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ABSTRACT
Local sequence alignment is widely used to discover
structural and hence, functional similarities between
biological sequences.  While the faster heuristic methods
like BLAST and FASTA are useful to compare a single
sequence to hundreds or even thousands of sequences in
genetic databases such as GenBank, EMBL, and DDBJ, this
work yields pairwise alignments with a high sensitivity.
The heuristic methods are ideal for narrowing down the
number of “good” sequences.  Rigorous alignment can then
be utilized for an in-depth comparison between the query
sequence and the newly found sequence subset.

A data-parallel algorithm for local sequence alignment
based on the Smith-Waterman algorithm has been adapted
for an associative model of parallel computation known as
ASC.  The algorithm finds the best local alignment in O(m
+ n) time using m + 1 processing elements.

KEY WORDS
Computational techniques, sequence alignment, Smith-
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1.  Introduction

The alignment of two DNA or protein sequences is used to
detect functional similarities.  High sequence similarity
implies structural and hence, functional similarity.  The
dynamic programming algorithms from Needleman and
Wunsch [1] and Smith and Waterman [2] are exact
alignment algorithms that find the highest scoring
alignment possible between two DNA or protein strings.

The Smith-Waterman algorithm with Gotoh optimizations
[3] produces a local alignment with time and memory
requirements proportional to the product of the two
sequences’ length, or O(m •n).  This quickly becomes
computationally prohibitive as the size of the strings
increase.

Approximate algorithms including BLAST [4], Gapped
BLAST [5], and FASTA [6] are widely used due to their
speed.  Empirically, BLAST is 10-50 times faster than the
Smith-Waterman algorithm [7].  The approximate
algorithms were designed for speed, trading-off accuracy
and sensitivity.  Higher scoring subsequences can be missed
due to the nature of the approximations.  The heuristic
algorithms are useful to help screen hundreds or thousands
sequences to a reasonable set that can be studied more
carefully with rigorous local alignment. As a result, a
parallel exact sequence alignment with a reasonably large
speedup over its sequential counterparts is desirable.

This paper presents a local sequence alignment algorithm
based on [3] using an associative model of computation
known as ASC [8].  While other parallel versions of local
sequence alignment algorithms exist for many different
models of computation including SIMD [9][10][11] and
MIMD [12] systems, this work extends local sequence
alignment to the ASC model and serves as the foundation
for finding the top k local alignments similar to SIM [13]
and LALIGN [14] in the FASTA package [15] but with a
much faster running time.

Section 2 outlines the Smith-Waterman algorithm, Section
3 introduces and explains the associative computing (ASC)
model, and Section 4 discusses the associative local
sequence alignment algorithm.  The associative algorithm is
compared to other similar algorithms in Section 5.  Future
work and the conclusions are covered in Sections 6 and 7.

2.  The Smith-Waterman Algorithm

Smith-Waterman is perhaps the most widely used local
sequence alignment algorithm [16]. The dynamic
programming method aligns the residues of two sequences
S1 and S2.  Gaps may be introduced into the original
sequences during alignment.  The goal is to maximize the
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Figure 1.  Sequential S-W matrix. The dark gray
border blocks are initialized to zeros.  The anti-
diagonals are shown as dashed lines. The lighter
gray box at (i,j)=(3,2) shows the three values its
data is dependent upon: northwest (i-1,j-1), north (i-
1,j) and  west (i, j-1)  or (2,1), (2,2) and (3,1).

substring alignment of similar residues, indicating evolution
similarity and lineage.

The Smith-Waterman algorithm is rigorous, checking every
possible alignment via an m • n scoring matrix, where m is
the length of S1 and n is the length of S2.  A matrix element
at location i,j in the matrix represents the score of an
alignment ending at residue i of S1 and residue j of S2,
where 0 ≤ i ≤ m and 0 ≤ j ≤ n.

Scores in the first row and column are defined to be zero.
The rest of the matrix is defined using the following
recurrence relationships from [3]:
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Di,j is the score of the best alignment ending at the position
S1i, S2j, with the scoring function for a match or mismatch
of the two residues d(S1i, S2j).  Pi,j and Qi,j keep track of an
insertion or deletion respectively, ending at S1i and S2j.
The cost of introducing a single gap is represented by w1

and u is the penalty of extending a gap by one.

As shown in Equations 1-3, the score for each matrix
element relies upon the previously computed scores for
every element above (north of) it, to the left (west) of it,
and on the diagonal (northwest) of it.

