
Eccentricity Approximating Trees ⋆

Feodor F. Dragan1, Ekkehard Köhler2, and Hend Alrasheed1
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Abstract. Using the characteristic property of chordal graphs that they are the intersection graphs
of subtrees of a tree, Erich Prisner showed that every chordal graph admits an eccentricity 2-
approximating spanning tree. That is, every chordal graph G has a spanning tree T such that
eccT (v) − eccG(v) ≤ 2 for every vertex v, where eccG(v) (eccT (v)) is the eccentricity of a vertex
v in G (in T , respectively). Using only metric properties of graphs, we extend that result to a much
larger family of graphs containing among others chordal graphs, the underlying graphs of 7-systolic
complexes and plane triangulations with inner vertices of degree at least 7. Furthermore, based on
our approach, we propose two heuristics for constructing eccentricity k-approximating trees with
small values of k for general unweighted graphs. We validate those heuristics on a set of real-world
networks and demonstrate that all those networks have very good eccentricity approximating trees.

1 Introduction

All graphs G = (V,E) occurring in this paper are connected, finite, unweighted, undirected,
loopless and without multiple edges. The length of a path from a vertex v to a vertex u is the
number of edges in the path. The distance dG(u, v) between two vertices u and v is the length
of a shortest path connecting u and v in G. If no confusion arises, we will omit subindex G. The
interval I(u, v) between u and v consists of all vertices on shortest (u, v)-paths, that is, it consists
of all vertices (metrically) between u and v: I(u, v) = {x ∈ V : dG(u, x) + dG(x, v) = dG(u, v)}.
The eccentricity eccG(v) of a vertex v in G is defined by maxu∈V dG(u, v), i.e., it is the distance
to a most distant vertex. The diameter of a graph is the maximum over the eccentricities of all
vertices: diam(G) = maxu∈V eccG(u) = maxu,v∈V dG(u, v). The radius of a graph is the minimum
over the eccentricities of all vertices: rad(G) = minu∈V eccG(u). The set of vertices with minimum
eccentricity forms the center C(G) of a graph G, i.e., C(G) = {u ∈ V : eccG(u) = rad(G)}.

A spanning tree T of a graph G with dT (u, v) − dG(u, v) ≤ k, for all u, v ∈ V, is known as
an additive tree spanner of G [18] and, if it exists for a small integer k, then it gives a good
approximation of all distances in G by the distances in T . Many optimization problems involving
distances in graphs are known to be NP-hard in general but have efficient solutions in simpler
metric spaces, with well-understood metric structures, including trees. A solution to such an
optimization problem obtained for a tree spanner T of G usually serves as a good approximate
solution to the problem in G.

E. Prisner in [29] introduced the new notion of eccentricity approximating spanning trees.
A spanning tree T of a graph G is called an eccentricity k-approximating spanning tree if
eccT (v)− eccG(v) ≤ k holds for all v ∈ V . Such a tree tries to approximately preserve only dis-
tances from each vertex v to its most distant vertices and can tolerate larger increases to nearby

⋆ Results of this paper were partially presented at the WG’16 conference
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vertices. They are important in applications where vertices measure their degree of centrality by
means of their eccentricity and would tolerate a small surplus to the actual eccentricities [29].
Note also that Nandakumar and Parthasarasthy considered in [24] eccentricity-preserving span-
ning trees (i.e., eccentricity 0-approximating spanning trees) and showed that a graph G has an
eccentricity 0-approximating spanning tree if and only if: (a) either diam(G) = 2rad(G) and
|C(G)| = 1, or diam(G) = 2rad(G) − 1, |C(G)| = 2, and those two center vertices are adjacent;
(b) every vertex u ∈ V \ C(G) has a neighbor v such that eccG(v) < eccG(u).

Every additive tree k-spanner is clearly eccentricity k-approximating. Therefore, eccentricity
k-approximating spanning trees can be found in every interval graph for k = 2 [18, 20, 28], and
in every asteroidal-triple–free graph [18], strongly chordal graph [7] and dually chordal graph [7]
for k = 3. On the other hand, although for every k there is a chordal graph without a tree
k-spanner [18, 28], yet as Prisner demonstrated in [29], every chordal graph has an eccentricity 2-
approximating spanning tree, i.e., with the slightly weaker concept of eccentricity-approximation,
one can be successful even for chordal graphs.

Unfortunately, the method used by Prisner in [29] heavily relies on a characteristic property
of chordal graphs (chordal graphs are exactly the intersection graphs of subtrees of a tree) and is
hardly extendable to larger families of graphs.

In this paper we present a new proof of the result of [29] using only metric properties of chordal
graphs. This allows us to extend the result to a much larger family of graphs which includes not
only chordal graphs but also other families of graphs known from the literature.

It is known [9, 33] that every chordal graph satisfies the following two metric properties:

α1-metric: if v ∈ I(u,w) and w ∈ I(v, x) are adjacent, then dG(u, x) ≥ dG(u, v)+dG(v, x)−1 =
dG(u, v) + dG(w, x).

triangle condition: for any three vertices u, v, w with 1 = dG(v,w) < dG(u, v) = dG(u,w) there
exists a common neighbor x of v and w such that dG(u, x) = dG(u, v)− 1.

A graph G satisfying the α1-metric property is called an α1-metric graph.1 If an α1-metric
graph G satisfies also the triangle condition then G is called an (α1,∆)-metric graph. We prove
that every (α1,∆)-metric graph G = (V,E) has an eccentricity 2-approximating spanning tree
and that such a tree can be constructed in O(|V ||E|) total time. As a consequence, we get that
the underlying graph of every 7-systolic complex (and, hence, every plane triangulation with
inner vertices of degree at least 7 and every chordal graph) has an eccentricity 2-approximating
spanning tree.

The paper is organized as follows. In Section 2, we present additional notions and notations
and some auxiliary results. In Section 3, some useful properties of the eccentricity function on
(α1,∆)-metric graphs are described. Our eccentricity approximating spanning tree is constructed
and analyzed in Section 4. In Section 5, the algorithm for the construction of an eccentricity
approximating spanning tree developed in Section 4 for (α1,∆)-metric graphs is generalized and
validated on some real-world networks. Our experiments show that all those real-world networks
have very good eccentricity approximating trees. Section 6 concludes the paper with a few open
questions.

1 A more general concept of αi-metric was introduced in [33], however, in this paper, we are interested only in the
case when i = 1.
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2 Preliminaries

For a graph G = (V,E), we use n = |V | and m = |E| to denote the cardinality of the vertex set
and the edge set of G. We denote an induced cycle of length k by Ck (i.e., it has k vertices) and by
Wk an induced wheel of size k which is a Ck with one extra vertex universal to Ck. For a vertex v
of G, NG(v) = {u ∈ V : uv ∈ E} is called the open neighborhood, and NG[v] = NG(v) ∪ {v}
the closed neighborhood of v. The distance between a vertex v and a set S ⊆ V is defined as
dG(v, S) = minu∈S dG(u, v) and the set of furthest (most distant) vertices from v is denoted by
F (v) = {u ∈ V : dG(u, v) = eccG(v)}.

An induced subgraph of G (or the corresponding vertex set A) is called convex if for each
pair of vertices u, v ∈ A it includes the interval I(v, u) of G between u, v. An induced subgraph
H of G is called isometric if the distance between any pair of vertices in H is the same as their
distance in G. In particular, convex subgraphs are isometric. The disk D(x, r) with center x and
radius r ≥ 0 consists of all vertices of G at distance at most r from x. In particular, the unit disk
D(x, 1) = N [x] comprises x and the neighborhood N(x). For an edge e = xy of a graph G, let
D(e, r) := D(x, r) ∪D(y, r).

By the definition of α1-metric graphs clearly, such a graph cannot contain any isometric cycles
of length k > 5 and any induced cycle of length 4. The following results characterize α1-metric
graphs and the class of chordal graphs within the class of α1-metric graphs. Recall that a graph
is chordal if all its induced cycles are of length 3.

Theorem 1 ([33]). G is a chordal graph if and only if it is an α1-metric graph not containing
any induced subgraphs isomorphic to cycle C5 and wheel Wk, k ≥ 5.

Theorem 2 ([33]). G is an α1-metric graph if and only if all disks D(v, k) (v ∈ V , k ≥ 1) of G
are convex and G does not contain the graph W++

6 (see Fig. 1) as an isometric subgraph.

Fig. 1. Forbidden isometric subgraph W++
6 .

Theorem 3 ([15, 30]). All disks D(v, k) (v ∈ V , k ≥ 1) of a graph G are convex if and only if
G does not contain isometric cycles of length k > 5, and for any two vertices x, y the neighbors
of x in the interval I(x, y) are pairwise adjacent.

