

An Empirical Study on the Comprehension of
Stereotyped UML Class Diagram Layouts

Bonita Sharif and Jonathan I. Maletic

Department of Computer Science
Kent State University

Kent Ohio 44242
bsimoes@cs.kent.edu, jmaletic@cs.kent.edu

Abstract

An empirical study is presented that investigates how
stereotype based layouts impact the comprehension of
UML class diagrams. This work continues a previous
study using eye-tracking equipment by replicating it
using an alternative method. Here instead, online
questionnaires were used as a means of collecting data.
Subjects were given two types of tasks: one addressing
UML syntax and the other addressing questions
concerning software design. Three different layout
strategies are compared. Along with general aesthetics,
the layouts are primarily organized based on the class
stereotypes of control, boundary, and entity. Besides the
answers, a confidence value for each question was
collected from the subjects to help validate the
categorization of subjects. Results of the study are
compared and contrasted to the eye-tracking study done
with the same tasks and layouts. Results show a
significant improvement in performance in both types of
tasks with the multi-cluster stereotyped layouts.

1. Introduction
UML class diagrams are one of the most popular

visual presentations of software designs. A number of
empirical studies have shown UML diagrams to be very
useful during software maintenance [3, 5, 22]. The
research here focuses on how we perceive and
comprehend class diagrams. Specifically, we are trying
to understand how the use of stereotypes in combination
with different layout strategies impacts comprehension.
Stereotypes are a standard extension mechanism
provided by the UML that allow users to define
semantics on the notation thereby extending the language
[10].

Three class stereotypes are generally accepted and
used: control, boundary, and entity [4]. A boundary class
models the interaction between a system and the external
world. Entity classes models persistent information in a
system. A control class models the coordination and
sequencing of other objects in the system.

Class stereotypes are important in the process of
understanding the role and importance of each class in a
system as well as the whole of the system. They point
out architecturally important classes and relationships
and we feel they can be used to improve automated
layout methods for class diagrams. In a pilot study [2],
conducted previously, we found class stereotype based
layouts to be a promising technique for further
evaluation. Additionally, the usefulness of stereotypes
for object classification and layout was investigated and
assessed using eye-tracking [24].

While neither of these previous studies was
comprehensive or statistically conclusive, both seemed to
demonstrate that stereotypes are potentially important for
comprehension. In the work presented here, we continue
this line of research by replicating the eye-tracking study
[24] with an alternative methodology. A survey based
evaluation study was conducted with a larger number of
participants and these results are compared and
contrasted to the eye-tracking study.

The paper is organized as follows. Section 2
describes the stereotyped layouts used. The experiment
design is discussed in Section 3. Section 4 analyzes the
results and reports the findings of the experiment. The
main results are highlighted and contrasted to the eye-
tracking study in Section 5. Section 6 addresses the
threats to validity. Related work is discussed in Section
7. Section 8 concludes the paper and discusses future
work in the area.

2. Focus of the Study
We conducted an experiment that assesses the

comprehension of class diagram layouts for two sets of
tasks, namely UML tasks and design tasks. UML tasks
address the syntax and structure of visually representing
class diagrams whereas design tasks address the design
comprehension aspect of the system with respect to
maintenance and evolution. This experiment is a
replication of an earlier experiment [24] where eye-
tracking equipment was used to determine how subjects
examined a class diagram. The goal of this work is to

further validate the results from the eye-tracking
experiment and our own pilot study [2] with a bigger
sample and varied experience of the subject system used.
Replication with an alternative experimental method will
also help better understand the relationship between
different ability levels within the subjects in the two
types of tasks examined. The ability level of subjects is
determined based on self-assessment questions used in
our background analysis and on their performance in
both types of tasks. The two main research questions this
paper tries to address can be stated as follows:
• RQ1: Is there an improvement in the

comprehension of UML syntax based tasks and
general design based tasks for the stereotyped
class diagram layouts vs. layouts based on pure
aesthetics?

• RQ2: How does the subject’s ability level affect
the comprehension of stereotyped class diagram
layouts vs. layouts based on pure aesthetics?

We make a distinction between a UML class model

and a class diagram. A class diagram consists of a subset
of classes and relationships in the class model and layout
techniques. A class diagram need not consist of all
possible classes and relationships and need not represent
the entire system. Instead of developing a tool that uses
our stereotype based layout techniques, we would first
like to validate empirically the techniques that are most
useful and base the tool on our validated results.

Reverse engineering tools [11, 21] can be used to
generate the class model which represents the design of
software. Class diagrams are then drawn based on these
reverse engineered models by applying a particular
layout algorithm to the classes and relationships in the
diagram. The generation of class diagrams from reverse
engineered class models is not necessarily automatic.
Commercial tools such as Visual Paradigm
(http://www.visual-paradigm.com/product/vpuml/) for
UML automatically generate very rudimentary class
diagrams after reverse engineering the class model. Most
UML drawing editors pay more attention to reverse
engineering the class model and less attention on the
actual layout of the chosen classes to be displayed on the
diagram.