This data dependency for one matrix element can be seen in
Figure 1.  The lightly shaded matrix element in the bottom
right corner depends upon the three pre-computed matrix
cells pointed to by the arrows.  In turn, those three matrix
cells rely on their own north, west, and northwest
neighbors’ computations.

By examining the data dependencies, the matrix elements
along the anti-diagonals (shown by the dashed lines in
Figure 1) do not require data from any other element along
the anti-diagonal during their calculation.  The values for
these matrix elements and can be computed independently
and in parallel using a wavefront method.  The
independence of matrix element computations along the
anti-diagonal is exploited by the parallel algorithm
presented in Section 4.

Once the scoring matrix has been calculated for the
sequential local alignment, the second phase of the
algorithm identifies the best local alignments.  Sequentially,
the first part of the algorithm takes O(m • n) time, and the
second part of the algorithm, known as traceback, can take
up to  O(m + n) time.  Traceback is a dynamic process, and
it depends upon the best alignment computed in the scoring
matrix.  Since the first phase is computationally intensive, it
is the focus of the parallelization for the ASC model in this
paper.

3.  Associative Computing and the ASC Model of
Parallel Computation

A parallel associative model of computation [8] known as
ASC (ASsociative Computing) is a generalized version of
the associative computing style that has been in use since
the 1970’s with the introduction of associative SIMD
computers such as the STARAN.  Associative computing
includes the use of data parallel programming [17].  Unlike
MIMD programming, ASC programmers are not
responsible for load balancing, synchronization points, task
allocation, scheduling, etc.  Additionally, data is either
broadcast or moved synchronously using the
interconnection network thereby avoiding difficulties
involving both message passing and shared memory.  An
ASC computer can handle real-time applications, such as
collision avoidance in air traffic control (ATC) in low-order
polynomial time [18][19].

The ASC model does not employ associative memory.  The
reference to the word “associative” is related to the use of
searching to locate data by content rather than memory



address. The data remains in place in the responding
processing elements (PEs) and these PEs are subsequently
processed in parallel.

As shown in Figure 2, the ASC model consists of an array
of cells and a single instruction stream (IS).  Each cell is
composed of a PE and a local memory.  Each PE is capable
of performing local arithmetic, logical operations, and the
usual functions of a sequential processor other than issuing
instructions.  Every PE listens to the IS, which broadcasts
data and instructions.  The term cell and PE are used
interchangeably in this paper to refer to both the processing
element and its local memory.

PEs in the ASC model can be active, inactive, or idle.  The
IS can broadcast to all of its cells but only the active PEs
execute an associative search.  Since only active PEs
execute the instructions broadcast from the IS, inactive PEs
listen but do not execute the broadcast instructions.  Based
on the results of a search, the active PEs are again
partitioned into active (responder) or inactive (non-
responder) PEs.  Idle PEs are currently inactive with no
essential program data, but they can be reassigned as an
active PEs.

There are several instruction stream (IS) properties.  The IS
is able to broadcast data to all of its active PEs, invert the
responders and the non-responders, as well as select a
single PE from the set of responder PEs.  An IS may
compute the global AND, OR, MAX or MIN of data in all
of the active PEs.  These reduction operations take constant
time [20] [21].  This MAX feature is particularly useful
since the maximum D value must be found for the start of
the traceback in the local alignment algorithm.

There are no restrictions on the type of cell/PE network
used with the ASC model in general. The programmer does
not need to worry about the actual network hardware or the
routing scheme.  SIMD computers are particularly efficient
in data movement.  Data is moved in lock step through the
network under the control of the compiled program, thereby
producing predicable timings.

4.  Associative Local Sequence Alignment Algorithm

A local sequence alignment algorithm has been developed
for ASC using the Smith-Waterman algorithm.

Here m + 1 PEs are used to calculate the scoring “matrix.”
Instead of a 2-D contiguous matrix that resides in the
memory of a sequential computer, each PE holds what was
one row of information in the sequential Smith-Waterman
matrix.

The data dependencies along the anti-diagonals enforce a
strict processing order within the PEs.  No Di,j value may be
computed prior to D entries with row and column indexes
of (i-1,j), (i,j-1) and (i-1,j-1), or its N, W, and NW
neighbors.  Active PEs compute in parallel the matrix
values along the anti-diagonal in a wavefront method
(shown in Figure 1).

