
Practical Eye Tracking with iTrace
Bonita Sharif ∗, Cole S. Peterson∗, Drew T. Guarnera†, Corey A. Bryant†, Zachary Buchanan†,

Vlas Zyrianov†, and Jonathan I. Maletic†
∗Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA 68588

†Department of Computer Science, Kent State University, Kent, Ohio, USA 44242
Emails: bsharif@unl.edu, cole.scott.peterson@huskers.unl.edu, {dguarner, cbryan20, zbuchana, vzyriano, jmaletic}@kent.edu

Abstract—The evolution and effort in designing and imple-
menting iTrace, an infrastructure for integrating eye tracking
into developer environments, is presented. The goal is to make
eye tracking practical for various stakeholders in software
engineering namely researchers, practitioners, and educators.
An overview of iTrace and the general process involved in
conducting an eye tracking study with human subjects using
iTrace is presented in this tool demo paper. Upcoming features
and ongoing plans for community involvement are also presented.

Index Terms—eye tracking, practical solution, integrated devel-
opment environments, program comprehension, empirical studies

I. INTRODUCTION

Eye tracking is gaining popularity in the software engi-
neering community as a method to understand how software
developers work [1]. Here, we provide an overview of iTrace,
our eye tracking infrastructure. iTrace makes conducting eye
tracking studies accessible to software engineering researchers
as it alleviates many of the pain points involved in conducting
eye tracking studies. One major obstacle prior to iTrace is
that program comprehension studies can realistically only be
conducted on short code snippets. This is due to software
limitations in determining what elements of the code are
being observed if the view of the code editor changes during
scrolling or switching files. Much tedious post processing is
involved including video processing of screen recordings and
manually mapping gazes to semantic elements in a long video
recording. iTrace overcomes this limitation by keeping track
of the information being looked at when the screen contents
change and then automatically maps those coordinates to the
syntactic features in the code during a post-processing phase.
Researchers can then focus on more interesting analysis and
drastically reduce the time spent post-processing.

The goal of this tool demo paper is two-fold. We first present
the current state of iTrace as it has evolved over its early
development years. The second goal is to introduce the general
set of steps to follow when using iTrace during an eye tracking
study. For additional details on tool setup and usage we direct
the reader to our web portal at http://www.i-trace.org.

II. ITRACE HISTORY AND OVERVIEW

iTrace is a community infrastructure for performing eye
tracking studies within an integrated development environment
(IDE) such Visual Studio or Eclipse to more closely resemble
realistic software development conditions. Code is not written
in isolation within the IDE and to better fit the process of

how developers work, we are also working on supporting eye
tracking within Chrome via a plugin named iTrace-Chrome.
This extends eye tracking capabilities to websites such as
Stack Overflow, Bugzilla and GitHub. Such infrastructure
facilitates new directions for conducting research studies.

The first iTrace prototype was created in 2012 where it
existed only as an Eclipse plugin. In 2018, we introduced
a new and completely refactored version of iTrace [2]. The
application is now split into several different plugins to easily
facilitate extension and reuse. The main plugins are iTrace-
Core, iTrace-VisualStudio, iTrace-Eclipse, and iTrace-Chrome.
The system is designed in a manner that facilitates extensions
for other IDE platforms such as Visual Studio Code and
IntelliJ. iTrace-Core is responsible for interfacing with the
eye tracker, managing session data, and broadcasting the gaze
coordinates to the plugins. Plugins are created for a specific
IDE and use the gaze coordinates sent by the core application
in conjunction with APIs provided by the IDE to map the
screen position of the user’s gaze to an interface element. If
the IDE element contains source code, a gaze can be mapped
down to the line and column of the source code element. All
mappings are collected and written to an XML file where line
and column mappings are used with srcML (www.srcML.org)
to process the eye tracking data and gain useful insights into
developer’s eye movements. We are also working on support
tools such as iTrace-PostProcessing and iTrace-Analysis that
will be released in the near future. The complete set of tools
are hosted on GitHub at https://github.com/iTrace-Dev.

New Features: Since the 2018 refactored version [2],
we added the ability for iTrace-Core to communicate with
plugins via TCP socket or WebSocket connections. This al-
lows plugins to be developed for several additional platforms
such as Google Chrome and VS Code. Socket settings are
user configurable to avoid port conflicts, and iTrace supports
multiple plugin clients running simultaneously. Along with
enhancements for plugin communication, iTrace has support
for more trackers including the GazePoint GP3 series tracker
alongside the Tobii Pro and Tobii 4C (with Pro upgrade).
See Figure 1 for the iTrace-Core interface. To better assist
in the analysis of eye tracking data generated by iTrace,
we have greatly extended the post-processing features of the
infrastructure to allow for all gaze data and analysis to be
recorded in a single SQLite database. Moreover, this data need
not be from only one participant’s session, but encompass a
complete study package, facilitating researchers in creating



Fig. 1. iTrace-Core Interface showing the eye trackers currently connected.
The GazePoint GP3 tracker and the Tobii X3-120 trackers are visible. The
mouse tracker can also be used as a proxy for testing when an eye tracker
is not readily available. Recording the screen is also an option for replaying
gaze overlays.

artifacts for their accepted papers. It also allows for the easy
exchange of data between collaborators. Any analysis of the
data external to iTrace can use standard SQL commands or
exported for later manipulation in external applications.