A graph G is called a bridged graph if all isometric cycles of G have length three [15]. The
class of bridged graphs is a natural generalization of the class of chordal graphs. They can be
characterized in the following way.

Theorem 4 ([15, 30]). G = (V,E) is a bridged graph if and only if the disks D(v, k) and D(e, k)
are convex for all v ∈ V , e ∈ E, and k ≥ 1.

As a consequence of Theorem 2, Theorem 3 and Theorem 4 we obtain the following equiva-
lences.
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Lemma 1. For a graph G = (V,E) the following statements are equivalent:

(a) G is an α1-metric graph not containing an induced C5;
(b) G is a bridged graph not containing W++

6 as an isometric subgraph;
(c) The disks D(v, k) and D(e, k) of G are convex for all v ∈ V , e ∈ E, and k ≥ 1, and G does

not contain W++
6 as an isometric subgraph.

Proof. By Theorem 2, if G is an α1-metric graph then all disks D(v, k) (v ∈ V , k ≥ 1) of G
are convex and G does not contain the graph W++

6 as an isometric subgraph. If, in addition, G
does not contain induced subgraphs isomorphic to C5 then, by Theorem 3, G is a bridged graph.
Hence, (a) implies (b). Also, (b) implies (c), by Theorem 4, and (c) implies (a), by Theorem 2
and since a graph where D(e, 1) is convex for each e ∈ E cannot contain an induced C5. ⊓⊔

As we will show now the class of (α1,∆)-metric graphs contains all graphs described in
Lemma 1. An induced C5 is called suspended in G if there is a vertex in G which is adjacent to
all vertices of the C5.

Theorem 5. A graph G is (α1,∆)-metric if and only if it is an α1-metric graph where for each
induced C5 there is a vertex v ∈ V such that C5 ⊆ N(v), i.e., every induced C5 is suspended.

Proof. Consider an induced C5 = (a, b, c, d, e) in an (α1,∆)-metric graph G. By the triangle
condition, for vertex a and edge cd of the C5, there must exist a vertex v such that a, c, d ∈ N(v).
As G is α1-metric it cannot have an induced C4. Thus v must be adjacent to e and b as well.

Consider now an edge xy and a vertex v in an α1-metric graph where each induced C5 is
suspended. Let d(x, v) = d(y, v) = k. Consider an arbitrary neighbor x′ of x in I(v, x) and an
arbitrary neighbor y′ of y in I(v, y). Assume x′y /∈ E and y′x /∈ E (otherwise, there is nothing
to prove). Since x ∈ I(x′, y) and y ∈ I(y′, x), by the α1-metric property, d(x′, y′) ≥ 2 must hold.
On the other hand, since the path (x′, x, y, y′) connecting vertices x′ and y′ of disk D(v, k − 1)
has vertices outside the disk, by the convexity of disks of G (see Theorem 2), d(x′, y′) ≤ 2 must
hold. Thus, d(x′, y′) = 2 and I(x′, y′) ⊆ D(v, k − 1). Consider a common neighbor v′ of x′ and
y′ in G. Necessarily, v′ ∈ D(v, k − 1). To avoid an induced cycle of length 4 in G, either v′ must
be adjacent to both x and y (and we are done) or x, y, y′, v′, x′ form an induced C5. In the latter
case, a vertex w, which suspends this C5, is adjacent to both x and y and is in I(x′, y′) and,
therefore, in D(v, k − 1). ⊓⊔

We will also need the following fact.

Lemma 2. Let G = (V,E) be an (α1,∆)-metric graph, let K be a complete subgraph of G, and
let v be a vertex of G. If for every vertex z ∈ K, d(z, v) = k holds, then there is a vertex v′ at
distance k − 1 from v which is adjacent to every vertex of K.

Proof. Consider a vertex x at distance k−1 from v which is adjacent to the maximum number of
vertices of K. Assume that a vertex u ∈ K exists which is not adjacent to x. Consider a neighbor
y of u in I(u, v). By the choice of x, since yu ∈ E and xu /∈ E, there must exist a vertex w ∈ K
such that xw ∈ E and yw /∈ E. By the α1-metric property, applied to w ∈ I(x, u) and u ∈ I(w, y),
we obtain d(x, y) ≥ 2. Then, by the convexity of D(v, k−1), vertices y and x must be at distance
2 and any vertex v′ from N(x) ∩N(y) must be in D(v, k − 1). We claim that at least one vertex
v∗ ∈ N(x) ∩ N(y) exists which is adjacent to both w and u. Since G cannot have a C4 as an
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induced subgraph, if v′ from N(x) ∩N(y) is adjacent to one of {w, u} then it must be adjacent
to the other one as well. Assume v′w, v′u /∈ E. Then, by the triangle condition, there must exist
a vertex v∗ which is adjacent to v′, w, u and, since any induced C4 is forbidden, v∗ has to be
adjacent to x, y. Thus, v∗ is at distance k− 1 from v and adjacent to both w and u. Furthermore,
every neighbor z of x in K must be adjacent to v∗ as well, since 4-cycle (z, u, v∗, x, z) cannot be
induced. Thus, v∗ is adjacent to more vertices of K than x is, which is a contradiction. ⊓⊔

We note here, without going into the rich theory of systolic complexes, that the underlying
graph of any 7-systolic complex is nothing else than a bridged graph not containing a 6-wheel
W6 as an induced (equivalently, isometric) subgraph (see [11] for this fact and a relation of
7-systolic complexes with CAT(0) complexes). Hence, the class of (α1,∆)-metric graphs contains
the underlying graphs of 7-systolic complexes and hence all plane triangulations with inner vertices
of degree at least 7 [11] (vertices that are not on the outerface are called inner vertices).

3 Eccentricity function on (α1, ∆)-metric graphs

In what follows, by C(G) we denote not only the set of all central vertices of G but also the
subgraph of G induced by this set. We say that the eccentricity function eccG(v) on G is unimodal
if every vertex u ∈ V \C(G) has a neighbor v such that eccG(v) < eccG(u). In other words, every
local minimum of the eccentricity function eccG(v) is a global minimum on G. It this section we
will often omit subindex G since we deal only with a graph G here. A spanning tree T of G will
be built only in the next section.

In this section, we will show that the eccentricity function eccG(v) on an (α1,∆)-metric graph
G is almost unimodal and that the radius of the center C(G) of G is at most 2.

Lemma 3. Let G be an α1-metric graph and x be its arbitrary vertex with ecc(x) ≥ rad(G) + 1.
Then, for every vertex z ∈ F (x) and every neighbor v of x in I(x, z), ecc(v) ≤ ecc(x) holds.

Proof. Assume, by way of contradiction, that ecc(v) > ecc(x) and consider an arbitrary vertex
u ∈ F (v). Since x and v are adjacent, necessarily, d(v, u) = ecc(v) = ecc(x)+ 1 = d(u, x)+ 1, i.e.,
x ∈ I(v, u). By the α1-metric property,

d(u, z) ≥ d(u, x) + d(v, z) = ecc(v) − 1 + ecc(x) − 1 = 2ecc(x) − 1 ≥ 2rad(G) + 1.

The latter gives a contradiction to d(u, z) ≤ diam(G) ≤ 2rad(G). ⊓⊔

Recall that for every graph G, diam(G) ≤ 2rad(G) holds.

Theorem 6. Let G be an (α1,∆)-metric graph and x be an arbitrary vertex of G. If

(i) ecc(x) > rad(G) + 1 or
(ii) ecc(x) = rad(G) + 1 and diam(G) < 2rad(G),

then there must exist a neighbor v of x with ecc(v) < ecc(x).

Proof. For every neighbor v of x, we define the set Sv as the most distant vertices from x which
have v on their shortest path from x. Formally,

Sv := {z ∈ F (x) : v ∈ I(x, z)}.
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Choose a neighbor v of x which maximizes |Sv|. We claim that ecc(v) < ecc(x). We know,
by Lemma 3, that ecc(v) ≤ ecc(x). Assume ecc(v) = ecc(x) and consider an arbitrary vertex
u ∈ F (v).

Suppose first that x ∈ I(v, u). Then, d(u, z) ≥ d(u, x) + d(v, z) = 2ecc(x) − 2 holds for every
z ∈ Sv by the α1-metric property. Hence, if ecc(x) > rad(G)+1 then d(u, z) > 2rad(G) and thus a
contradiction to d(u, z) ≤ diam(G) ≤ 2rad(G) arises. If, on the other hand, case (ii) applies, i.e.,
ecc(x) = rad(G) + 1 and diam(G) < 2rad(G), then it follows that d(u, z) ≥ 2rad(G) > diam(G)
and again a contradiction arises.