4.1  Algorithm Description

This pseudocode is based a working ASC language
program.  An emulator was used for testing. The variables
with i,j subscripts indicate a parallel variable for each PEi

holding its own local copy of that variable (Pi,j, Qi,j, Di,j).
Other variables such as anti_diag and max_PE are scalar
(global, non-parallel) variables stored at the instruction
stream level.

ASC Local Alignment Algorithm
1) Copy S2 to active PEs with appropriate shift for the

anti-diagonals.  S2j is copied to PEi where i + j is equal
the anti-diagonal.  The variables i and j represent a row
and column in the original matrix.

2) For anti_diag from 0 to m + n do in parallel {
3)      Initialize Danti_diag, Panti_diag, Qanti_diag to zero
4)      If Santi_diag ≠ “@” and Santi_diag ≠ “—” then {
5.1)          Calculate score for insertion at PEi (Pi,j)
5.2)          Calculate score for a deletion at PEi (Qi,j)
5.3)          Calculate matrix score for PEi (Di,j) }
6)     If ASCMax(Danti_diag) > max_PE then {
7)         max_PE = ASCMax(Danti_diag) } }
8) return max_PE

Step 2 iterates through every anti-diagonal.  Step 3
initializes all values of Danti_diag, Panti_diag, and Qanti_diag to 0.
This handles all of the border cells as well as any locations
with no valid data.  A memory location in a PE contains a
“non-residue” placeholder (-) for one of two reasons.  The
first is when the string S2 is shorter than S1.  Second, the
m+n memory locations used by each active PE to store a
row of the matrix are necessarily longer than m , a
placeholder is used to indicate non-valid data.  Placeholders
are shown in the example of Figure 4.  Step 4 activates only
those PEs with valid data (no borders “@” or placeholders
“—”) for a given anti-diagonal  where  i + j = anti_diag.
Step 5 uses Equations 1-3 from Section 2 to calculate the
values P, Q, and D for a single anti-diagonal, in parallel.
The maximum level of parallelism is attained when
processing the main matrix diagonal, i.e. the longest anti-
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Figure 2: Conceptual view of the ASC model of
parallel computation.
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diagonal from corner to corner. The global reduction
operator is used to compute the starting point for the
traceback process, once for each anti-diagonal in steps 6
and 7.  The process repeats, moving to the next anti-
diagonal until all m+n anti-diagonals are processed.  When
m  is greater than the number of PEs, a PE can act as a
virtual PE, holding m / (actual # PEs) different records.

4.2 Example

The following example discusses the computation phase of
local alignment between two DNA sequences, CATTG and
CTTG.

Figure 3 has the two-dimensional matrix as computed by
the sequential Smith-Waterman algorithm.  The index
values i and j are shown for reference.

All of the data from the two-dimensional matrix is
conserved in the memories of the PEs when mapped to the
ASC model.  An example is shown in Figure 4.  Each PE’s
copy of S2 can be seen in the parallel array Santi_diag shifted
to the correct corresponding anti-diagonal.  Instead of
dividing the data by the original row and column
organization, each column in the associative algorithm
represents an anti-diagonal.  What was a column in the
sequential version has a diagonal pattern as seen in the S
values of Figure 4.  Again, the reason for the shift is to
allow all of the values that are independent from one
another along an anti-diagonal to be processed in parallel.

Every value of S2 is eventually compared to S1i within PEi.
The corresponding values of D, P, and Q are not shown, but
are stored as parallel arrays with the same memory
mappings as S.

4.3  Algorithm Analysis

The analysis is based on a breakdown of the pseudocode in
Section 4.1.  The loop that includes Steps 2-7 executes m +
n times, once for each anti-diagonal.  Each substep of 5

requires communication between different PEs.  No special
hardware is required for concurrent read or concurrent write
since they are not used.  Communication time is minimal
since PEs only ever communicate with their immediate
north and north neighbor once removed.  Due to the SIMD
nature of the associative model, the tightly coupled
hardware communicates more efficiently than two nodes in
a cluster.  Steps 6 and 7 both execute in constant time as
noted above in Section 3.  Step 8 is also a constant time
operation.

Thus, the overall time complexity of the alignment
computation is O(m + n) using m + 1  PEs.  The extra PE
handles the border placeholder (“@” in our example).

Algorithm PE’s Running
Time

Smith-Waterman 1 O(m • n)
ASC Align m + 1 O(m + n)

Table 1. Algorithm Analysis

When m + 1 is greater than the number of PEs the running
time is slowed by a factor of ((m + 1) / # PEs).