Upcoming Features: A current limitation of iTrace is
its inability to map gaze data accurately as source code is
edited during an eye tracking session. The ability to study
software development in the context of editing, such as bug
fixing or refactoring is of great research significance. This is a
challenging problem, and the iTrace team is actively exploring
solutions to support eye tracking for live source code editing.
Another upcoming feature involves recording the screen during
the eye tracking sessions. This feature allows session playback
with an overlay of eye fixations and saccades as they occur -
a useful aide for qualitative analysis. Additional features for
data validation and correction are also being designed.

III. RUNNING YOUR EYE-TRACKING STUDY

In order to run an eye tracking study, you first need to install
iTrace and one of the plugins and have access to a supported
eye tracker. We have successfully used iTrace in two published
studies [3, 4].

• Session setup: The first step is to set up the session in
iTrace-Core. There are four fields that must be populated:
Study Name, Researcher Name, Participant ID, and Data
Directory. It is important to be consistent with the Study
Name and Data Directory and to use distinct Participant
IDs as that makes processing easier after the study.

• Calibration: Next, the participant goes through a 9-point
calibration screen. Results are reported visually and writ-
ten to file for later use.

• Plugin Setup: In each plugin, there is a button to establish
a connection to Core. See Figure 2. Once this connection
is established, the core will alert the plugin of any new
recording session that starts.

• Start Tracking: Once the above steps are successfully
completed, tracking is started from iTrace-Core. With the
Core running, data from the eye tracker is transmitted to
the plugins.

IV. COMMUNITY

We are actively working to help develop a community
around iTrace. Our website at http://www.i-trace.org/ fea-
tures downloads for iTrace-Core and our post-processing tool
for detecting fixations. The source code repositories for our

Fig. 2. Plugin Views. Visual Studio’s view is shown to the left with Eclipse’s
view shown to the right. We provide feature parity between plugins. Currently,
both can connect to the server and highlight tokens in code given where the
developer is looking.

Eclipse and Visual Studio plugins are open source (with
installers for each being released in the near future). All avail-
able tools and feature documentation to help with installation
and usage will be posted to our web portal and YouTube
channel. Our site also tracks analytics to better help us gauge
interest in certain content and tools that have been released.
We plan to make all of our GitHub repositories public not
only to receive feedback in the form of bugs and feature
requests, but also to encourage community contribution and
engagement. Presently, feedback and issues are reported via
email (itracedev@gmail.com) on our contact page. We will be
expanding this to allow for feature requests, bug reports, and
questions to submitted directly from the site. A community
workshop session has been scheduled at ICSE 2019.

V. CONCLUSIONS

This tool paper reports on the current state of iTrace in-
cluding the background and motivation of why it is important.
The effort of community building is presented along with a
set of steps on how to start using iTrace to conduct a study.
As part of our future work, we plan on adding short tutorials
and videos to increase the adoption of this framework among
software engineering researchers.

ACKNOWLEDGEMENTS

This work is supported by the National Science Foundation
under grant numbers CCF 18-55756, CCF 15-53573, and CNS
17-30307/30181.

REFERENCES

[1] U. Obaidellah, M. Al Haek, and P. C.-H. Cheng, “A survey
on the usage of eye-tracking in computer programming,”
ACM Comput. Surv., vol. 51, no. 1, pp. 5:1–5:58, Jan.
2018.

[2] D. T. Guarnera, C. A. Bryant, A. Mishra, J. I. Maletic,
and B. Sharif, “itrace: Eye tracking infrastructure for
development environments,” in Proc. of ETRA, 2018, pp.
105:1–105:3.

[3] N. J. Abid, B. Sharif, N. Dragan, H. Alrasheed, and J. I.
Maletic, “Developer reading behavior while summarizing
java methods : Size and context matters,” in Proceedings
of the 41st International Conference on Software Engi-
neering (ICSE), 2019.

[4] K. Kevic, B. M. Walters, T. R. Shaffer, B. Sharif, T. Fritz,
and D. C. Shepherd, “Tracing software developers eyes
and interactions for change tasks,” Proc. of ESEC/FSE,
2015.