In this study, the class stereotype is identified by
textual annotations and color. In the UML, stereotypes
are shown above the class name enclosed within
guillemets. This is referred to as the textual annotation.
For example, control classes will have the «control»
textual annotation above their class name. In addition to
textual annotations: control, boundary and entity classes
are colored red, green, and blue respectively. Three
types of layouts are used to draw class diagrams for the
tasks. This selection is based on our previous work [2] in

assessing layout schemes for class diagrams. See Figure
1 for an example of the three layouts used.

--

Figure 1. Class diagrams for the PythonWrappers

module shown in three different layouts: orthogonal,
three-cluster and multi-cluster

The orthogonal layout is the current best practice
method used in class diagram layout. The layout is based
purely on general aesthetic criteria [1, 7, 9, 13, 16, 17]
such as minimizing edge crossings, minimizing edge
bends, minimizing edge length, maximizing symmetry,

and using 90 degree bends. This layout is used as a
control layout in this experiment. It does not use
information about the class stereotype in layout
positioning.

The three-cluster layout uses information about the
class stereotype to position classes into three clusters, one
for each stereotype. This layout would be seen having
control classes in the control cluster, entity classes in the
entity cluster and boundary classes in the boundary
cluster. This layout is based on the architectural
importance of each class in the system.

The multi-cluster layout also uses information about
the class stereotype to position classes into multiple
clusters. Each cluster represents a cohesive unit where
control, boundary and entity classes work together. This
layout also depends on the types of relationships that
exist between these classes. A cluster could represent a
specific feature in the system. One can think of the
multi-cluster layout as a specialization of the three-
cluster layout.

Even though the orthogonal layout did not use
stereotype information, classes in this layout still
displayed the class stereotype and color in order to keep
the visual design information the same across layouts. It
is important to note that the three-cluster and multi-
cluster layout do not ignore general aesthetics
completely. Instead, they are given a lower priority with
a higher priority given to stereotypes and their associated
relationships. This means that we could introduce few
edge crossings in the stereotyped layouts in order to
better visualize the roles of classes and functional
requirements of the system. This is unlike the orthogonal
layout that tries to reduce edge crossings as its first
priority.

3. Experimental Design
This section presents details on the logistics of the

experiment. The overall design, hypotheses, subject
system used, subjects, tasks, data collection and the basic
running of the experiment is given.

3.1. Experiment Goal and Hypotheses
The experiment seeks to analyze class diagram layouts

primarily based on class stereotypes for the purpose of
evaluating their usefulness in two categories of software
comprehension tasks with respect to effectiveness
(accuracy) and efficiency (time) from the point of view of
the researcher in the context of students at Kent State
University.

The high level hypothesis of this experiment is that
the layouts based on the class stereotype increase the
comprehension of the system. The null hypotheses are
formulated below. The alternative hypotheses are easily
derived from them.

• H0u1: There is no significant difference in UML task
comprehension between class diagrams based on the
orthogonal layout vs. the three-cluster layout

• H0u2: There is no significant difference in UML task
comprehension between class diagrams based on the
orthogonal layout vs. the multi-cluster layout.

• H0d1: There is no significant difference in design task
comprehension between class diagrams based on the
orthogonal layout vs. the three-cluster layout.

• H0d2: There is no significant difference in design task
comprehension between class diagrams based on the
orthogonal layout vs. the multi-cluster layout.

Table 1. Experiment overview

Goal Study the comprehension effect of three
types of class diagram layouts on two
types of software tasks.

Factor /
Independent
variable

Class diagram layouts with three
treatments: orthogonal layout, multi-
cluster layout, three-cluster layout

Dependent
variables

Quantitative variables: Accuracy, speed,
confidence level

Secondary
factors

Subjectʼs ability level and task
categories

The overview of the experiment is given in Table 1.
The main factor being analyzed is the layout of class
diagrams. We used three alternatives for the layout as
discussed in Section 2. The dependent variables are
described in Section 3.4. While analyzing the results we
also looked at secondary factors such as the subject’s
ability level and the task category (UML and design).

The experiment was conducted as a within-subjects
design where all subjects were given all three types of
treatments of the factor i.e., class diagram layout. We
used this to compare our results to the eye-tracking
experiment which also used the same design. Another
reason was to gather more data points for each layout.

3.2. Subject System
Hippodraw [14] is used as the subject system under

investigation. It is an interactive and Python scriptable
statistical data analysis application and framework
written in C++ with Qt for the user interface. Hippodraw
consists of nearly 96 KLOC in over 600 source and
header files. Hippodraw does not come packaged with
any design documents (class models or class diagrams).
However, doxygen documentation is available. We
reverse engineered Hippodraw source code using the
srcTools framework [21] to generate the class model.
This gave us the classes, associations, generalizations and
dependencies between the classes. Some associations
were changed to aggregations by manually inspecting the
source code. Next, we manually constructed class
diagrams using the class model in a UML drawing editor.
A total of 100 unique classes are used in this study.

3.3. Tasks
The tasks used in this study are identical to the eye-

tracking study [25] and we refer the reader there for
detailed information about each task and only briefly
describe the tasks here. This study consists of two types
of tasks: UML tasks and design tasks. The subjects had
to provide an answer to a total of 27 questions: 12 UML
tasks and 15 design based tasks. The UML tasks were
based on four Hippodraw modules whereas the design
tasks were based on five modules. A total of six
Hippodraw class modules were constructed based on
related functionality which resulted in 18 diagrams (6
diagrams * 3 layouts). Three of the modules were
common between UML tasks and design tasks.

