment on sTream processORs

o "SPMD" model on a GPGPU (General Purpose Graphical Processing Unit) platform

 1 GPU/board, 16 streaming multiprocessors (MP), each with 8 streaming processor cores (SPs) for 128 32-bit FP SPs

- Each MP has 16KB of shared memory
- o 120 W typical power consumption
- o 518 Peak GFLOPs on Tesla series
- CUDA Compute Unified Device Architecture - C-like language and virtual
- Multiple levels of parallelism:
 - Up to 512 threads per block
 - Grids of thread blocks
- a) Dual NVIDIA Tesla C870 GPGPU's each with 128 stream processors
 - b) Tesla/GPGPU organization

Note: Current hardware configuration is that the three acceleration cards are housed in a single machine for comparative timings