Now consider the case that x /∈ I(v, u). Then ecc(v) = ecc(x) implies that d(u, x) = d(u, v)
and u ∈ F (x). By the triangle condition, there must exist a common neighbor w of x and v
such that w ∈ I(x, u) ∩ I(v, u). Since u belongs to Sw but not to Sv, then, by the maximality of
|Sv|, there must exist a vertex z ∈ F (x) which is in Sv but not in Sw. Thus, d(w, z) > d(v, z)
and v ∈ I(w, z) must hold. Now, the α1-metric property applied to v ∈ I(w, z) and w ∈ I(v, u)
gives d(u, z) ≥ d(u,w) + d(v, z) = 2ecc(x) − 2. As before we get d(u, z) > 2rad(G) ≥ diam(G),
if ecc(x) > rad(G) + 1 (case (i)), and d(u, z) ≥ 2rad(G) > diam(G), if ecc(x) = rad(G) + 1 and
diam(G) < 2rad(G) (case (ii)). These contradictions complete the proof. ⊓⊔

Note that the requirement in Theorem 6 that G satisfies the triangle condition cannot be
removed. The statement is not true for arbitrary α1-metric graphs (see Fig. 2).

Fig. 2. An α1-metric graph G with rad(G) = 2, diam(G) = 3 < 2rad(G), and with a vertex of eccentricity
3 = rad(G) + 1 that has no neighbor with smaller eccentricity. The numbers next to vertices show their eccen-
tricities.

For each vertex v ∈ V \ C(G) of a graph G we can define a parameter

loc(v) = min{d(v, x) : x ∈ V, ecc(x) < ecc(v)}

and call it the locality of v. We define the locality of any vertex from C(G) to be 1. Theorem 6 says
that if a vertex v with loc(v) > 1 exists in an (α1,∆)-metric graph G then diam(G) = 2rad(G)
and ecc(v) = rad(G) + 1. That is, only in the case that diam(G) = 2rad(G) the eccentricity
function can be not unimodal on G.

Observe that the center C(G) of a graph G = (V,E) can be represented as the intersection
of all the disks of G of radius rad(G), i.e., C(G) =

⋂
{D(v, rad(G)) : v ∈ V }. Consequently, the

center C(G) of an α1-metric graph G is convex (in particular, it is connected), as the intersection
of convex sets is always a convex set. In general, any set C≤i(G) := {z ∈ V : ecc(z) ≤ rad(G)+ i}
is a convex set of G as C≤i(G) =

⋂
{D(v, rad(G) + i) : v ∈ V }.

Corollary 1. In an α1-metric graph G, all sets C≤i(G), i ∈ {0, . . . , diam(G) − rad(G)}, are
convex. In particular, the center C(G) of an α1-metric graph G is convex.
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The following result gives bounds on the diameter and the radius of the center of an
(α1,∆)-metric graph. Previously it was known that the diameter (the radius) of the center of
a chordal graph is at most 3 (at most 2, respectively) [10].

Theorem 7. Let G be an (α1,∆)-metric graph. Then, diam(C(G)) ≤ 3 and rad(C(G)) ≤ 2.

Proof. Assume, by way of contradiction, that there are vertices s, t ∈ C(G) such that d(s, t) = 4.
Consider an arbitrary shortest path P = (s = x1, x2, x3, x4, x5 = t). Since C(G) is convex any
shortest path connecting s and t is in C(G).

First we claim that for any vertex u ∈ F (x3) all vertices of P are at distance
r := d(u, x3) = rad(G) from u. As xi ∈ C(G), we know that d(u, xi) ≤ r (1 ≤ i ≤ 5). Assume
d(u, xi) = r−1, d(u, xi+1) = r, and i ≤ 2. Then, the α1-metric property applied to xi ∈ I(u, xi+1)
and xi+1 ∈ I(xi, xi+3) gives d(xi+3, u) ≥ r−1+2 = r+1 which is a contradiction to d(u, xi+3) ≤ r.
So, d(u, x1) = d(u, x2) = r. By symmetry, also d(u, x4) = d(u, x5) = r.

By the triangle condition, there must exist vertices v and w at distance r−1 from u such that
vx1, vx2, wx4, wx5 ∈ E. We claim that x3 is adjacent to neither v nor w. Assume, without loss
of generality, that vx3 ∈ E. Then, d(x5, x1) = 4 implies d(x5, v) = 3 and therefore x3 ∈ I(x5, v).
Now, the α1-metric property applied to x3 ∈ I(x5, v) and v ∈ I(u, x3) gives d(x5, u) ≥ r+1 which
is impossible. So, vx3, wx3 /∈ E.

Obviously, vx4, wx2 /∈ E. If d(x4, v) = 3 then x2 ∈ I(x4, v). Thus, by v ∈ I(x2, u) and the
α1-metric property, we would get d(x4, u) ≥ r− 1 + 2 = r+ 1 which, again, is impossible. Thus,
d(x4, v) = 2 must hold. Since, by Theorem 5, every induced C5 is suspended in G and, further,
G cannot contain an induced C4, we can choose a vertex y ∈ N(v) ∩ N(x4) which is adjacent
both to x2 and x3 as well. If d(y, u) = r then again y ∈ I(v, x5) and v ∈ I(u, y) will imply
d(x5, u) ≥ r − 1 + 2 = r + 1, which is impossible. So, d(y, u) = r − 1 must hold and, by the
convexity of disks, y must be adjacent to w.

All the above holds for every shortest path P = (s = x1, x2, x3, x4, x5 = t) connecting vertices
s and t. Now, assume that P is chosen in such a way that among all vertices in I(s, t) that are at
distance 2 from s (we will call this set of vertices S2(s, t)) the vertex x3 has the minimum number
of furthest vertices, i.e., |F (x3)| is as small as possible. Observe that, by convexity of the center,
S2(s, t) ⊆ C(G). As y also belongs to S2(s, t) and has u at distance r−1, by the choice of x3, there
must exist a vertex u′ ∈ F (y) which is at distance r−1 from x3. Applying the previous arguments
to the path P ′ := (s = x1, x2, y, x4, x5 = t), we will have d(xi, u

′) = d(y, u′) = r for i = 1, 2, 4, 5,
and get two more vertices v′ and w′ at distance r− 1 from u′ such that v′x1, v

′x2, w
′x4, w

′x5 ∈ E
and v′y,w′y /∈ E. By the convexity of disk D(u′, r − 1), also v′x3, w

′x3 ∈ E. Now consider the
disk D(x2, 2). Since w,w′ are in the disk and x5 is not, vertices w and w′ must be adjacent. But
then vertices y, x3, w

′, w form a forbidden induced cycle C4.

The obtained contradictions show that a shortest path P of length 4 cannot exist in C(G),
i.e., diam(C(G)) ≤ 3. As C(G) is a convex set of G, the subgraph of G induced by C(G) is
also an α1-metric graph. According to [33], diam(G) ≥ 2rad(G) − 2 holds for every α1-metric
graph G. Hence, for a graph induced by C(G) we have 3 ≥ diam(C(G)) ≥ 2rad(C(G)) − 2, i.e.,
rad(C(G)) ≤ 2. ⊓⊔

As chordal graphs are (α1,∆)-metric graphs, we get the following corollary.

Corollary 2 ([10]). Let G be a chordal graph. Then, diam(C(G)) ≤ 3 and rad(C(G)) ≤ 2.
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For our next arguments we need a generalization of the set S2(s, t), as used in the proof of
Theorem 7. We define a slice of the interval I(u, v) from u to v for 0 ≤ k ≤ d(u, v) to be the set
Sk(u, v) = {w ∈ I(u, v) : d(w, u) = k}.

Theorem 8. Let G be an (α1,∆)-metric graph. Then, in every slice Sk(u, v) there is a vertex x
that is universal to that slice, i.e., Sk(u, v) ⊆ N [x]. In particular, if diam(G) = 2rad(G), then
diam(C(G)) ≤ 2 and rad(C(G)) ≤ 1.

Proof. First we prove that for every pair u, v of vertices of G, any slice Sk(u, v) is convex and has
diameter at most 2. Since the slice Sk(u, v) can be represented as the intersection of two disks,
D(u, k)

⋂
D(v, ℓ), where ℓ = d(u, v) − k, clearly Sk(u, v) is convex (see Theorem 2).

Assume, by way of contradiction, that Sk(u, v) has a shortest path P := (x1, x2, x3, x4) of
length 3. By the triangle condition, there must exist vertices y and z at distance ℓ − 1 from v
such that y is adjacent to x1,x2 and z is adjacent to x3,x4. Since D(u, k) is convex, y cannot be
adjacent to x3 and z cannot be adjacent to x2 and y. Furthermore, d(y, x4) > 2 and d(z, x1) > 2
must hold. Additionally, by the convexity of D(v, ℓ − 1), vertices y and z must be at distance
2, implying d(y, x4) = 3 = d(z, x1). Now, applying the α1-metric property to y ∈ I(z, x1) and
x1 ∈ I(u, y), we obtain d(z, u) ≥ k + 2, which is impossible since d(u, z) = k + 1.

