
SWAMP: Smith-Waterman using
Associative Massive Parallelism

PDSEC 2008 - S. Steinfadt & J. Baker 1

SWAMP: Smith-Waterman
using Associative Massive

Parallelism

Shannon I. Steinfadt and Johnnie Baker
Parallel and Associative Computing Lab

Computer Science Department
Kent State University

9th International Workshop on
Parallel and Distributed Scientific and
Engineering Computing (PDSEC ‘08)

Topics Overview

 Sequence Alignment
 What type of data we’re aligning
 How we’re trying to align it
 Smith-Waterman example

 Associative Parallel Model (ASC)

 SWAMP Algorithm

 Future Work

SWAMP: Smith-Waterman using
Associative Massive Parallelism

PDSEC 2008 - S. Steinfadt & J. Baker 2

Sequence Alignment

Given two sequences:

Align them to find the longest, most
common subsequence

DNA nucelotides {C,T,G,A}
Amino Acids {a, r, n, d, c, q, e, g, h, i, l, k, m, f, p, s, t, w, y, v}

ctcgccgcgc ggcggacgct ccacgtgtcc cccgtctacc

gggccctcct ggctcccaac agcttctcag ttcccacttc

Sequence Alignment

Similar Characters Similar Structure
Similar Function

Given two sequences:

Align them to find the longest, most
common subsequence

DNA nucelotides {C,T,G,A}
Amino Acids {a, r, n, d, c, q, e, g, h, i, l, k, m, f, p, s, t, w, y, v}

||:|:|| ||::|-|::|--| --|-||:|:|::| ||-|:||
gcggacgct ccacg-tgtc--c --c- tcgccgcgc cc-cgtctacc