Three of the modules consisted of one class diagram
drawn in three different layouts (9 diagrams). The other
three modules had 2 diagrams drawn in three different
layouts (18 class diagrams). The diagrams were
manually engineered in a UML drawing editor using
general aesthetic criteria [1, 7, 9, 13, 16, 17] and
stereotype information (in the case of the three-cluster
and multi-cluster layout). The number of classes used for
each of the modules range from a minimum of 12
(XmlNode module) to a maximum of 21 (PlotterBase
module) classes.

An example of a UML task would be asking the
subject to select all the classes involved in dependency or
to identify the kind of relationship between two classes.
These types of tasks depend on the UML syntax/notation
used for class diagrams.

A design related task required the subject to analyze
the class diagram to answer specific questions about
understanding Hippodraw. One example of a design task
used was: Which class controls the active window of an
application? The subjects did not need to be an expert in
Hippodraw’s design and/or implementation to answer
these questions. The answers to questions could be
found by analyzing the classes, relationships, attributes,
methods, and stereotypes.

Table 2. Three design tasks asked for the

PythonWrappers module. The layouts used for these
questions are shown in Figure 1

ID Layout Question Text
Q13 Orthogonal Select the class that a python

wrapper uses to access data in the
class NTuple

Q18 Three-
cluster

Select the class that is a python
wrapper for a class with the method
name adduct.

Q23 Multi-
cluster

Name the entity class that is
responsible for storing data

Since this is a within-subjects study, the same task is
not asked for more than one layout. This eliminates any
learning bias involved in answering the same question

twice. Instead, similar questions were asked for the
three layouts. Consider the following three questions
from the PythonWrappers module. Each of these
questions is similar in nature that allows analysis of
subject’s performance across three layouts. The class
diagrams that accompany these questions contain the
same information with the exception of the layout.

Table 3. Debriefing Questionnaire

ID Question Mapping
1 I had sufficient time to complete

the questions
1-5

2 I think the questions were difficult
to answer

1-5

3 The questions were clear to me 1-5
4 I was able to understand

information in the class diagrams
1-5

5 I think the questions were realistic 1-5
6 I found UML class stereotypes

useful in answering questions
1-5

7 Did you concentrate on the spatial
layout while answering questions?

Yes = 1
No = 0
Not sure = 2

3.4. Data Collection
We used three online questionnaires to gather data in

this experiment. The first questionnaire collected
background information about the subjects. This
information is presented in Section 3.5.

The second questionnaire consisted of the actual study
tasks. Each task (UML and design) was given a score.
We calculated the accuracy of answering UML tasks and
design tasks based on the score. The speed i.e., time
taken to complete each task was also recorded. Besides
the accuracy and speed, we also collected a confidence
level of the subject’s answer for each task. The
confidence level was on a Likert scale from 1 (not
confident) to 5 (very confident). Finally, the third
questionnaire was a debriefing questionnaire that
collected data about the task and stereotypes used. See
Table 3 for questions.

3.5. Subjects
We gathered twenty-nine subjects (14 undergraduate

students and 15 graduate students) to participate in this
experiment. The undergraduate students were within the
age range of 18-25 years. Ten of the graduate students
were between 25-35 years and five were between 35-45
years. They were all from the computer science
department at Kent State University. There were 23
males and six females. Five of the subjects had used
class diagrams in both academia and industry while the
rest had theoretical knowledge of UML and applied it in
an academic setting, typically in software engineering
courses.

The subjects were informed that the purpose of the
study was to understand how people interpret class
diagrams (not their UML expertise). They were not
aware of the experiment’s hypotheses or of the different
layouts used. They were also instructed to answer the
questions from the point of view of a maintainer trying to
understand the system. We collected information about
design and programming skills, number of years of
experience in general programming and in OO
programming and familiarity of Hippodraw. The
programming and design skills were on a scale from 1 to
5, the others were on a 1 to 4 scale. A low rating
indicates low experience/skill/familiarity. There was a
large difference in the familiarity of Hippodraw among
the participants. Most of the subjects (with the exception
of 1) were not familiar with the design of Hippodraw.
The subjects reported their self assessment of
programming and design skills. This is correlated with
the accuracy of UML and design questions in Section 4.

3.6. Study Instrumentation
The study was conducted online. A fixed amount of

time up to one minute was allotted to each question. We
did this to keep the subjects on task and to replicate the
timing aspect of the eye-tracking experiment as close as
possible. A couple of days before the experiment,
subjects were asked to go through a class diagram
tutorial. A short description of class stereotypes and their
graphically representation was given. They were also
informed of the colors used to differentiate between
different class stereotypes. The tutorial was optional,
however, all subjects with an exception of a few
participated in the tutorial. The purpose of the tutorial
was to make sure all subjects were on the same page with
respect to understanding information presented in the
class diagrams used in the study.

The following information was presented for each
task: a question, answer choices and a class diagram in
one of the three possible layouts. The subjects were
asked to choose the answer for the question with respect
to the class diagram. After all the tasks were completed,
a debriefing questionnaire was presented for the subjects
to complete. This concluded the experiment from the
subjects’ viewpoint.