Now, consider a vertex x ∈ Sk(u, v) which is adjacent to the maximum number of vertices of
Sk(u, v). Assume that there is a vertex y ∈ Sk(u, v) which is not adjacent to x. We know that
d(x, y) = 2. Consider a common neighbor w of x and y. Since wy ∈ E, xy /∈ E and w ∈ Sk(u, v),
by the choice of x, there must exist a vertex t ∈ Sk(u, v) such that wt /∈ E and xt ∈ E. To avoid
an induced C4, ty /∈ E must hold. From d(t, w) = d(t, y) = 2, by the triangle condition, there
must exist a common neighbor s of t, w and y. Additionally, s must be adjacent to x to avoid an
induced C4. By the convexity of Sk(u, v), s belongs to Sk(u, v). Applying now Lemma 2 to u and
triangles {x, t, s} and {w, y, s}, we get two vertices a and b at distance k − 1 = d(x, u) − 1 from
u with {x, t, s} ⊆ N(a) and {w, y, s} ⊆ N(b). Since D(u, k − 1) is convex, necessarily a and b are
adjacent. On the other hand, since Sk(u, v) is convex, d(y, x) = d(t, w) = 2 and a, b /∈ Sk(u, v),
a cannot be adjacent to w and b cannot be adjacent to x. But then vertices x,w, b, a form an
induced C4. This contradiction shows that such a vertex y ∈ Sk(u, v), which is not adjacent to
x, cannot exist.

It remains to note that if diam(G) = 2rad(G) holds for a graph G, then C(G) ⊆ Srad(G)(u, v)
for every pair of vertices u, v with d(u, v) = diam(G). Hence, diam(C(G)) ≤ 2 and rad(C(G)) ≤ 1
in this case. ⊓⊔

4 Eccentricity approximating spanning tree construction

It this section, we construct an eccentricity approximating spanning tree and analyze its quality
for (α1,∆)-metric graphs. Here, we will use sub-indices G and T to indicate whether the distances
or the eccentricities are considered in G or in T . However, I(u, v) will always mean the interval
between vertices u and v in G.

4.1 Tree construction for unimodal eccentricity functions

First consider the case when the eccentricity function on G is unimodal, that is, every non-central
vertex of G has a neighbor with smaller eccentricity. We will need the following lemmas.
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Lemma 4 ([13]). Let G be an arbitrary graph. The eccentricity function on G is unimodal if
and only if, for every vertex v of G, eccG(v) = dG(v,C(G)) + rad(G).

Proof. Let v be an arbitrary vertex of G and let v′ be a vertex of C(G) closest to v, i.e.,
dG(v,C(G)) = dG(v, v

′). Consider a vertex u ∈ F (v). We have

eccG(v) = dG(v, u) ≤ dG(v, v
′) + dG(v

′, u) ≤ dG(v,C(G)) + rad(G).

First assume that the eccentricity function on G is unimodal. We will show that
eccG(v) ≥ dG(v,C(G)) + rad(G) by induction on k = dG(v,C(G)). If k = 0 then v ∈ C(G)
and hence eccG(v) = rad(G). If k = dG(v,C(G)) > 0, then, by unimodality, there must exist a
neighbor x of v such that eccG(v) = eccG(x) + 1. By the inductive hypothesis,

eccG(v) = eccG(x) + 1 = dG(x,C(G)) + rad(G) + 1 ≥ dG(v,C(G)) + rad(G)

as dG(v,C(G)) ≤ dG(v, x
′) ≤ dG(x, x

′)+1 = dG(x,C(G))+1 (here, x′ is a vertex of C(G) closest
to x).

Assume now that eccG(v) = dG(v,C(G)) + rad(G) holds for every vertex v of G. Con-
sider a neighbor x of v on a shortest path from v to a vertex of C(G) closest to v. Since
dG(v,C(G)) = dG(x,C(G)) + 1, we get eccG(v) = eccG(x) + 1. ⊓⊔

Lemma 5 ([5]). Let G be an arbitrary α1-metric graph. Let x, y, v, u be vertices of G such that
v ∈ I(x, y), x ∈ I(v, u), and x and v are adjacent. Then d(u, y) = d(u, x) + d(v, y) holds if and
only if there exist a neighbor x′ of x in I(x, u) and a neighbor v′ of v in I(v, y) with dG(x

′, v′) = 2;
in particular, x′ and v′ lie on a common shortest path of G between u and y.

We construct a spanning tree T of G as follows. First find the center C(G) of G and pick an
arbitrary central vertex c of the graph C(G), i.e., c ∈ C(C(G)). Compute a breadth-first-search
tree T ′ of C(G) started at c. Expand this tree T ′ to a spanning tree T of G by identifying for
every vertex v ∈ V \C(G) its parent vertex in the following way: among all neighbors x of v with
eccG(x) = eccG(v)− 1 pick that vertex which is closest to c in G (break ties arbitrarily).

Lemma 6. Let G be an (α1,∆)-metric graph whose eccentricity function is unimodal. Then, for
a tree T constructed as described above and every vertex v of G, dG(v, c) = dT (v, c) holds, i.e., T
is a shortest-path-tree of G started at c.

Proof. Let v be an arbitrary vertex of G and let v′ be a vertex of C(G) closest to v in T . By
Lemma 4 and by the construction of T , dG(v, v

′) = dT (v, v
′) and v′ is a vertex of C(G) closest

to v in G. By the construction of T ′, also dG(c, v
′) = dT (c, v

′) (note that, as C(G) is a convex
subgraph of G, clearly, dC(G)(x, y) = dG(x, y) for every pair x, y of C(G)). So, in the tree T , we
have dT (c, v

′) + dT (v
′, v) = dT (v, c). If dG(c, v

′) + dG(v
′, v) = dG(v, c), then dG(v, c) = dT (v, c),

and we are done. Assume, therefore, that dG(c, v
′) + dG(v

′, v) > dG(v, c) and among all vertices
that fulfill this inequality, let v be the one that is closest to C(G). Consider the neighbor x of v′

on the path in T from v′ to v. We have x ∈ I(v′, v) and, by Lemma 4, eccG(x) = rad(G) + 1.
Note that x = v is possible.

If v′ /∈ I(x, c) then dG(x, c) ≤ dG(v
′, c). By the convexity of C(G), x with eccG(x) = rad(G)+1

cannot be on a shortest path between two central vertices c and v′. Hence, dG(x, c) = dG(v
′, c)

holds. By the triangle condition, there must exist a common neighbor y of v′ and x which is at
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distance dG(v
′, c)− 1 from c. Since y ∈ I(v′, c), by the convexity of C(G), eccG(y) = rad(G). But

then, as y is closer to c than v′ is, vertex x cannot choose v′ as its parent in T , since y is a better
choice.

If v′ ∈ I(x, c) then, by the α1-metric property, dG(c, v
′) + dG(x, v) ≤ dG(v, c). As

dG(c, v
′) + dG(v

′, v) > dG(v, c), we have dG(c, v
′) + dG(x, v) = dG(v, c). By Lemma 5, there

must exist a neighbor x′ of x in I(x, v) and a neighbor v′′ of v′ in I(v′, c) with dG(x
′, v′′) = 2.

Denote by w a common neighbor of x′ and v′′. We have dG(x, c) > dG(w, c). Set
k := dG(v, v

′) = dG(v,C(G)) = eccG(v) − rad(G). Let PT := (x = a1, . . . , ak = v) be the path
in T between x and v. Let PG := (w = b1, x

′ = b2, . . . , bk = v) be a shortest path of G between
w and v which shares a longest suffix with PT , that is, aj = bj for all j > i, ai 6= bi, and i
is minimal under these conditions. Note that i = 1 and a2 = b2 = v is possible. By Lemma 4,
eccG(ai) = eccG(bi) = rad(G) + i = eccG(ai+1)− 1.

Since v is a vertex closest to C(G) fulfilling inequality dG(c, v
′) + dG(v

′, v) > dG(v, c), for
vertex ai (i < k), the equation dG(c, v

′)+dG(v
′, ai) = dG(ai, c) holds. Hence, dG(c, x)+dG(x, ai) =

dG(ai, c). Also, by Lemma 5, dG(c, w) + dG(w, bi) = dG(bi, c). Consequently, dG(x, c) > dG(w, c)
and dG(x, ai) = dG(w, bi) imply dG(ai, c) > dG(bi, c). Therefore, vertex ai+1 cannot choose ai as
its parent in T , since bi is a better choice.

The obtained contradictions prove that dG(c, v
′) + dG(v

′, v) = dG(v, c) and hence dG(v, c) =
dT (v, c). ⊓⊔

As a consequence of Lemma 4 and Lemma 6, we get the following result.