gggccct cctggctcccaac agc ttctcagttc ccacttc

SWAMP: Smith-Waterman using
Associative Massive Parallelism

PDSEC 2008 - S. Steinfadt & J. Baker 3

Sequence Alignment

Similar Characters Similar Structure
Similar Function

Ancestral Relationships
Gene Functionality

Aid in Drug Discovery

Aligning using Smith-Waterman
Algorithm

Compare all possible combinations of sequence
characters against each other

SWAMP: Smith-Waterman using
Associative Massive Parallelism

PDSEC 2008 - S. Steinfadt & J. Baker 4

Cost Key
Match +10

Miss -3

Insert a Gap -3
Extend a Gap -1

Aligning using Smith-Waterman
Algorithm

Compare all possible combinations of sequence
characters against each other

Cost Key
Match +10

Miss -3

Insert a Gap -3
Extend a Gap -1

Aligning using Smith-Waterman
Algorithm

Compare all possible combinations of sequence
characters against each other

SWAMP: Smith-Waterman using
Associative Massive Parallelism

PDSEC 2008 - S. Steinfadt & J. Baker 5

Aligning using Smith-Waterman
Algorithm

Cost Key
Match +10

Miss -3

Insert a Gap -3
Extend a Gap -1

Compare all possible combinations of sequence
characters against each other

Aligning using Smith-Waterman
Algorithm

Cost Key
Match +10

Miss -3

Insert a Gap -3
Extend a Gap -1

Compare all possible combinations of sequence
characters against each other

SWAMP: Smith-Waterman using
Associative Massive Parallelism

PDSEC 2008 - S. Steinfadt & J. Baker 6

Aligning using Smith-Waterman
Algorithm

Cost Key
Match +10

Miss -3

Insert a Gap -3
Extend a Gap -1

Compare all possible combinations of sequence
characters against each other

Aligning using Smith-Waterman
Algorithm

Cost Key
Match +10

Miss -3

Insert a Gap -3
Extend a Gap -1

Compare all possible combinations of sequence
characters against each other

SWAMP: Smith-Waterman using
Associative Massive Parallelism

PDSEC 2008 - S. Steinfadt & J. Baker 7

Aligning using Smith-Waterman
Algorithm

Cost Key
Match +10

Miss -3

Insert a Gap -3
Extend a Gap -1

Compare all possible combinations of sequence
characters against each other

Aligning using Smith-Waterman
Algorithm

Cost Key
Match +10

Miss -3

Insert a Gap -3
Extend a Gap -1

Compare all possible combinations of sequence
characters against each other

SWAMP: Smith-Waterman using
Associative Massive Parallelism

PDSEC 2008 - S. Steinfadt & J. Baker 8

Aligning using Smith-Waterman
Algorithm

Cost Key
Match +10

Miss -3

Insert a Gap -3
Extend a Gap -1

Compare all possible combinations of sequence
characters against each other

Aligning using Smith-Waterman
Algorithm

Cost Key
Match +10

Miss -3

Insert a Gap -3
Extend a Gap -1

Compare all possible combinations of sequence
characters against each other

SWAMP: Smith-Waterman using
Associative Massive Parallelism

PDSEC 2008 - S. Steinfadt & J. Baker 9

Aligning using Smith-Waterman
Algorithm

Cost Key
Match +10

Miss -3

Insert a Gap -3
Extend a Gap -1

Compare all possible combinations of sequence
characters against each other

Aligning using Smith-Waterman
Algorithm

Cost Key
Match +10

Miss -3

Insert a Gap -3
Extend a Gap -1

Compare all possible combinations of sequence
characters against each other

SWAMP: Smith-Waterman using
Associative Massive Parallelism

PDSEC 2008 - S. Steinfadt & J. Baker 10

Aligning using Smith-Waterman
Algorithm

Cost Key
Match +10

Miss -3

Insert a Gap -3
Extend a Gap -1

Compare all possible combinations of sequence
characters against each other

Aligning using Smith-Waterman
Algorithm

Cost Key
Match +10

Miss -3

Insert a Gap -3
Extend a Gap -1

Compare all possible combinations of sequence
characters against each other

SWAMP: Smith-Waterman using
Associative Massive Parallelism

PDSEC 2008 - S. Steinfadt & J. Baker 11

Traceback in the Smith-Waterman
Algorithm

Cost Key
Match +10

Miss -3

Insert a Gap -3
Extend a Gap -1

Traceback in the Smith-Waterman
Algorithm

Cost Key
Match +10

Miss -3

Insert a Gap -3
Extend a Gap -1

Alignment:
CATTG
C - -TG

SWAMP: Smith-Waterman using
Associative Massive Parallelism

PDSEC 2008 - S. Steinfadt & J. Baker 12

Parallelizing the Algorithm

Parallelizing the Algorithm

SWAMP: Smith-Waterman using
Associative Massive Parallelism

PDSEC 2008 - S. Steinfadt & J. Baker 13

Parallelizing the Algorithm

Parallelizing the Algorithm

C

A

T

T

G

SWAMP: Smith-Waterman using
Associative Massive Parallelism

PDSEC 2008 - S. Steinfadt & J. Baker 14

ASC: Associative Architecture

SWAMP (Smith-Waterman using
Associative Massive Parallelism)

Used PEs

Unused PEs

SWAMP: Smith-Waterman using
Associative Massive Parallelism

PDSEC 2008 - S. Steinfadt & J. Baker 15

ASC Features

 SIMD with special associative features

 Designed for fast associative searches
 Search based on content, not memory address

Very fast operations for:

 Finding Maximum / Minimum

 Finding if there are “Any Responders”

 “Pick One” active PE

ASC Advantages

 Quick data movement in SIMD
 Move raw data in parallel
 At each step, PEs follow the algorithmic steps for data

movement in lock step

 No message passing like MPI/PVM
 No store/forward
 No headers
 No explicit synchronizing

SWAMP: Smith-Waterman using
Associative Massive Parallelism

PDSEC 2008 - S. Steinfadt & J. Baker 16

Speedup Results in SWAMP

 Sequential Ops:
1.54

 Surprised by the
impact of data type
and arrangement

 Parallel Ops: 1.08*

Reduced I/O
bottleneck:

m(m+n)→O(max(m,n))

* I/O improvements not tracked by Performance Monitor

Creating Sliding Data Arrangement

 S2 has to be copied in a sliding manner way
 Use a stack
 Use PE Interconnection network

Fig. 4. Showing (i+j=4) step-by-step iteration of the m+n loop to shift
S2. This loop stores each anti-diagonal in a single variable of the
ASC array S2[$] so that it can be processed in parallel.

SWAMP: Smith-Waterman using
Associative Massive Parallelism

PDSEC 2008 - S. Steinfadt & J. Baker 17

SWAMP Analysis

|S1| = m and |S2| = n (and m >= n)

 Sequential Smith-Waterman (Gotoh)
 O(m*n) time, m*n space
 When |S1| = |S2|, it becomes an O(n2) algorithm

 SWAMP parallel algorithm
 Computation takes O(m+n) time with m+1 PEs
 If actual number of PEs < m+1, assign {(m+1) / # PEs} work

to each PE
 400 matrix elements / 100 PEs ⇒ each PE gets 4x the work

Performance Measurements

Predictions calculated using linear regression and the least squares
method

 Based on actual
measurements
using ASC
language and
emulator

 Predictions
shown with the
dashed line

SWAMP: Smith-Waterman using
Associative Massive Parallelism

PDSEC 2008 - S. Steinfadt & J. Baker 18

Current Work

 Create a parallel ASC-language traceback

 Parallelize the data conversion (tilt) of the matrix to
run more efficiently

 Use FASTA formatted files

Current Work

 Extend the enhanced features of ASC to
commercially available hardware

ClearSpeed
Advance 620 PCI-X
board

50 GFLOPS peak
performance
25W average
power dissipation

SWAMP: Smith-Waterman using
Associative Massive Parallelism

PDSEC 2008 - S. Steinfadt & J. Baker 19

Current Work

 Extend the enhanced features of ASC to
commercially available hardware
 Two NVIDIA Tesla

 518 Peak GFLOPS on Tesla Series
 170W peak, 120W typical

Future Work

 Work on extending SWAMP to SWAMP+, returning
multiple non-overlapping sequences during the
traceback

SWAMP: Smith-Waterman using
Associative Massive Parallelism

PDSEC 2008 - S. Steinfadt & J. Baker 20

Questions ?

Contact Info:

Shannon Steinfadt

ssteinfa@cs.kent.edu

http://www.cs.kent.edu/~ssteinfa