4. Experimental Results and Analyses
This section presents the results of this experiment.

We first discuss the parts common to this study and the
eye-tracking study: classification of subjects and
questions. Next, we discuss exclusive observations
pertaining to this study: effect of layout on UML and
design tasks as well as the effect of ability and layout
together. Confidence levels are correlated with

performance and skill level of subjects. Finally, we
present results from the debriefing questionnaire.

4.1. Subject Classification
The accuracy and speed of 12 UML tasks and 15

design tasks were analyzed. Figure 2 shows the accuracy
and speed for all 29 subjects. None of the subjects
answered all UML questions and all design questions
correctly.

Figure 2. UML and Design task scores across all

twenty nine subjects. The maximum possible score
is 42 for UML and 18 for design. The subjects are

first sorted by UML score and then by design score.

Based on the performance of subjects in answering the
questions, we classified them into eight groups. This was
also done in the eye-tracking study [25]. Table 4 shows
the categories. The main groups are: Agnostic (A),
Inexperienced (I), Knowledgeable (K) and Expert (E).
UML scores in the ranges of [0,23], [24,29] and [30,42]
were mapped to the agnostic, knowledgeable and expert
category respectively. Design scores in the ranges of
[0,3], [4,6], [7,10] and [11,18] are mapped to the
agnostic, inexperienced, knowledgeable, and expert
category respectively.

Table 4. Categorization of subjects for UML and

Design tasks. UML and design tasks are shown by a
U and D respectively.

Design Categories
 DA DI DK DE Total
UA 6 3 2 x 11
UK x x 2 5 7
UE x 2 5 4 11 UM

L
Ca

te
go

rie
s

Total 6 5 9 9 29

The eight categories are shown in the table:
• The UADA group represents subjects with little

knowledge of UML and software design. There are
four subjects (K, L, M, O, Y, S) in this group. They
took between 1 and 8 minutes to complete the study.

• The UADI group represents subjects with little
knowledge of UML and some basic design
knowledge. There are three subjects (V, Q, AA) in
this group. They took between 11 and 15 minutes to
complete the study.

• The UADK group represents subjects with little
knowledge of UML and more knowledgeable in
design. There are two subjects (C, A) in this group.
They took 9 and 13 minutes to complete the study.

• The UKDK group represents subjects
knowledgeable in UML and design. There are two
subjects (R, T) in this group. They took 14 and 16
minutes to complete the study.

• The UKDE group was knowledgeable in UML and
experts in software design. There are five subjects
(F, G, Z, H, J) in this group. They took between 10
and 17 minutes to complete the study.

• The UEDI group was very proficient in UML with
basic design knowledge. There are two subjects (I,
U) in this group. They took 13 and 20 minutes to
complete the study.

• The UEDK group was very proficient in UML and
knowledgeable in software design. There are five
subjects (B, N, D, P, E) in this group taking between
12 and 21 minutes to complete the study.

• The UEDE group was experts in both UML and
design. Four subjects (W, AC, AB, X) fall into this
category. They took between 9 and 19 minutes to
complete the study.

The UML knowledgeable (UK) category was not
present in the eye-tracking experiment due to the small
focus group of subjects in that study. The classification
of subjects into these groups shows a varying expertise in
UML and software design skills. We ran a correlation
test to determine if there is a match between self assessed
design skills and UML and design scores. The Spearman
rank correlation between self assessed design skills and
design task scores (rs = 0.39 p-value=0.01) indicates a
significant positive correlation between the two. There is
also a positive correlation between programming skills
and design task scores (rs = 0.34 p-value=0.03) and
programming skills and UML task scores (rs = 0.32 p-
value=0.04). No correlation was found between UML
Scores and Design skills (rs = 0.212 p-value=0.135).
This is not surprising since there are subjects who are
experts in design but don’t use UML on a regular basis.

4.2. Question Classification
We classified the UML and Design questions (tasks)

based on the number of correct answers in each. UML
questions that were answered correctly in the ranges of
[0%, 59%), [59%, 69%), [69%, 76%), [76%, 100%) were
classified as challenging, difficult, intermediate and easy
respectively. All UML questions were classified as easy
in the eye-tracking study. Design questions that were
answered correctly in the ranges of [0%, 31%), [31%,
43%), [43%, 55%), [55%, 100%) were classified as
challenging, difficult, intermediate and easy respectively.
We used interquartile analysis to derive these ranges.

Table 5 shows the question classification in this study.
The design questions in boldface font are classified at the
same level in both this and the eye-tracking study. With
respect to design questions, there is a 100% match in the
challenging category, a 50% match in the easy and
difficult category and a one question match in the
intermediate category. From the mismatched items, four
of them were placed into a higher category in this study
and three were placed into a lower category.

Table 5. UML and Design Question Classification

Level UML Questions Design
Questions

Easy 8, 9, 12 14, 15, 16, 26
Intermediate 2, 4, 5, 6, 11 17, 19, 21, 22
Difficult 1, 3, 10 13, 24, 25, 27
Challenging 7 18, 20, 23
We use the question classification to generate a

weighted score for UML and design tasks. Easy
questions were given a lower weight and difficult
questions were given a higher weight. The total weight
equals 1. In the eye-tracking study, the classified
questions were used to compare the effort needed based
on the average number of fixations. We are not able to
do this analysis due to the lack of eye tracking data.
Instead we determine the layout performance based on
accuracy shown in the next two sections.