Lemma 7. Let G be an (α1,∆)-metric graph whose eccentricity function is unimodal. Then, for a
tree T constructed as described above and for every vertex v of G, eccT (v) ≤ eccG(v)+rad(C(G))
holds.

Proof. Let v be an arbitrary vertex of G, v′ be a vertex of C(G) closest to v in T , and u be a
vertex most distant from v in T , i.e., eccT (v) = dT (v, u). By Lemma 4 and by the construction
of T , dG(v, v

′) = dT (v, v
′) and v′ is a vertex of C(G) closest to v in G. We have

eccT (v) = dT (v, u) ≤ dT (v, v
′) + dT (v

′, c) + dT (c, u),

where c ∈ C(C(G)) is the root of the tree T (see the construction of T ). Since dG(v, v
′) = dT (v, v

′),
dT (v

′, c) = dG(v
′, c) ≤ rad(C(G)), and dT (c, u) = dG(c, u) ≤ rad(G) (by Lemma 6 and the fact

that c ∈ C(C(G))), we obtain eccT (v) ≤ dG(v, v
′)+ rad(C(G))+ rad(G) = eccG(v)+ rad(C(G)),

as dG(v, v
′) + rad(G) = dG(v,C(G)) + rad(G) = eccG(v) by Lemma 4. ⊓⊔

4.2 Tree construction for eccentricity functions that are not unimodal

Consider now the case when the eccentricity function on G is not unimodal, that is, there is at
least one vertex v /∈ C(G) in G which has no neighbor with smaller eccentricity. By Theorem 6,
eccG(v) = rad(G) + 1, diam(G) = 2rad(G) and v has a neighbor with the eccentricity equal to
eccG(v). We will need the following weaker version of Lemma 4.

Lemma 8. Let G = (V,E) be an (α1,∆)-metric graph. Let v be an arbitrary vertex of G and v′

be an arbitrary vertex of C(G) closest to v. Then,

dG(v,C(G)) + rad(G)− 1 ≤ eccG(v) ≤ dG(v,C(G)) + rad(G).

Furthermore, there is a shortest path P := (v′ = x0, x1, . . . , xℓ = v), connecting v with v′, for
which the following holds:
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(a) if eccG(v) = dG(v,C(G)) + rad(G)
then eccG(xi) = dG(xi, C(G)) + rad(G) = i+ rad(G) for each i ∈ {0, . . . , ℓ};

(b) if eccG(v) = dG(v,C(G)) + rad(G)− 1
then eccG(xi) = dG(xi, C(G)) − 1 + rad(G) = i − 1 + rad(G) for each i ∈ {3, . . . , ℓ} and
eccG(x1) = eccG(x2) = rad(G) + 1.

In particular, if eccG(v) = rad(G) + 1 then dG(v,C(G)) ≤ 2.

Proof. Let r := rad(G) and P := (v′ = x0, x1, . . . , xℓ = v) be a shortest path connecting v
with v′ which minimizes

∑ℓ
i=0 eccG(xi). Since v′ is a vertex of C(G) closest to v, x1 /∈ C(G) and

eccG(x1) = r + 1. Consider a vertex u ∈ F (x1), i.e., eccG(x1) = dG(x1, u). We have x0 ∈ I(x1, u)
and x1 ∈ I(x0, xℓ). By the α1-metric property,

dG(xℓ, u) ≥ dG(xℓ, x1) + dG(x0, u) = ℓ− 1 + r = dG(v,C(G)) − 1 + r.

Recall that for any two adjacent vertices z and y of any graph G, |eccG(z) − eccG(y)| ≤ 1 holds.
Therefore, if eccG(v) ≥ dG(v,C(G)) + r then eccG(xi) = dG(xi, C(G)) + r = i+ r holds for each
i ∈ {0, . . . , ℓ}. If eccG(v) = dG(v,C(G))− 1 + r then there must exist an index i ∈ {1, . . . , ℓ− 1}
such that eccG(xi) = eccG(xi+1) = r + i and eccG(xj) = r + j for j ≤ i. We claim that, by the
minimality of

∑ℓ
i=0 eccG(xi), i = 1 must hold.

Assume, by way of contradiction, that i > 1. By Theorem 6, necessarily, xi+1 has a neighbor t
with eccG(t) = eccG(xi+1)−1 = r+i−1. By Corollary 1, the set C≤r+i−1(G) of G is convex. Hence,
vertices xi−1 and t with eccG(xi−1) = eccG(t) = r + i− 1 must be connected in C≤r+i−1(G) by a
shortest path of length at most 2 (since path (xi−1, xi, xi+1, t) has vertices of eccentricity larger
than the eccentricities of the end-vertices xi−1 and t). Notice that vertices xi−1 and xi+1 cannot
have a common neighbor z with eccG(z) < r + i since, otherwise, by replacing vertex xi with z
in P , we get a shortest path between v′ and v with a smaller sum of eccentricities of its vertices.
Thus, xi−1 and t cannot be adjacent, i.e., dG(xi−1, t) = 2. Let w be a common neighbor of xi−1 and
t. Necessarily, eccG(w) ≤ r+ i−1 and hence wxi+1 /∈ E. Since I(xi−1, t) ⊂ C≤r+i−1(G), vertices t
and xi cannot be adjacent. To avoid an induced C4, wxi /∈ E as well. In an induced C5 formed by
xi−1, xi, xi+1, t and w, by the triangle condition, there must exist a vertex w′ which is adjacent to
w, xi, xi+1, and, to avoid an induced C4, to xi−1 and t. Again, from w′ ∈ I(xi−1, t) ⊂ C≤r+i−1(G)
and w′xi−1, w

′xi+1 ∈ E, we obtain a contradiction with the minimality of
∑ℓ

i=0 eccG(xi). ⊓⊔

Now we are ready to construct an eccentricity approximating spanning tree T of G for the
case when the eccentricity function is not unimodal. We know that diam(G) = 2rad(G) in this
case and, therefore, C(G) ⊆ Srad(G)(x, y) for any diametral pair of vertices x and y, i.e., for x, y
with dG(x, y) = diam(G). By Theorem 8 and since C(G) is convex, there is a vertex c ∈ C(G)
such that C(G) ⊆ N [c]. First we find such a vertex c in C(G) and build a tree T ′ by making c
adjacent with every other vertex of C(G). Then, we expand this tree T ′ to a spanning tree T of
G by identifying for every vertex v ∈ V \ C(G) its parent vertex in the following way: if v has
a neighbor with eccentricity less than eccG(v), then among all such neighbors pick that vertex
which is closest to c in G (break ties arbitrarily); if v has no neighbors with eccentricity less
than eccG(v) (i.e., eccG(v) = rad(G) + 1 by Theorem 6), then among all neighbors x of v with
eccG(x) = eccG(v) = rad(G) + 1 pick again that vertex which is closest to c in G (break ties
arbitrarily).

Lemma 9. Let G be an (α1,∆)-metric graph whose eccentricity function is not unimodal. Then,
for a tree T constructed as described above and every vertex v of G, dT (v, c) = dG(v, c) holds.
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Proof. Assume, by way of contradiction, that dG(v, c) < k := dT (v, c) and let v be a vertex with
such a condition that has smallest eccentricity eccG(v). We may assume that eccG(v) > rad(G)+1.
Indeed, every v with eccG(v) = rad(G) + 1 either has a neighbor in C(G) or has a neighbor with
a neighbor in C(G) (see Lemma 8). Therefore, if dG(v, c) < dT (v, c) then, by the construction of
T , necessarily dG(v, c) = 2, dT (v, c) = 3 and the neighbor x of v on the path of T between v and
c must have the eccentricity equal to rad(G) + 1 = eccG(v). But then, for a common neighbor
w of v and c in G, eccG(w) ≤ rad(G) + 1 must hold and hence vertex v cannot choose x as its
parent in T , since w is a better choice.

So, let eccG(v) > rad(G) + 1. By Lemma 8, there must exist a shortest path in G between v
and c such that the neighbor w of v on this path has eccentricity eccG(w) = eccG(v)− 1. Hence,
by the construction of T , eccG(x) = eccG(v) − 1 must hold for the neighbor x of v on the path
of T between v and c. By the minimality of eccG(v), we have dG(x, c) = dT (x, c) = k − 1. Since
dG(w, c) = dG(v, c) − 1 < k − 1, a contradiction arises; again v cannot choose x as its parent in
T , since w is a better choice. ⊓⊔

As a consequence of Lemma 8 and Lemma 9, we get the following result.

Lemma 10. Let G be an (α1,∆)-metric graph with diam(G) = 2rad(G). Then, for a tree T
constructed as described above and every vertex v of G, eccT (v) ≤ eccG(v) + 2 holds.

