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(a) A hard disk drive. (b) A single disk.

Diagram from Computer Science, Volume 2, J. Stanley Warford, Heath, 1991.

m Arm can move in and out

® Read / write head can access a ring of
data as the disk rotates

m Disk consists of one or more platters

® Each platter is divided into rings of data,
called tracks, and each track is divided
into sectors

® One particular platter, track, and sector is
called a block
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Data Structures for Files

m Every file is described by a file
descriptor, which may contain (varies
with OS):

® Type
® Size

® Access times — when created, last
accessed, last modified

@ Owner, group
® Access permissions — read, write, etc.

® Link count — number of directories that
contain this file

® Blocks where file is located on disk

m Not included:

® Name of file
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OS Data Structures for Files

Per-Process Per-Process Open
File Table File Table File Table
position | —| position ‘ vount‘file descrip.

position ‘ count‘file descrip.

m Open file table (one, belongs to OS)
@ Lists all open files

® Each entry contains:
m A file descriptor
m Open count — number of processes that

have the file open
m Per-process file table (many)
@ List all open files for that process

® Each entry contains:
m Pointer to entry in open file table
m Current position (offset) in file
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UNIX Data Structures for Files

Per-Process Per-Process Open Active
File Table File Table File Table I-node Table
1/0 pointer Inode
P 1/ pointer| —
| 1/0 pointer I— Inode

m Active Inode table (one, belongs to OS)

@ Lists all active inodes (file descriptors)

m Open file table (one, belongs to OS)
® Each entry contains:
m Pointer to entry in active inode table
m Current position (offset) in file
m Per-process file table (many)

® Each entry contains:
m Pointer to entry in open file table
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UNIX File System

m A file descriptor (inode) represents a file

® All inodes are stored on the disk in a
fixed-size array called the Jlist

m The size of the ilist array is determined
when the disk is initialized

m The index of a file descriptor in the array is
called its inode number, or inumber

@ Inodes for active files are also cached in
memory in the active inode table

m A UNIX disk may be divided into
partitions, each of which contains:

® Blocks for storing directories and files

® Blocks for storing the ilist
m Inodes corresponding to files
m Some special inodes
— Boot block — code for booting the system

— Super block — size of disk, number of free
blocks, list of free blocks, size of ilist,
number of free inodes in ilist, etc.
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UNIX File System (cont.)

m High-level view:

disk drive
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m Low-level view:
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Diagram from Advanced Programming in the UNIX Environment, W. Richard Stevens,

Addison Wesley, 1992.
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Working with Directories in UNIX

(Think about how this compares to Windows
or to the Macintosh OS)

m UNIX keeps track of the inode number of
current working directory for each
process; directory searches begin there

m However, a file can also be specified as
the full pathname from the “root”

o If flename begins with “/”, start at root of
the file system tree (inode 2)

m Other characters have special meaning:

o If flename begins with “ ~ 7, start at the
user’s home directory

o If flename begins with “.
current working directory

, start at the

o If flename begins with “ .. ”, start at the
parent directory
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Working with Directories (Lookup)

Block 132 I-node 26 Block 406
I-node 6 is /usr is for is /usr/ast
Root directory is for /usr directory Jusr/ast directory
1] mode 6| mode 26|
1 .. _size 1| oo size 6| o
4 | bin times 19| dick times 64 | arants
7 dev 132 30| erik 406 92 | books
14 lib 51 jim 60 | mbox
9 | etc 26| ast 81 [ minix
6 usr 45| bal 17 | src
8| tmp I-node 6 I-node 26
Looking up says that Jusr/ast says that lusr/ast/mbox
usr yields Jusr is in is i-node Jusr/ast is in is i-node
i-node 6 block 132 26 block 406 60

Fig. 4-16. The steps in looking up /usr/ast/mbox.

m A directory is a table of entries:
® 2 bytes — inumber
® 14 bytes — file name (improved in BSD
4.2 and later)

m Search to find the file begins with either
root, or the current working directory

® Inode 2 points to the root directory (“/”)

® Example above shows lookup of
/usr/ast/mbox
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Working with Directories (Links)
in UNIX

m UNIX supports “links” — two directories
containing the same file

® Think of “shortcuts” in Windows, or
“aliases” in the Macintosh OS

m Hard links (“ In target_file directory”)

® Specified directory refers to the target file
m Both directories point to same inode

m Soft / symbolic links
(“ In —s target_file directory”)