4.3. Effect of Layout on UML Tasks
This section analyzes the accuracy of UML tasks for

all subjects and determines if the layout had any effect on
task accuracy. The first and second hypotheses (H0u1 and
H0u2) seek to determine the effects of the orthogonal
layout vs. the three-cluster layout and the orthogonal
layout vs. the multi-cluster layout respectively for UML
tasks. We use the paired Wilcoxon non-parametric test
to determine the better layout. We conduct a pair wise
comparison between the three layouts. The results are
shown in Table 6.

Table 6. Results of the pair wise Wilcoxon test for

UML tasks. Significance is shown in bold. alpha =
0.05. For the 1-tailed values, the direction is given by

the order of treatment pairs i.e., first < second.
Treatment
Pairs

Z-statistic p-value
(2 tailed)

p-value
(1 tailed)

Diff
Median

Orthogonal and
three-cluster

1.43

0.1533 0.923 1.0

Orthogonal and
multi-cluster

-2.90 0.0037 * 0.0019 * -3.0

Three-cluster
and multi-
cluster

-3.98 <0.0001 * < 0.0001 * -3.5

Results indicate a significant difference between the
orthogonal layout vs. the multi-cluster with the multi-
cluster layout performing better (1-tailed p-value=
0.0019). No significant difference was found between

the orthogonal layout and the three-cluster layout. One
of the reasons could be due to Question 7 (based on the
three cluster layout) which was classified as challenging
since it was not answered correctly by most participants.
To determine this, we excluded Question 7 and its
corresponding questions from the orthogonal and three-
cluster layout from the analysis and ran the paired
Wilcoxon test again on all the data. This gives a
significant difference (1-tailed p-value = 0.0004) between
the orthogonal and three-cluster layout with the three-
cluster layout outperforming the orthogonal layout.

There is also a significant difference between the
three-cluster layout and the multi-cluster layout with the
multi-cluster layout outperforming the three-cluster
layout (1-tailed p-value<0.0001). We did not formulate
any hypotheses between the three-cluster and multi-
cluster layouts so this is a new observation.

4.4. Effect of Layout on Design Tasks
This section analyzes the accuracy of design tasks for

all subjects and determines if the layout had any effect on
task accuracy. The third and fourth hypothesis (H0d1 and
H0d2) seek to determine the effects of the orthogonal
layout vs. the three-cluster layout and the orthogonal
layout vs. the multi-cluster layout respectively for design
tasks. Similar to UML task analysis, we use the paired
Wilcoxon non-parametric test to determine the better
layout. We conduct a pair wise comparison between the
three layouts. The results are shown in Table 7.

Table 7. Results of the pair wise Wilcoxon test for

design tasks. Significance is shown in bold. alpha =
0.05. For the 1-tailed values, the direction is given by

the order of treatment pairs i.e., first < second.
Treatment
Pairs

Z-statistic p-value
(2 tailed)

p-value
(1 tailed)

Diff
Median

Orthogonal
and three-
cluster

-2.58 0.0099 * 0.005 * -0.20

Orthogonal
and multi-
cluster

-2.74 0.0062 * 0.0031 * -0.20

3-cluster and
multi-cluster

0.11 0.9138 0.5431 0.00

Results indicate a significant difference between the

orthogonal layout vs. the three-cluster layout (1-tailed p-
value = 0.005) with the three-cluster layout performing
better. A significant difference between the orthogonal
layout and the multi-cluster layout was also found (1-
tailed p-value=0.0031) with the multi-cluster layout
performing significantly better than the orthogonal
layout. No significant difference was found between the
three-cluster layout and the multi-cluster layout. This
suggests that for the design tasks, both three-cluster and
multi-cluster layouts performed equally well.

4.5. Effect of Ability and Layout
This section addressed our second research question.

It investigates if the subject’s ability level affects the
comprehension of stereotyped or orthogonal class
diagram layouts. The ability of a subject is the UML
group (UA, UK, UE) and design group (DA, DI, DK,
DE) they belong to. Figure 3 and Figure 4 show the
average UML and design scores with respect to the three
layouts used. We analyze the UML tasks and design
tasks separately.

The UML task results indicate that in all the three
UML categories, the multi-cluster layout performed
better than the orthogonal and the three-cluster layouts.
The three-cluster layout was the second best layout in all
three UML categories with the exception of the UA
category.

For design tasks, we based our comparison on low and
high design abilities. The low design ability subjects
were from groups DA and DI. The groups DK and DE
were combined to form the high design ability group.
From Figure 4, we see the performance for low design
ability subjects to be higher for multi-cluster layouts.
The same trend is seen in the high design ability group.
There is not much difference between the multi-cluster
layout and three-cluster layout for the high design ability
group. This relates to the discussion in the above section
where it was statistically shown that three-cluster and
multi-cluster layouts were equally effective.