Proof. Let v be an arbitrary vertex of G and u be a vertex most distant from v in T , i.e.,
eccT (v) = dT (v, u). We have

eccT (v) = dT (v, u) ≤ dT (v, c) + dT (c, u) = dG(v, c) + dG(c, u) ≤ dG(v, c) + rad(G)

≤ dG(v,C(G)) + 1 + rad(G) ≤ eccG(v) + 2

since dG(c, u) ≤ eccG(c) = rad(G), dG(v, c) ≤ dG(v,C(G)) + 1 (recall that C(G) ⊆ N [c]), and
dG(v,C(G)) − 1 + rad(G) ≤ eccG(v) (by Lemma 8). ⊓⊔

Our main result is the following theorem. It combines Theorem 7, Lemma 7 and Lemma 10;
the complexity follows straightforward.

Theorem 9. Every (α1,∆)-metric graph G = (V,E) has an eccentricity 2-approximating span-
ning tree. Furthermore, such a tree can be constructed in O(|V ||E|) total time.

As two consequences we have the following corollaries for two important subclasses of
(α1,∆)-metric graphs.

Corollary 3. If G is the underlying graph of a 7-systolic complex then G has an eccentricity
2-approximating spanning tree. In particular, every plane triangulation with inner vertices of
degree at least 7 has an eccentricity 2-approximating spanning tree.

Corollary 4 ([29]). Every chordal graph has an eccentricity 2-approximating spanning tree.

Note that the result of Corollary 4 (and hence of Theorem 9) is sharp as there are chordal
graphs that do not have any eccentricity 1-approximating spanning tree [29].
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5 Experimental results for some real-world networks

Here, we analyze if the eccentricity terrain of a network resembles the eccentricity terrain of a
tree. Recall that in trees, the eccentricity of a vertex can range between rad(T ) and at least
2rad(T ) − 1 (as diam(T ) ≥ 2rad(T ) − 1), every vertex v ∈ V (T ) \ C(T ) has a neighbor u such
that eccT (v) = eccT (u) + 1 (i.e., the eccentricity function on trees is unimodal), and the center
C(T ) of a tree consists of one vertex or two adjacent vertices. We have seen that in (α1,∆)-metric
graphs, the eccentricity function is almost unimodal, the eccentricity of a vertex can range between
rad(G) and at least 2rad(G)− 2 (as diam(G) ≥ 2rad(G)− 2), diam(C(G)) ≤ 3, rad(C(G)) ≤ 2,
and the center C(G) is convex and hence connected. Furthermore, every (α1,∆)-metric graph G
admits an eccentricity 2-approximating spanning tree, which provides a strong evidence that the
eccentricity terrain of G resembles the eccentricity terrain of a tree.

Table 1. Basic statistics of the analyzed networks: |V | is the number of vertices; |E| is the number of edges;
size(G) = |V |+ |E|; d̄ is the average degree; diam(G) is the diameter; rad(G) is the radius. Most of the networks
listed in this table are available at [1–4].

Network Ref. |V | |E| log2(size(G)) d̄ diam(G) rad(G)

Social Networks

EMAIL [17] 1133 5451 12.68 9.6 8 5
Facebook [21] 4039 88 234 16.49 43.7 8 4
Dutch-Elite [12] 3621 4310 12.95 2.4 22 12
JAZZ [16] 198 2742 11.52 27.7 6 4
EVA [27] 4475 4664 13.16 2.1 18 10

Internet Graphs

AS-Graph-1 [1] 3015 5156 12.95 3.4 9 5
AS-Graph-2 [1] 4885 9276 13.79 3.8 11 6
AS-Graph-3 [1] 5357 10 328 13.94 3.9 9 5

Biological Networks

E-coli-PI [8] 126 581 9.47 9.2 5 3
Yeast-PI [31] 1728 11 003 13.64 12.7 12 7
Macaque-brain-1 [25] 45 463 8.99 11.3 4 2
Macaque-brain-2 [23] 350 5198 12.44 29.7 4 3
E-coli-metabolic [19] 242 376 9.27 3.1 16 9
C-elegans-metabolic [14] 453 4596 12.3 8.9 7 4
Yeast-transcription [22] 321 711 10.01 4.4 9 5

Other Networks

US-Airlines [6] 332 2126 11.26 12.8 6 3
POWER-Grid [32] 4941 6594 13.49 2.7 46 23
Word-Adjacency [26] 112 425 9.07 7.6 5 3
Food [1] 135 596 9.51 8.8 4 3

In this section, we analyze vertex localities and centers in a collection of real-world net-
works/graphs coming from a number of different domains. Additionally, based on what we learned
from (α1,∆)-metric graphs in Section 4, we propose two heuristics for constructing eccentricity
approximating trees in general graphs and analyze their performance on our set of real-world net-

13 July 28, 2016



works. Some of those networks are not connected, but they usually have one very large connected
component and a few very small components. In this case, we consider only a largest connected
component. Note that all our networks are unweighted and we ignore directions of edges if a
network is originally directed. A summary of basic statistical properties of largest connected
components of the networks in our dataset is given in Table 1.

5.1 Dataset

First we describe the investigated networks.

Social networks.
EMAIL [2, 17]: This network represents the email interchanges between members of the university
of Rovira i Virgili, Tarragona.
FACEBOOK [4, 21]: This network has 4039 users who belong to the ego networks (the network
of friendship between a user’s friends) of 10 people. Two vertices (users) are connected if they are
Facebook friends.
DUTCH-ELITE [6, 12]: This is a network data on the administrative elite in the Netherlands,
April 2006. Vertices represent persons and organizations that are most important to the Dutch
government (2-mode network). An edge connects a person-vertex and an organization-vertex if
the corresponding person belongs to the corresponding organization.
JAZZ [2, 16]: In this network, vertices represent different Jazz musicians and two vertices are
connected if the two musicians have played together.
EVA [6, 27]: This network presents corporate ownership information as a social network. Two
vertices are connected with an edge if one is the owner of the other.

Internet graphs.
AS-GRAPHs [1]: Those graphs represent the Autonomous Systems topology of the Internet. In
each graph, a vertex represents an autonomous system, and two vertices are connected if the two
autonomous systems share at least one physical connection. In this work, we use three AS graphs:
AS-GRAPH-1, AS-GRAPH-2, and AS-GRAPH-3 for which the data were collected in November
1997, April 1999, and July 1999, respectively.

Biological networks.
Protein Interaction (PI) Networks: Generally, in a PI network, the vertices represent different
proteins and the edges represent the connections between the interacting proteins. We consider
the protein interaction networks of the Escherichia coli [8] and the Yeast [31].
Neural Networks: In those networks, neurons (vertices) are connected together through synapsis
(edges). We analyze two different brain area networks of the Macaque monkey [23, 25].
Metabolic Networks: Metabolic networks are represented by metabolites (vertices) such as amino
acids and biochemical reactions (directed edges). In this dataset, we have the Escherichia coli [19]
and the Caenorhabditis elegans [14] metabolic networks.
Transcription Networks: Networks in which vertices are genes and edges represent different inter-
actions (interrelationships) between genes. We analyze the Yeast transcription network [22].

Other networks.
US-AIRLINES [6]: The transportation network of airlines in the United States. The original graph
from [6] is weighted. We ignored the weights in our experiments.
POWER-GRID [3, 32]: This network represents the topology of the Western States Power Grid
of the United States.
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WORD-ADJACENCY [3, 26]: The adjacency network of commonly occurring adjectives and
nouns in the novel David Copperfield by Charles Dickens. An edge connects any adjacent pair of
words.

FOOD [1]: This network represents the food predatory interactions among different species in the
Ythan Eastuary environment. Vertices represent species, and a directed edge links two vertices if
one species preys on the other.

5.2 Analysis of vertex localities and centers

Recall that the locality of a vertex v /∈ C(G) (with respect to the eccentricity function) is the
distance from v to a closest vertex with smaller eccentricity:

loc(v) = min{d(v, x) : x ∈ V, ecc(x) < ecc(v)}.

The locality of any central vertex u ∈ C(G) is defined to be 1. Hence, the eccentricity function is
unimodal on G if and only if all vertices of G have locality 1. Given a graph G = (V,E), we can
define its eccentricity layering EL(G) = (C0(G), . . . , Cdiam(G)−rad(G)(G)) to be a partition of the
vertex set V into layers Ck(G) = {v ∈ V : ecc(v) = rad(G) + k}, k = 0, 1, . . . , diam(G)− rad(G).
Clearly, C0(G) = C(G). The layer of each vertex u with respect to the eccentricity layering,
denoted by layer(u), is k if u ∈ Ck(G).

Table 2. Percent of vertices with localities equal to 1 and larger than 1 in each graph of the dataset.