® Adds a pointer to the target file (or target
directory) from the specified directory

m Special bit is set in inode, and the file just
contains the name of the file it’s linked to

m View symbolic links with “Is —F” and “Is —I’

® Can link across disk drives

@ Similar to linking in Windows / Mac OS
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Organization of Files
(Contiguous Allocation)

@ File Allocation Table
FileName StartBlock  Length |

FileA :

o1 1[0 20 s +J HeA 2 3

FileC 18 8

s e[ J7[JsJ oM FileD 30 2

FileB FileE 2% 3

o B I 2 o s

15016 [ 1[0 0[]
FileC

o[ 2 [ 20 s » [
FileE

2[00 2~ 2 I )

FileD
o[ [ 2 [ (%]

FIGURE 11.7 Contiguous file allocation

Diagram from Operating Systems, William Stallings, Prentice Hall, 1995.

m OS keeps an ordered list of free blocks

® Allocates contiguous groups of blocks
when it creates a file

® File descriptor must store start block and
length of file
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Organization of Files
(Linked / Chained Allocation)

@ File Allocation Table

" ]
FileB File Name  Start Block Length |
1@ E ,

FileB 1 5

o Ju e[ ][] ¥
15 Jwe[_Jw[_Jws[_Jw[ ]
20 Ja[ ]2 J2a Ju[ ]
25 J26[ Jor[_ ] 28 [FE 9 |
o [ a2 ][ 34 ]

~—N

FIGURE 11.9 Chained allocation

Diagram from Operating Systems, William Stallings, Prentice Hall, 1995.

m OS keeps an ordered list of free blocks
® File descriptor stores pointer to first block

® Each block stores pointer to next block

m File-Allocation Table variation keeps all
pointers in one table
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Organization of Files
(Indexed Allocation)

File Allocation Table
File Name Index Block

FileB 24

—

30 Ja[__J32[ ][ Jae[ ]

FIGURE 11.11 Indexed allocation with block portions

Diagram from Operating Systems, William Stallings, Prentice Hall, 1995.

m OS keeps a list of free blocks

® OS allocates an array (called the index
block) to hold pointers to all the blocks
used by the file

@ Allocates blocks only on demand

® File descriptor points to this array
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Organization of Files
(Multilevel Indexed Allocation)

m Used in UNIX (numbers below are for
traditional UNIX, BSD UNIX 4.1)

m Each inode (file descriptor) contains 13
block pointers

@ First 10 pointers point to data blocks
(each 512 bytes long) of a file

m If the file is bigger than 10 blocks (5,120
bytes), the 11th pointer points to a single
indirect block, which contains 128 pointers
to 128 more data blocks (can support files
up to 70,656 bytes)

— If the file is bigger than that, the 12th
pointer points to a double indirect block,
which contains 128 pointers to 128 more
single indirect blocks (can support files up
to 8,459,264 bytes)

» [f the file is bigger than that, the 13th
pointer points to a triple indirect block,
which contains 128 pointers to 128
more double indirect blocks

® Max file size is 1,082,201,087 bytes
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Organization of Files
(Multilevel Indexed Allocation) (cont.)

I'node Single

Attributes indirect Double
1 block indirect block

Addresses of

Triple indirect data blocks
g block

Disk
addresses

Diagram from Modern Operating Systems, Andrew Tanenbaum, Prentice Hall, 1992.

m BSD UNIX 4.2, 4.3:
@ Maximum block size is 4096 bytes

® Inode contains 14 block pointers
m 12 to data

m 13 to single indirect block containing 1024
pointers, 14 to double indirect block...

@ Max file size is 232 bytes
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Improving Performance with
Good Block Management

m OS usually keeps track of free blocks on
the disk using a bit map

® A bit map is just an array of bits
m 1 means the block is free,
m 0 means the block is allocated to a file

® For a 12 GB drive, there are about
3,070,000 4KB blocks, so a bit map takes
up 384 KB (usually kept in memory)

m Try to allocate the next block of the file
close to the previous block

® Works well if disk isn’t full

o If disk is full, this is doesn’t work well

m Solution — keep some space (about 10%
of the disk) in reserve, and don't tell users;
never let disk get more than 90% full

m With multiple platters / surfaces, there are
many possibilities (one surface is as good
as another), so the block can usually be
allocated close to the previous one
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