5.  Comparison to Similar Algorithms

With SIMD and associative models, more specifically ASC,
there is no overhead for synchronization and no workload
balancing due to the lock-step execution of instructions.
Two SIMDs with existing Smith-Waterman
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Figure 3.  2-D Smith-Waterman matrix D for the
local alignment of sequences CATTG and CTTG.

There is one deletion.  It uses the parameters:
d(S1i, S2j)=10 when S1i = S2j

d(S1i, S2j) = -3 when S1i ≠ S2j.
gap insert = -3           gap extension=-1

Figure 4. Mapping the data onto the ASC model.
This shows the machine state while processing anti-

diagonal 5.  PE states are: N=has data but not a
responder, R=responder that partakes in a parallel
calculation, I=idle with no valid data.  The first PE
has no data for anti-diagonals 5-9; therefore it is a

non-responder and does not participate in the
calculations.  Not shown are Danti-diag, Panti-diag and
Qanti-diag that have the same memory usage as S.
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implementations include Kestrel [9] and the Fuzion 150
[10].  The Kestrel SIMD parallel processor is a linear array
of PEs with connections between the left and right
neighbors [9].  The Fuzion 150 is a single card SIMD with
six blocks of 256 PEs connected by a linear array for a total
of 1536 PEs.  The algorithm for the Fuzion 150 board
moves data in a systolic fashion even though it may be used
as a general purpose SIMD.

The Systola 1024 is a systolic array processing board with
1024 PEs connected by a mesh network.  The boards were
put into PCs configured into a 16-node Beowulf PC cluster.

All three algorithms for Kestrel, the Fuzion 150, and the
Systola 1024 move the data in a systolic nature, shifting the
comparison sequence, S2, through the PEs.  They are
designed for high volume throughput of sequences since a
query sequence is often aligned with hundreds or thousands
of other sequences.  When comparing running time analysis
for a single alignment, the ASC algorithm takes the same
amount of time.  Due to the difference in techniques and in
the hardware models used, it is difficult to provide further
in-depth comparison between the algorithms.

More concrete measurements, such as CUPS [22] are not
available for the associative algorithm due to the fact that
the code was tested in an emulator.  The emulator itself is
undergoing modifications to expand its memory constraints.
This will allow for more Thorough test runs with realistic
data sizes.  The hardware for the ASC model is currently
under development at the Kent State University VLSI lab
[23].

6. Future Work

Future work includes implementing the associative
algorithm including the traceback phase on a SIMD system.
The SIMD currently being used for research by the
Associative Lab in the Computer Science department at
Kent State University is the commercially available
WorldScape CSX 600 COTS system.  This would allow for
more general use of the algorithm presented in this paper
and provide additional capabilities for measuring its
performance.

Additional future work includes extending the current
algorithm and implementation to search for the top k non-
overlapping alignments as done in SIM [13], LALIGN [14]
and [24], where k  is an input parameter.  The Smith-
Waterman implementations in [9] and [10] do not store the
entire computed matrix.  By storing the matrix across
multiple PEs in ASC, additional information can be
returned.  The projected running time for the proposed ASC
algorithm is O(m+n+k) time versus the existing O(m•n+k)
time.

ASC is ideal for this proposed algorithm.  The searching
required within the computed matrix is well suited to the
model since ASC’s basic three-phase cycle is

search—process—retrieve.  PEs search and compare in
parallel, setting the active responders in constant time.  In
addition, because the data is processed in situ of a PE’s
local memory, data movement is reduced for more efficient
running times.

The expected results for the proposed associative algorithm
are promising.  First, finding additional sub-regions of
interest between two sequences overcomes the
disadvantage that the Smith-Waterman algorithm only
returns the single best local alignment. Second, the
predicted speedup would make the proposed algorithm a
viable solution.  Third, there is the prospect that the
algorithm will be developed beyond finding the top k local
alignments and be able to assist in identifying regulatory
elements and regions between two sequences.

7.  Conclusion

Parallelism is needed to keep pace with the ever-growing
demands in sequence comparison.  This associative local
alignment algorithm is a successful adaptation and
implementation of local sequence alignment for the ASC
model.  It reduces the running time from the sequential
O(m•n) to the parallel O(m+n ).  It is also the basis for
practical future work of implementing and testing its
performance on a real SIMD system.  Additional work
includes extending the algorithm to allow the return of
multiple highly-conserved regions between two sequences
in a single run similar to the output of the LALIGN [14]
and SIM [13] programs but with greater efficiency.
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