Disk Hardware

Arm
Read /write l

head
Spindle ea

Cylinder

Track

(a) A hard disk drive. (b) A single disk.

Diagram from Computer Science, Volume 2, J. Stanley Warford, Heath, 1991.

m Arm can move in and out

® Read / write head can access a ring of
data as the disk rotates

m Disk consists of one or more platters

® Each platter is divided into rings of data,
called tracks, and each track is divided
into sectors

® One particular platter, track, and sector is
called a block

1 Fall 2007, Chapter 11

Data Structures for Files

m Every file is described by a file
descriptor, which may contain (varies
with OS):

® Type
® Size

® Access times — when created, last
accessed, last modified

@ Owner, group
® Access permissions — read, write, etc.

® Link count — number of directories that
contain this file

® Blocks where file is located on disk

m Not included:

® Name of file

2 Fall 2007, Chapter 11

OS Data Structures for Files

Per-Process Per-Process Open
File Table File Table File Table
position | —| position ‘ vount‘file descrip.

position ‘ count‘file descrip.

m Open file table (one, belongs to OS)
@ Lists all open files

® Each entry contains:
m A file descriptor
m Open count — number of processes that

have the file open
m Per-process file table (many)
@ List all open files for that process

® Each entry contains:
m Pointer to entry in open file table
m Current position (offset) in file

Fall 2007, Chapter 11

UNIX Data Structures for Files

Per-Process Per-Process Open Active
File Table File Table File Table I-node Table
1/0 pointer Inode
P 1/ pointer| —
| 1/0 pointer I— Inode

m Active Inode table (one, belongs to OS)

@ Lists all active inodes (file descriptors)

m Open file table (one, belongs to OS)
® Each entry contains:
m Pointer to entry in active inode table
m Current position (offset) in file
m Per-process file table (many)

® Each entry contains:
m Pointer to entry in open file table

Fall 2007, Chapter 11

UNIX File System

m A file descriptor (inode) represents a file

® All inodes are stored on the disk in a
fixed-size array called the Jlist

m The size of the ilist array is determined
when the disk is initialized

m The index of a file descriptor in the array is
called its inode number, or inumber

@ Inodes for active files are also cached in
memory in the active inode table

m A UNIX disk may be divided into
partitions, each of which contains:

® Blocks for storing directories and files

® Blocks for storing the ilist
m Inodes corresponding to files
m Some special inodes
— Boot block — code for booting the system

— Super block — size of disk, number of free
blocks, list of free blocks, size of ilist,
number of free inodes in ilist, etc.

Fall 2007, Chapter 11

UNIX File System (cont.)

m High-level view:

disk drive

‘ partition ‘ partition ‘

boot | super-

blocks | block ilist ‘ directory blocks and file data blocks ‘

‘ inode ‘ inode ‘ inode ‘ inode ‘ inode ‘

m Low-level view:

<———————— directory blocks and data blocks ——————p

)
I
!
!
!
|
] e
Diagram from Advanced Programming in the UNIX Environment, W. Richard Stevens,

Addison Wesley, 1992.

Fall 2007, Chapter 11

Working with Directories in UNIX

(Think about how this compares to Windows
or to the Macintosh OS)

m UNIX keeps track of the inode number of
current working directory for each
process; directory searches begin there

m However, a file can also be specified as
the full pathname from the “root”

o If flename begins with “/”, start at root of
the file system tree (inode 2)

m Other characters have special meaning:

o If flename begins with “ ~ 7, start at the
user’s home directory

o If flename begins with “.
current working directory

, start at the

o If flename begins with “ .. ”, start at the
parent directory

Fall 2007, Chapter 11

Working with Directories (Lookup)

Block 132 I-node 26 Block 406
I-node 6 is /usr is for is /usr/ast
Root directory is for /usr directory Jusr/ast directory
1] mode 6| mode 26|
1 .. _size 1| oo size 6| o
4 | bin times 19| dick times 64 | arants
7 dev 132 30| erik 406 92 | books
14 lib 51 jim 60 | mbox
9 | etc 26| ast 81 [minix
6 usr 45| bal 17 | src
8| tmp I-node 6 I-node 26
Looking up says that Jusr/ast says that lusr/ast/mbox
usr yields Jusr is in is i-node Jusr/ast is in is i-node
i-node 6 block 132 26 block 406 60

Fig. 4-16. The steps in looking up /usr/ast/mbox.

m A directory is a table of entries:
® 2 bytes — inumber
® 14 bytes — file name (improved in BSD
4.2 and later)

m Search to find the file begins with either
root, or the current working directory

® Inode 2 points to the root directory (“/”)