Figure 3. UML task scores across layouts

Figure 4. Design task scores across layouts

combined into low (DA+DI) and high (DK+DE) design
ability

We did not conduct a 2-way ANOVA to determine
interaction between ability and layout due to low sample

size (n=29) and non-normality of the UML task scores.
This is left for a future experiment.

4.6. Confidence for Subject Categories
We collected the confidence level for each question to

analyze the way subjects’ rate each answer and whether
this correlates with the subjects’ self-assessment of their
design and programming skills (See Section 3.4). The
Spearman rank correlation between design skills and the
average design task confidence level for all UML
questions (rs = 0.46 p-value = 0.009) indicates a
significant positive correlation between the two.
However, no correlation was found between design skills
and average UML task confidence for all design
questions.

The Spearman rank correlation between UML scores
and the average UML confidence level for all UML
questions (rs = 0.76 p-value<0.001) indicates a significant
positive correlation between the two. The same is shown
between design scores and average design task
confidence level for all design questions (rs = 0.79 p-
value<0.001). As expected, we found that high levels of
ability in UML and design result in higher confidence.

4.7. Debriefing Questionnaire Results
Half of the subjects stated that the time given was not

sufficient. These were subjects that fell into the low
ability groups. We needed to time the questions to make
a fair comparison to the eye-tracking study which did not
involve any interruptions or distractions. The data also
shows that the questions were considered somewhat
difficult to answer. Again this rating was more prevalent
in the lowe ability groups.

Overall, the subjects agreed that the questions were
clear, realistic and the information in the class diagrams
was understandable. They also considered stereotypes to
be helpful while answering questions. Question 7 from
the debriefing questionnaire asked the subjects if they
concentrated on the spatial layout while answering the
questions. Only seven subjects said that they did.
However, this number is very subjective since even
though they might have concentrated on the spatial
layout, they might not have been aware of it. An eye-
tracking analysis would have been useful here.

5. Discussion
The results of this experiment show a significant

improvement in subjects’ performance with the multi-
cluster layout. In particular, for UML tasks, the multi-
cluster layout was the best layout when compared to the
orthogonal layout and three-cluster layout. We also
compared the three-cluster layout with the multi-cluster
layout and found the multi-cluster layout to be
significantly better in performance for UML tasks.

For design tasks, the three-cluster layout and the
multi-cluster layout outperformed the orthogonal layout.
There was no significant difference in performance
between the three-cluster and multi-cluster layout for
design tasks.

In addition to the above results, we find that the multi-
cluster layouts resulted in better performance at each
subject ability level (agnostic, inexperienced,
knowledgeable, expert). The three-cluster layout was the
second best layout with the orthogonal considered to
have the worst performance. For design tasks, in
particular, there was no difference in performance
between the three-cluster layouts and multi-cluster
layouts in each subject group. This is consistent with the
analysis without considering ability.

The subjects’ confidence level for the tasks correlate
positively with their design skills. We observed a
positive correlation between task scores and design and
programming skills. Since the subject’s categorization
into ability level groups was based on the task scores, we
wanted to validate this against the subjects’ self-
assessment of programming and design skills.

Subjects in higher ability groups (UK, UE, DK, DE)
were more confident of their answers compared to lower
ability groups (DA, DI, UA) in both UML and design
tasks. Finally, our qualitative assessment of the
debriefing questionnaire revealed that the subjects found
class stereotypes helpful in answering the questions. We
did not find any significant effect between time taken to
complete the task and the layouts used.

We now compare and contrast our study with the eye-
tracking study. The common goal between these two
studies was to find the layout that is most effective for
comprehension tasks. One major difference is the
method of data collection. We did not use eye tracking
equipment, instead online questionnaires were used. The
prediction, based on our previous work, was that the
clustered layouts would result in better performance.
This is proved using statistical significance tests in this
study. The eye-tracking study did not produce such
significance. Our subject classification resulted in the
UML knowledgeable (UK) category that didn’t exist in
the eye-tracking experiment.

Another difference between our study and the eye-
tracking study is the subjects’ familiarity with Hippodraw
and the sample size. In this study, we used a bigger
sample (n=29). This is a larger sample compared to our
pilot study [25] (20 subjects) which was run as a
between-subjects study. The eye tracking study had 9
subjects. Several subjects in the eye-tracking study were
familiar with Hippodraw’s design or had used it before.
In our study we have a more varied sample with most
subjects not familiar with Hippodraw. Another
difference is that the eye-tracking study uses information
about the average number of fixations for each question

to determine the effort required by subjects. It then
compares this effort with the difficulty level of each
question to determine if the effort is at the same, higher
or lower level. They find the most effort was required
with the orthogonal layouts. This differs from our study,
where we determine the usefulness of stereotyped layouts
using the accuracy of answers and statistical significance
tests.

6. Threats to Validity
Internal validity refers to the presence of other factors

besides the main factor that might have an effect on the
results. Since this was a within-subjects experiment we
had to make sure that there was no learning effect
involved when comparing the results of three layouts.
We address this by asking a very similar question for
each of the three layouts to have a fair and unbiased
comparison between them. The questions were presented
to each subject in a randomized order to further reduce
any learning effect that might occur. Since the
experiment was part of the subjects’ grade in a course,
they were sufficiently motivated to do well.