Network
% of vertices
with k(·) = 1

% of vertices
with k(·) > 1

EMAIL ≈95% ≈5%
Facebook ≈98% ≈2%
Dutch-Elite ≈97% ≈3%
Jazz 100%
EVA ≈99% ≈1%

AS-Graph-1 ≈99% ≈1%
AS-Graph-2 ≈98% ≈2%
AS-Graph-3 ≈98% ≈2%

E-coli-PI ≈90% ≈10%
Yeast-PI ≈95% ≈5%
Macaque-brain-1 ≈78% ≈22%
Macaque-brain-2 100%
E-coli-metabolic ≈86% ≈14%
C-elegans-metabolic ≈98% ≈2%
Yeast-transcription ≈91% ≈9%

US-Airlines 100%
POWER-Grid ≈99% ≈2%
Word-Adjacency ≈77% ≈23%
Food 100%

Theorem 6 from Section 3 says that if a vertex v with loc(v) > 1 exists in an (α1,∆)-metric
graph G then diam(G) = 2rad(G) and ecc(v) = rad(G) + 1, i.e., layer(v) = 1.
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We analyzed vertex localities in the graphs from our dataset. It turns out that the eccentricity
function is unimodal for the graphs Jazz, Macaque-brain-2, US-Airlines and Food. For all
graphs, except Macaque-brain-1 (78%), E-coli-metabolic (86%) and Word-Adjacency

(77%), at least 90% of vertices (in most cases close to 100%) have locality 1 (see Table 2).

In Fig. 3, we show also the distribution of vertices with loc(·) > 1 over different layers of the
eccentricity layering in each graph of the dataset. As in the case of (α1,∆)-metric graphs, in the
graphs of our dataset (with the exception of POWER-Grid), the vertices with locality greater
than 1 also tend to reside in the layers Ck(G) with smaller k.

Fig. 3. Distribution of vertices with loc(·) > 1 over different layers of the eccentricity layering in each graph of the
dataset. Note that the graphs Jazz, Macaque-Brain-2, Us-Airlines, and Food are not included since they do
not contain such vertices.

We know that diam(G) ≥ 2rad(G)− 2 holds for every α1-metric graph G [33]. From Table 1,
we see that for all graphs in our dataset 2rad(G) − diam(G) is at most 2 as well. For graphs
Facebook,Macaque-brain-1,US-Airlines and POWER-Grid, in fact, diam(G) = 2rad(G)
holds.

As we have mentioned earlier, the center C(G) of any α1-metric graph G is connected (in fact,
it is convex and hence isometric). We analyzed centers of all graphs from our dataset (see Table 3).
The centers of most of the graphs (except Dutch-Elite, AS-Graph-2, E-coli-metabolic
and Yeast-transcription) turned out to be connected as well. By Theorem 7, we know that
diam(C(G)) ≤ 3 and rad(C(G)) ≤ 2 holds for every (α1,∆)-metric graph G. As the centers of
the graphs in our dataset are not necessarily isometric (distance-preserving) subgraphs, we used
notions of weak diameter diam(C(G)) and weak radius rad(C(G)) to measure their centers, where
diam(C(G)) = max{dG(x, y) : x, y ∈ C(G)} and rad(C(G)) = min{max{dG(x, y) : y ∈ C(G)} :
x ∈ C(G)}.

Interestingly, the graphs with diam(G) = 2rad(G) in our dataset (i.e., Facebook,Macaque-

brain-1, US-Airlines and POWER-Grid) have single vertex centers. The centers of all graphs
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have small weak diameter and weak radius: the weak radius is 0 in 4 graphs, 1 in 2 graphs, 2 in
7 graphs, 3 in 5 graphs, and 4 in 1 graph (Dutch-Elite).

Table 3. The weak diameters and weak radii of the centers of each graph in the dataset.

Network diam(C(G)) rad(C(G)) Connected? |C(G)|
|V |

EMAIL 4 3 yes 215 / 1133
Facebook 0 0 yes 1 / 4039
Dutch-Elite 4 4 no 3 / 3621
Jazz 3 2 yes 56 / 198
EVA 3 2 yes 15 / 4475

AS-Graph-1 2 1 yes 32 / 3015
AS-Graph-2 4 3 no 531 / 4885
AS-Graph-3 2 2 yes 10 / 5357

E-coli-PI 2 2 yes 6 / 126
Yeast-PI 5 3 yes 53 / 1728
Macaque-brain-1 0 0 yes 1 / 45
Macaque-brain-2 3 2 yes 194 / 350
E-coli-metabolic 5 3 no 5 / 242
C-elegans-metabolic 4 2 yes 17 / 453
Yeast-transcription 3 3 no 3 / 321

US-Airlines 0 0 yes 1 / 332
POWER-Grid 0 0 yes 1 / 4941
Word-Adjacency 2 1 yes 4 / 112
Food 3 2 yes 53 / 135

5.3 Eccentricity approximating tree construction and analysis

We say that a tree T is an eccentricity k-approximating tree for a graph G if for every vertex v of
G, |eccT (v) − eccG(v)| ≤ k holds. If T is a spanning tree, then eccT (v) ≥ eccG(v), for all v ∈ V ,
and this new definition agrees with the definition of an eccentricity k-approximating spanning
tree.

Our goal in this section is to propose a heuristic for constructing an eccentricity k-
approximating tree for general graphs such that the value of k is as small as possible. In our
construction of an eccentricity 2-approximating spanning tree for an (α1,∆)-metric graph G, two
main ingredients were crucial: 1. the eccentricity function on G is almost unimodal and the ver-
tices with locality larger than 1 reside only in layer C1(G); 2. the radius of the center C(G) is
at most 2. Our eccentricity 2-approximating spanning tree was a shortest-path-tree starting at a
vertex c ∈ C(C(G)).

Although the weak radius of each graph in our dataset is relatively small (for 13 graphs it was
at most 2, for 5 graphs at most 3, and only for Dutch-Elite it was 4; see Table 3), for some
graphs, a small number of vertices with locality 2, 3 or 4 exists and those vertices may reside also
at eccentricity layers Ck(G) with k > 1 (see Fig. 3).

Based on what we learned from (α1,∆)-metric graphs in Section 4 and on what we observed
about vertex localities and centers in the graphs in our dataset, we propose two heuristics for
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constructing eccentricity approximating trees in general graphs. Both heuristics try to mimic the
construction for (α1,∆)-metric graphs that we used in Section 4.

Our first heuristic, named EAST, constructs an Eccetricity Approximating Spanning Tree
TEAST as a shortest-path-tree starting at a vertex c ∈ C(C(G)). We identify an arbitrary vertex
c ∈ C(C(G)) as the root of TEAST , and for each other vertex v of G define its parent in TEAST

as follows: among all neighbors of v in I(v, c) choose a vertex with minimum eccentricity (break
ties arbitrarily). A formal description of this construction is given in Algorithm EAST.

Algorithm EAST. Eccentricity k-approximating spanning trees for general graphs.
Input. A graph G = (V,E).
Output. An eccentricity k-approximating spanning tree T = (V, U) of G.

1. U ← ∅
2. pick a vertex c ∈ C(G) with the minimum distance to every other vertex in C(G)
3. for every v ∈ V \ {c} do
4. among all neighbors of v in I(v, c) choose a vertex u with minimum eccentricity
5. add edge uv to U

6. return T = (V,U)

Our second heuristic, named EAT, constructs for a graph G an Eccetricity Approximating
Tree TEAT (not necessarily a spanning tree; it may have a few edges not present in graph G)
as follows. We again identify an arbitrary vertex c ∈ C(C(G)) as the root of TEAT and make it
adjacent in TEAT to all other vertices of C(G) (clearly, some of these edges might not be contained
in G). Then, for each vertex v ∈ V \ C(G), we find a vertex u with eccG(u) < eccG(v) which is
closest to v, and if there is more than one such vertex, we pick the one which is closest to c. In
other words, among all vertices {u ∈ V : dG(u, v) = loc(v) and eccG(u) < eccG(v)}, we choose a
vertex u which is closest to c (break ties arbitrarily). Such a vertex u becomes the parent of v in
TEAT . Clearly, if loc(v) > 1 then edge uv of TEAT is not present in G. A formal description of
this construction is given in Algorithm EAT.

Algorithm EAT. Eccentricity k-approximating trees for general graphs.
Input. A graph G = (V,E).
Output. An eccentricity k-approximating tree T = (V,U) of G.

1. U ← ∅
2. pick a vertex c ∈ C(G) with the minimum distance to every other vertex in C(G)
3. for every u ∈ C(G) \ {c} do
4. add edge uc to U

5. for every v ∈ V \ C(G) do
6. among all vertices {u ∈ V : dG(u, v) = loc(v) and eccG(u) < eccG(v)}
7. choose a vertex u which is closest to c

8. add edge uv to U

9. return T = (V,U)

We tested both heuristics on our set of real-world networks. Experimental results obtained
are presented in Table 4 and Table 5.

