
1 Fall 2007, Chapter 11

Disk Hardware

Diagram from Computer Science, Volume 2, J. Stanley Warford, Heath, 1991.

! Arm can move in and out

! Read / write head can access a ring of
data as the disk rotates

! Disk consists of one or more platters

! Each platter is divided into rings of data,
called tracks, and each track is divided
into sectors

! One particular platter, track, and sector is
called a block

2 Fall 2007, Chapter 11

Data Structures for Files

! Every file is described by a file
descriptor, which may contain (varies

with OS):

! Type

! Size

! Access times — when created, last
accessed, last modified

! Owner, group

! Access permissions — read, write, etc.

! Link count — number of directories that
contain this file

! Blocks where file is located on disk

! Not included:

! Name of file

3 Fall 2007, Chapter 11

OS Data Structures for Files

! Open file table (one, belongs to OS)

! Lists all open files

! Each entry contains:

! A file descriptor

! Open count — number of processes that

have the file open

! Per-process file table (many)

! List all open files for that process

! Each entry contains:

! Pointer to entry in open file table

! Current position (offset) in file

position

Per-Process
File Table

position

Per-Process
File Table

count

Open
File Table

file descrip.

count file descrip.position

4 Fall 2007, Chapter 11

UNIX Data Structures for Files

! Active Inode table (one, belongs to OS)

! Lists all active inodes (file descriptors)

! Open file table (one, belongs to OS)

! Each entry contains:

! Pointer to entry in active inode table

! Current position (offset) in file

! Per-process file table (many)

! Each entry contains:

! Pointer to entry in open file table

Per-Process
File Table

Per-Process
File Table

I/O pointer

Open
File Table

I/O pointer

I/O pointer

Inode

Active
I-node Table

Inode

5 Fall 2007, Chapter 11

UNIX File System

! A file descriptor (inode) represents a file

! All inodes are stored on the disk in a
fixed-size array called the ilist

! The size of the ilist array is determined

when the disk is initialized

! The index of a file descriptor in the array is

called its inode number, or inumber

! Inodes for active files are also cached in
memory in the active inode table

! A UNIX disk may be divided into
partitions, each of which contains:

! Blocks for storing directories and files

! Blocks for storing the ilist

! Inodes corresponding to files

! Some special inodes

– Boot block — code for booting the system

– Super block — size of disk, number of free

blocks, list of free blocks, size of ilist,

number of free inodes in ilist, etc.

6 Fall 2007, Chapter 11

UNIX File System (cont.)

! High-level view:

! Low-level view:

Diagram from Advanced Programming in the UNIX Environment, W. Richard Stevens,

Addison Wesley, 1992.

disk drive

partition partition

directory blocks and file data blocks
boot

blocks
super-
block

ilist

inode inode inode inode inode

7 Fall 2007, Chapter 11

Working with Directories in UNIX

(Think about how this compares to Windows

or to the Macintosh OS)

! UNIX keeps track of the inode number of

current working directory for each
process; directory searches begin there

! However, a file can also be specified as

the full pathname from the “root”

! If filename begins with “ / ”, start at root of
the file system tree (inode 2)

! Other characters have special meaning:

! If filename begins with “ ~ ”, start at the
user!s home directory

! If filename begins with “ . ”, start at the
current working directory

! If filename begins with “ .. ”, start at the
parent directory

8 Fall 2007, Chapter 11

Working with Directories (Lookup)

! A directory is a table of entries:

! 2 bytes — inumber

! 14 bytes — file name (improved in BSD
4.2 and later)

! Search to find the file begins with either

root, or the current working directory

! Inode 2 points to the root directory (“ / ”)

! Example above shows lookup of
/usr/ast/mbox

9 Fall 2007, Chapter 11

Working with Directories (Links)
in UNIX

! UNIX supports “links” — two directories

containing the same file

! Think of “shortcuts” in Windows, or
“aliases” in the Macintosh OS

! Hard links (“ ln target_file directory ”)

! Specified directory refers to the target file

! Both directories point to same inode

! Soft / symbolic links

(“ ln –s target_file directory ”)

! Adds a pointer to the target file (or target
directory) from the specified directory

! Special bit is set in inode, and the file just

contains the name of the file it!s linked to

! View symbolic links with “ls –F” and “ls –l”

! Can link across disk drives

! Similar to linking in Windows / Mac OS

10 Fall 2007, Chapter 11

Organization of Files
(Contiguous Allocation)

Diagram from Operating Systems, William Stallings, Prentice Hall, 1995.

! OS keeps an ordered list of free blocks

! Allocates contiguous groups of blocks
when it creates a file

! File descriptor must store start block and
length of file

11 Fall 2007, Chapter 11

Organization of Files
(Linked / Chained Allocation)

Diagram from Operating Systems, William Stallings, Prentice Hall, 1995.

! OS keeps an ordered list of free blocks

! File descriptor stores pointer to first block

! Each block stores pointer to next block

! File-Allocation Table variation keeps all
pointers in one table

12 Fall 2007, Chapter 11

Organization of Files
(Indexed Allocation)

Diagram from Operating Systems, William Stallings, Prentice Hall, 1995.

! OS keeps a list of free blocks

! OS allocates an array (called the index
block) to hold pointers to all the blocks
used by the file

! Allocates blocks only on demand

! File descriptor points to this array

13 Fall 2007, Chapter 11

Organization of Files
(Multilevel Indexed Allocation)

! Used in UNIX (numbers below are for

traditional UNIX, BSD UNIX 4.1)

! Each inode (file descriptor) contains 13

block pointers

! First 10 pointers point to data blocks
(each 512 bytes long) of a file

! If the file is bigger than 10 blocks (5,120

bytes), the 11th pointer points to a single
indirect block, which contains 128 pointers

to 128 more data blocks (can support files

up to 70,656 bytes)

– If the file is bigger than that, the 12th

pointer points to a double indirect block,

which contains 128 pointers to 128 more

single indirect blocks (can support files up

to 8,459,264 bytes)

» If the file is bigger than that, the 13th

pointer points to a triple indirect block,

which contains 128 pointers to 128

more double indirect blocks

! Max file size is 1,082,201,087 bytes

14 Fall 2007, Chapter 11

Organization of Files
(Multilevel Indexed Allocation) (cont.)

Diagram from Modern Operating Systems, Andrew Tanenbaum, Prentice Hall, 1992.

! BSD UNIX 4.2, 4.3:

! Maximum block size is 4096 bytes

! Inode contains 14 block pointers

! 12 to data

! 13 to single indirect block containing 1024

pointers, 14 to double indirect block…

! Max file size is 232 bytes

15 Fall 2007, Chapter 11

Improving Performance with
Good Block Management

! OS usually keeps track of free blocks on

the disk using a bit map

! A bit map is just an array of bits

! 1 means the block is free,

! 0 means the block is allocated to a file

! For a 12 GB drive, there are about
3,070,000 4KB blocks, so a bit map takes
up 384 KB (usually kept in memory)

! Try to allocate the next block of the file

close to the previous block

! Works well if disk isn!t full

! If disk is full, this is doesn!t work well

! Solution — keep some space (about 10%

of the disk) in reserve, and don!t tell users;

never let disk get more than 90% full

! With multiple platters / surfaces, there are

many possibilities (one surface is as good

as another), so the block can usually be

allocated close to the previous one