External validity deals with generalizing our results.
We used students as subjects in our study. Many of the
subjects had worked with UML in academia and
industry. The high ability group of students had real
world experience in designing and maintaining software
systems. We can liken this group of subjects to mid-level
to senior level developers. The subject system we used is
a real life system not a toy application. Subjects tend to
agree that tasks were realistic and typical of ones they
would ask themselves during maintenance.

To ensure conclusion validity, we use the non-
parametric paired Wilcoxon statistical test to determine
significance of stereotyped layouts vs. the orthogonal
layout due to the small sample size.

7. Related Work
The related work broadly falls into two categories: the

proposal of new layout techniques for class diagrams and
the empirical validation of class diagrams for
comprehension. Eiglsperger et al. [8, 9] present a
topology-shape-metrics automatic layout method for
class diagrams based on graph aesthetic criteria.
Eichelberger et al. [6, 7] investigated the effect of object
oriented design, cognitive psychology and human
computer interactions on UML aesthetics criteria for
class diagrams. They suggest incorporating annotated
complexity stereotypes, spatial distribution, scaling based
on complexity and coloring into the set of aesthetic
criteria for layout of class diagrams. No quantitative
evidence has been shown for any of the proposed criteria.
Gutwenger et al. [13] also propose an algorithm for
layout of UML class diagrams that balances the

following aesthetic criteria: minimize crossings,
minimize bends, uniform direction of arcs, no hierarchy
nesting, more orthogonal, merging multiple inheritance
edges and labeling edges. Sun et al. [20] propose key
graph layout criteria for class diagrams based on the laws
of perceptual theories. They list a set of fourteen criteria
for class diagrams. No priorities for layout criteria are
given. von Gudenberg et al. [23] propose an
evolutionary algorithm for class diagrams. Inheritance
and associations are evolved to determine their position.
The disadvantage is that it is very slow.

Purchase at al. [16, 17] identified that the most
important aesthetic preferences for class diagrams were
minimizing crossings, minimizing bends, horizontal
labels, joined inheritance arcs and more orthogonal
layout. Kuzniarz et al. [15] [19] investigated the role
and effect of domain stereotypes in the comprehension of
class and collaboration diagrams for the
telecommunication domain. The results of this study
statistically prove that the use of stereotypes helped in
system comprehension. Ricca et al. [18] conducted a
series of experiments to determine the usefulness of
Conallen’s stereotyped class diagrams vs. standard class
diagrams. Conallen’s stereotypes did not help graduate
students but did significantly help undergraduates with
little experience in design. None of these studies dealt
with the layout of class diagrams.

In our pilot study [2], it is shown that layouts based on
architectural importance i.e., control, boundary and entity
stereotypes, help the comprehension of class diagrams
than those based on pure aesthetics. Yusuf et al. [25]
conducted the eye-tracking study we compare this study
to. Their goal was to assess the comprehension of UML
class diagrams using an eye tracker. The use of layout,
color, and class stereotypes were all assessed to
determine their effectiveness in program comprehension.
The results indicate variation of eye movements between
experts and novices in both UML expertise and software
design ability. We are aware of only one other eye-
tracking study by Guéhéneuc et al. [12] that studies how
software engineers obtain design information from class
diagrams during program comprehension.

8. Conclusions and Future Work
This research presents the results of an empirical

study to measure the effect of stereotyped class diagram
layouts on two types of comprehension tasks. The first
set of tasks dealt with UML syntax and the second set of
tasks dealt with elements of design. Results show a
significant improvement in performance accuracy when
multi-cluster layouts were used, for both UML tasks and
design tasks. The second best layout was the three-
cluster layout for UML tasks with the orthogonal layout
having the worst score in both UML and design tasks.

The three-cluster and multi-cluster layouts performed
equally well for the design tasks. We do not claim to
generalize our results to different types of tasks. This
would require further empirical analysis.

These results repeat and add to the findings of the eye-
tracking study and our own pilot study which suggests
that stereotyped layouts have a positive effect on the
comprehension of class diagrams. This experiment
further validates the results of an eye-tracking experiment
on the same set of class diagram layouts and tasks. This
shows that eye-tracking and online questionnaires are
complementary techniques of obtaining comprehension
performance. In future work, we intend to investigate the
comprehension aspect of sub-categories of design tasks
with respect to different stereotyped layouts via both eye-
tracking methods and online questionnaires.