Table 4 demonstrates the quality of the spanning tree T constructed by Algorithm EAST
for each graph G in the dataset. Algorithm EAST was able to produce an eccentricity k-
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Table 4. A spanning tree T constructed by Algorithm EAST: for each vertex u ∈ V , k(u) = eccT (u) − eccG(u);
kmax = maxu∈V k(u); kavg = 1

n

∑
u∈V

k(u).

Network diam(G) diam(T ) kmax kavg
% of vertices
w. k(·) = 0

% of vertices
w. k(·) = 1

% of vertices
w. k(·) = 2

% of vertices
w. k(·) = 2

EMAIL 8 10 3 1.774 ≈0.79% ≈27.8 % ≈64.61% ≈6.8 %
Facebook 8 8 2 0.69 51.9 % 27.6 % ≈20.5 %
Dutch-Elite 22 24 6 2.083 ≈17.45% ≈0 % ≈61.28%
Jazz 6 8 2 1.742 ≈1.52% ≈22.72% ≈75.76%
EVA 18 19 2 0.575 ≈47.59% ≈47.26% ≈5.14%

AS-Graph-1 9 10 2 0.64 ≈35.78% ≈64.18% ≈0.03%
AS-Graph-2 11 12 3 1.272 ≈4.71% ≈63.4 % ≈31.85% ≈0.04%
AS-Graph-3 9 10 2 0.312 ≈70.38% ≈28 % ≈1.62%

E-coli-PI 5 6 2 0.769 ≈34.92% ≈53.17% ≈11.9 %
Yeast-PI 12 13 4 0.972 ≈28 % ≈50.23% ≈18.5 % ≈2.89%
Macaque-brain-1 4 4 1 0.222 77.78% 22.22%
Macaque-brain-2 4 6 2 1.489 ≈1.71% ≈47.7 % ≈50.57%
E-coli-metabolic 16 17 4 1.132 ≈34.71% ≈33.1 % ≈17.77% ≈13.22%
C-elegans-metabolic 7 8 1 0.349 ≈65.12% ≈34.88%
Yeast-transcription 9 10 3 1.121 ≈33.96% ≈26.79% ≈32.4 % ≈6.85%

US-Airlines 6 6 0 0 100 %
POWER-Grid 46 46 4 1.409 ≈46.35% ≈13.13% ≈12.61% ≈9.11%
Word-Adjacency 5 6 1 0.411 ≈58.93% ≈41.07%
Food 4 6 2 1.629 ≈1.48% ≈34.07% ≈64.44%

approximating spanning tree with k = 0 for 1 graph (US-Airlines), k = 1 for 3 graphs, k = 2
for 8 graphs, k = 3 for 3 graphs, k = 4 for 3 graphs, and k = 6 for 1 graph (Dutch-Elite).
According to the criteria from [24] for the existence of eccentricity-preserving (i.e., eccentricity
0-approximating) spanning trees (see Introduction), graph US-Airlines has an eccentricity 0-
approximating spanning tree and Algorithm EAST succeeded to construct such a spanning tree.
Algorithm EAST succeeded to construct optimal spanning trees also for graphsMacaque-brain-

1, C-elegans-metabolic and Word-Adjacency (those graphs do not satisfy the criteria for
admitting eccentricity 0-approximating spanning trees and EAST constructs for them eccentricity
1-approximating spanning trees). For every graph G = (V,E) in our dataset and for each corre-
sponding constructed spanning tree T , we computed k(u) = eccT (u) − eccG(u), for each vertex
u ∈ V . Using this, for each graph G and spanning tree T we determined kmax = maxu∈V k(u)
(the maximum difference between eccT (u) and eccG(u)) and kavg = 1

n

∑
u∈V k(u) (the average

difference). Although kmax is greater than 2 for 7 graphs of the dataset, the average difference
kavg is smaller than 2 for all but one graph (Dutch-Elite) and is smaller than 1 for 10 graphs.
Overall, the constructed trees preserve vertex eccentricities of the graphs with a high level of
accuracy. If we consider, for example, graph AS-Graph-3 and its spanning tree constructed by
EAST, we have kmax = 2 but about 70% of vertices preserved their eccentricities (k(·) = 0),
about 28% of vertices increased their eccentricity only by one (k(·) = 1), and only the remaining
2% of vertices increased their eccentricity by two (k(·) = 2); hence, the average difference kavg
is 0.312. If we consider the graph Dutch-Elite and its spanning tree constructed by EAST,
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we have kmax = 6 but about 79% of vertices increased their eccentricity only by two (k(·) ≤ 2),
resulting in the average difference kavg = 2.083, which is rather small even for (Dutch-Elite).

Table 5 demonstrates the quality of the (not necessarily spanning) tree T constructed by
Algorithm EAT for each graph G in the dataset. The flexibility of being able to use edges in
T that are not present in G allowed the algorithm to get even better approximations of vertex
eccentricities in graphs by vertex eccentricities in trees. Algorithm EAT was able to produce
an eccentricity k-approximating tree with k = 0 for 3 graphs (Facebook, Macaque-brain-

1, US-Airlines), with k = 1 for all other graphs except POWER-Grid (which has k = 3).
For every graph G = (V,E) in our dataset and for each correspondingly constructed tree T ,
we computed k(u) = eccT (u) − eccG(u), for each vertex u ∈ V , and then kmax = maxu∈V k(u),
kmin = minu∈V k(u), and kavg = 1

n

∑
u∈V k(u). Interestingly, the difference between eccT (u) and

eccG(u) falls in the range [−1, 0] for 8 graphs, in the range [0, 1] for 7 graphs, and only for one
graph (POWER-Grid) it falls in the range [−3, 0] (we excluded Facebook, Macaque-brain-

1, US-Airlines in these counts as for them kmax = kmin = 0). For 7 graphs, more than 98%
of the vertices preserved their eccentricities (|k(·)| = 0). For POWER-Grid, more than 56% of
vertices preserved their eccentricities.

Table 5. A tree T constructed by Algorithm EAT: for each vertex u ∈ V , k(u) = eccT (u) − eccG(u); kmax =
maxu∈V k(u); kmin = minu∈V k(u); kavg = 1

n

∑
u∈V

k(u).

Network diam(G) diam(T ) [kmin, kmax] kavg
% of vertices
with k(·) = 0

% of vertices
with k(·) = 1

EMAIL 8 8 [−1, 0] −0.0009 ≈99.91% ≈0.09%
Facebook 8 8 [0, 0] 0 100 %
Dutch-Elite 22 21 [−1, 0] −0.771 ≈22.92% ≈77.18%
Jazz 6 6 [−1, 0] −0.015 ≈98.48% ≈1.52%
EVA 18 18 [−1, 0] −0.36 ≈64.02% ≈35.98%

AS-Graph-1 9 10 [0, 1] 0.62 ≈37.98% ≈62.02%
AS-Graph-2 11 12 [0, 1] 0.949 ≈5.04% ≈94.96%
AS-Graph-3 9 10 [0, 1] 0.248 ≈75.53% ≈24.47%

E-coli-PI 5 6 [0, 1] 0.595 ≈40.48% ≈59.52%
Yeast-PI 12 12 [−1, 0] −0.168 ≈83.22% ≈16.78%
Macaque-brain-1 4 4 [0, 0] 0 100 %
Macaque-brain-2 4 4 [−1, 0] −0.003 ≈99.71% ≈0.29%
E-coli-metabolic 16 15 [−1, 0] −0.624 ≈37.6 % ≈62.4 %
C-elegans-metabolic 7 8 [0, 1] 0.342 ≈65.78% ≈34.22%
Yeast-transcription 9 9 [0, 1] 0.019 ≈98.13% ≈1.87%

US-Airlines 6 6 [0, 0] 0 100 %
POWER-Grid 46 43 [−3, 0] −1.309 ≈56.34% 0 %
Word-Adjacency 5 6 [0, 1] 0.152 ≈84.82% ≈15.18%
Food 4 4 [−1, 0] −0.015 ≈98.52% ≈1.48%

6 Concluding remarks

We conclude the paper with some immediate questions building off our results.
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1. Can our result on eccentricity 2-approximating spanning trees for (α1,∆)-metric graphs be
extended to arbitrary α1-metric graphs?

2. If we drop the requirement for a tree to be a spanning tree, does every (α1,∆)-metric graph
(in particular, every chordal graph) admit an eccentricity k-approximating tree with k < 2?

More generally, we are interested in the following questions.

3. What is the complexity of the problem: Given a graph G and an integer k, check if G admits
an eccentricity k-approximating (spanning) tree?

We suspect that this problem is NP-complete. So, it is natural to ask:

4. Can this problem be efficiently approximated? Is a constant factor approximation possible?
5. Do our heuristics for general graphs provide any provable good approximation?
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