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Topics Overview

 Sequence Alignment
 What type of data we’re aligning
 How we’re trying to align it
 Smith-Waterman example

 Associative Parallel Model (ASC)

 SWAMP Algorithm

 Future Work
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Sequence Alignment

Given two sequences:

Align them to find the longest, most
common subsequence

DNA nucelotides {C,T,G,A}
Amino Acids {a, r, n, d, c, q, e, g, h, i, l, k, m, f, p, s, t, w, y, v}

ctcgccgcgc ggcggacgct ccacgtgtcc cccgtctacc

gggccctcct ggctcccaac agcttctcag ttcccacttc

Sequence Alignment

Similar Characters Similar Structure
Similar Function

Given two sequences:

Align them to find the longest, most
common subsequence

DNA nucelotides {C,T,G,A}
Amino Acids {a, r, n, d, c, q, e, g, h, i, l, k, m, f, p, s, t, w, y, v}

||:|:|| ||::|-|::|--| --|-||:|:|::| ||-|:||
gcggacgct ccacg-tgtc--c  --c- tcgccgcgc cc-cgtctacc

gggccct cctggctcccaac agc ttctcagttc  ccacttc
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Sequence Alignment

Similar Characters Similar Structure
Similar Function

Ancestral Relationships
Gene Functionality

Aid in Drug Discovery

Aligning using Smith-Waterman
Algorithm

Compare all possible combinations of sequence
characters against each other
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Traceback in the Smith-Waterman
Algorithm

Cost Key
Match +10

Miss -3

Insert a Gap -3
Extend a Gap -1

Traceback in the Smith-Waterman
Algorithm

Cost Key
Match +10

Miss -3

Insert a Gap -3
Extend a Gap -1

Alignment:
CATTG
C - -TG
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Parallelizing the Algorithm

Parallelizing the Algorithm
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Parallelizing the Algorithm

Parallelizing the Algorithm
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ASC: Associative Architecture

SWAMP (Smith-Waterman using
Associative Massive Parallelism)

Used PEs

Unused PEs
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ASC Features

 SIMD with special associative features

 Designed for fast associative searches
 Search based on content, not memory address

Very fast operations for:

 Finding Maximum / Minimum

 Finding if there are “Any Responders”

 “Pick One” active PE

ASC Advantages

 Quick data movement in SIMD
 Move raw data in parallel
 At each step, PEs follow the algorithmic steps for data

movement in lock step

 No message passing like MPI/PVM
 No store/forward
 No headers
 No explicit synchronizing
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Speedup Results in SWAMP

 Sequential Ops:
1.54

 Surprised by the
impact of data type
and arrangement

 Parallel Ops: 1.08*

Reduced I/O
bottleneck:

m(m+n)→O(max(m,n))

* I/O improvements not tracked by Performance Monitor

Creating Sliding Data Arrangement

 S2 has to be copied in a sliding manner way
 Use a stack
 Use PE Interconnection network

Fig. 4.  Showing (i+j=4) step-by-step iteration of the m+n loop to shift
S2.  This loop stores each anti-diagonal in a single variable of the
ASC array S2[$] so that it can be processed in parallel.
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SWAMP Analysis

|S1| = m and |S2| = n (and m >= n)

 Sequential Smith-Waterman (Gotoh)
 O(m*n) time, m*n space
 When |S1| = |S2|, it becomes an O(n2) algorithm

 SWAMP parallel algorithm
 Computation takes O(m+n) time with m+1 PEs
 If  actual number of PEs < m+1, assign {(m+1) / # PEs} work

to each PE
 400 matrix elements / 100 PEs ⇒ each PE gets 4x the work

Performance Measurements

Predictions calculated using linear regression and the least squares
method

 Based on actual
measurements
using ASC
language and
emulator

 Predictions
shown with the
dashed line
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Current Work

 Create a parallel ASC-language traceback

 Parallelize the data conversion (tilt) of the matrix to
run more efficiently

 Use FASTA formatted files

Current Work

 Extend the enhanced features of ASC to
commercially available hardware

ClearSpeed
Advance 620 PCI-X
board

50 GFLOPS peak
performance
25W average
power dissipation
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Current Work

 Extend the enhanced features of ASC to
commercially available hardware
 Two NVIDIA Tesla

 518 Peak GFLOPS on Tesla Series
 170W peak, 120W typical

Future Work

 Work on extending SWAMP to SWAMP+, returning
multiple non-overlapping sequences during the
traceback
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Questions ?

Contact Info:

Shannon Steinfadt

ssteinfa@cs.kent.edu

http://www.cs.kent.edu/~ssteinfa