9. References
[1] Ambler, S. W., The Elements of UML Style, New York,
NY, Cambridge University Press, 2002.
[2] Andriyevska, O., Dragan, N., Simoes, B., and Maletic, J. I.,
"Evaluating UML Class Diagram Layout based on
Architectural Importance", in Proceedings of 3rd IEEE
International Workshop on Visualizing Software for
Understanding and Analysis (VISSOFT'05), , Budapest,
Hungary, September 25th 2005, pp. 14-19.
[3] Arisholm, E., Briand, L. C., Hove, S. E., and Labiche, Y.,
"The Impact of UML Documentation on Software
Maintenance: An Experimental Evaluation", IEEE Trans. on
Software Engineering (TSE), vol. 32, no. 6, 2006, pp. 365-381.
[4] Booch, G., Jacobson, I., and Rumbaugh, J., The Unified
Software Development Process, Addison-Wesley, 1999.
[5] Briand, L. C., Labiche, Y., Penta, M. D., and Yan-Bondoc,
H., "An Experimental Investigation of Formality in UML-
Based Development", IEEE Transactions on Software
Enginering (TSE), vol. 31, no. 10, 2005, pp. 833.
[6] Eichelberger, H., "Aesthetics of Class Diagrams", in
Proceedings of 1st International Workshop on Visualizing
Software for Understanding and Analysis (VISSOFT),
Washington, DC, USA, 2002, pp. 23 - 31.
[7] Eichelberger, H., "Nice Class Diagrams Admit Good
Design?" in Proceedings of SOFTVIS 2003, 2003, pp. 159-167.
[8] Eiglsperger, M., Gutwenger, C., Kaufmann, M., Kupke, J.,
Jünger, M., Leipert, S., Klein, K., Mutzel, P., and Siebenhaller,
M., "Automatic Layout of UML Class Diagrams in Orthogonal
Style", in Proceedings of Info Visualization, 2004, pp. 189-208.
[9] Eiglsperger, M., Kaufmann, M., and Siebenhaller, M., "A
Topology-Shape-Metrics Approach for the Automatic Layout
of UML Class Diagram", in Proceedings of SoftVis, San Diego,
CA, USA, 2003, pp. 189-198.
[10] Gogolla, M. and Henderson-Sellers, B., "Analysis of UML
Stereotypes within the UML Metamodel", in Proceedings of
UML, 2002, pp. 84-99.
[11] Guéhéneuc, Y.-G., "A Reverse Engineering Tool for
Precise Class Diagrams", in Proceedings of Proceedings of the
2004 conference of the Centre for Advanced Studies on
Collaborative research, Canada, Oct 4-7 2004, pp. 28-41.

[12] Guéhéneuc, Y.-G., "TAUPE: towards understanding
program comprehension", in Proceedings of conference of the
Center for Advanced Studies on Collaborative research
(CASCON), Canada, 2006.
[13] Gutwenger, C., Jünger, M., Klein, K., Kupke, J., Leipert,
S., and Mutzel, P., "A New Approach for Visualizing UML
Class Diagrams", in Proceedings of 2003 ACM symposium on
Software visualization (SoftVis), 2003, pp. 179-188.
[14] Kunz, P. F., "HippoDraw Users Guide",
http://www.slac.stanford.edu/grp/ek/hippodraw/, 2006.
[15] Kuzniarz, L., Staron, M., and Wohlin, C., "An Empirical
Study on Using Stereotypes to Improve Understanding of UML
Models", in Proceedings of 12th International Workshop on
Program Comprehension (IWPC) 2004, pp. 14-23.
[16] Purchase, C. H., Allder, J.-A., and Carrington, D., "Graph
Layout Aesthetics in UML Diagrams: User Preferences",
Journal of Graph Algorithms and Applications, vol. 6, no. 3,
2002, pp. 255-279.
[17] Purchase, C. H., McGill, M., Colpoys, L., and Carrington,
D., "Graph Drawing Aesthetics and the Comprehension of
UML Class Diagrams: An Empirical Study", in Proceedings of
Australian Symposium on Information Visualisation, Sydney,
Australia, December 2001, pp. 129-137.
[18] Ricca, F., Di Penta, M., Torchiano, M., Tonella, P., and
Ceccato, M., "An empirical study on the usefulness of
Conallen's stereotypes in Web application comprehension", in
Proceedings of 8th IEEE International Symposium on Web Site
Evolution (WSE), Philadelphia, PA, September 23-24 2006.
[19] Staron, M., Kuzniarz, L., and Wohlin, C., "Empirical
assessment of using stereotypes to improve comprehension of
UML models: a set of experiments", Journal of Systems and
Software, vol. 79, 2006, pp. 727-742.
[20] Sun, D. and Wong, K., "On Evaluating the Layout of UML
Class Diagrams for Program Comprehension", in Proceedings
of 13th IEEE International Workshop on Program
Comprehension, St. Louis, Missouri, USA, 2005, pp. 317-328.
[21] Sutton, A. and Maletic, J. I., "Recovering UML Class
Models from C++: A Detailed Explanation", Information and
Software Technology, vol. 49, no. 3, Jan 2007, pp. 212-229.
[22] Tryggeseth, E., "Report from an Experiment: Impact of
Documentation on Maintenance", Empirical Software
Engineering vol. 2, no. 2, 1997, pp. 201-207.
[23] von Gudenberg, J. W., Niederle, A., Ebner, M., and
Eichelberger, H., "Evolutionary Layout of UML Class
Diagrams", in Proceedings of SoftViz, Brighton, UK, Sept 4 - 5
2006, pp. 163-164.
[24] Wirfs-Brock, R., "Adding to your Conceptual Toolkit:
What's Important about Responsibility-Driven Design", Report
on Object Analysis and Design (ROAD), vol. 1, no. 2, July-Aug
1994, pp. 27-34.
[25] Yusuf, S., Kagdi, H., and Maletic, J. I., "Assessing the
Comprehension of UML Class Diagrams via Eye Tracking", in
Proceedings of 15th IEEE International Conference on Program
Comprehension (ICPC 2007), Banff Canada, June 26-29 2007,
pp. 113-122.