® Example above shows lookup of
/usr/ast/mbox

Fall 2007, Chapter 11

Working with Directories (Links)
in UNIX

m UNIX supports “links” — two directories
containing the same file

® Think of “shortcuts” in Windows, or
“aliases” in the Macintosh OS

m Hard links (“ In target_file directory”)

® Specified directory refers to the target file
m Both directories point to same inode

m Soft / symbolic links
(“ In —s target_file directory”)

® Adds a pointer to the target file (or target
directory) from the specified directory

m Special bit is set in inode, and the file just
contains the name of the file it’s linked to

m View symbolic links with “Is —F” and “Is —I’

® Can link across disk drives

@ Similar to linking in Windows / Mac OS

9 Fall 2007, Chapter 11

Organization of Files
(Contiguous Allocation)

@ File Allocation Table
FileName StartBlock Length |

FileA :

o1 1[0 20 s +J HeA 2 3

FileC 18 8

s e[J7[JsJ oM FileD 30 2

FileB FileE 2% 3

o B I 2 o s

15016 [1[0 0[]
FileC

o[2 [20 s » [
FileE

2[00 2~ 2 I)

FileD
o[[2 [(%]

FIGURE 11.7 Contiguous file allocation

Diagram from Operating Systems, William Stallings, Prentice Hall, 1995.

m OS keeps an ordered list of free blocks

® Allocates contiguous groups of blocks
when it creates a file

® File descriptor must store start block and
length of file

10 Fall 2007, Chapter 11

Organization of Files
(Linked / Chained Allocation)

@ File Allocation Table

"]
FileB File Name Start Block Length |
1@ E ,

FileB 1 5

o Ju e[][] ¥
15 Jwe[_Jw[_Jws[_Jw[]
20 Ja[]2 J2a Ju[]
25 J26[Jor[_] 28 [FE 9 |
o [a2][34]

~—N

FIGURE 11.9 Chained allocation

Diagram from Operating Systems, William Stallings, Prentice Hall, 1995.

m OS keeps an ordered list of free blocks
® File descriptor stores pointer to first block

® Each block stores pointer to next block

m File-Allocation Table variation keeps all
pointers in one table

11 Fall 2007, Chapter 11

Organization of Files
(Indexed Allocation)

File Allocation Table
File Name Index Block

FileB 24

—

30 Ja[__J32[][Jae[]

FIGURE 11.11 Indexed allocation with block portions

Diagram from Operating Systems, William Stallings, Prentice Hall, 1995.

m OS keeps a list of free blocks

® OS allocates an array (called the index
block) to hold pointers to all the blocks
used by the file

@ Allocates blocks only on demand

® File descriptor points to this array

12 Fall 2007, Chapter 11

Organization of Files
(Multilevel Indexed Allocation)

m Used in UNIX (numbers below are for
traditional UNIX, BSD UNIX 4.1)

m Each inode (file descriptor) contains 13
block pointers

@ First 10 pointers point to data blocks
(each 512 bytes long) of a file

m If the file is bigger than 10 blocks (5,120
bytes), the 11th pointer points to a single
indirect block, which contains 128 pointers
to 128 more data blocks (can support files
up to 70,656 bytes)

— If the file is bigger than that, the 12th
pointer points to a double indirect block,
which contains 128 pointers to 128 more
single indirect blocks (can support files up
to 8,459,264 bytes)

» [f the file is bigger than that, the 13th
pointer points to a triple indirect block,
which contains 128 pointers to 128
more double indirect blocks

® Max file size is 1,082,201,087 bytes

13 Fall 2007, Chapter 11

Organization of Files
(Multilevel Indexed Allocation) (cont.)

I'node Single

Attributes indirect Double
1 block indirect block

Addresses of

Triple indirect data blocks
g block

Disk
addresses

Diagram from Modern Operating Systems, Andrew Tanenbaum, Prentice Hall, 1992.

m BSD UNIX 4.2, 4.3:
@ Maximum block size is 4096 bytes

® Inode contains 14 block pointers
m 12 to data

m 13 to single indirect block containing 1024
pointers, 14 to double indirect block...

@ Max file size is 232 bytes

14 Fall 2007, Chapter 11

Improving Performance with
Good Block Management

m OS usually keeps track of free blocks on
the disk using a bit map

® A bit map is just an array of bits
m 1 means the block is free,
m 0 means the block is allocated to a file

® For a 12 GB drive, there are about
3,070,000 4KB blocks, so a bit map takes
up 384 KB (usually kept in memory)

m Try to allocate the next block of the file
close to the previous block

® Works well if disk isn’t full

o If disk is full, this is doesn’t work well

m Solution — keep some space (about 10%
of the disk) in reserve, and don't tell users;
never let disk get more than 90% full

m With multiple platters / surfaces, there are
many possibilities (one surface is as good
as another), so the block can usually be
allocated close to the previous one

15 Fall 2007, Chapter 11

