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Abstract—A measure of how a class is impacted during design 

evolution is presented.  The history of design changes that 

involve a given class is the basis for the measure.  Classes that 

are often impacted by design changes are branded as 

important to the design of the system.  Identifying these 

important classes helps reveal what parts of the system are 

regularly evolved (e.g., specific features or cross-cutting 

concerns).  The design importance of a class is measured as the 

number of commits that impact both the design and the class.  

This is also measured for sets of classes that collaborate to 

realize a feature or concept in the system.  Collaborating 

classes are identified using itemset mining on commits that 

impact the design.  A small study is presented on two open 

source projects to illustrate the approach.  

Keywords- impact analysis; software evolution; mining 

software repositories.  

I. INTRODUCTION  

As a software system evolves over time its design can 
drastically change.  Classes that once were key players in the 
design may become less important.  Collaborations between 
classes change to reflect the evolved design and added 
features.  That is, the current list of important classes to 
understand for a change to be implemented is often very 
different compared to the list of earlier versions of the 
system.   

Our premise is that classes and collaborations that have 
been greatly impacted by design changes in recent history 
are very critical to the current design.  Furthermore, these 
classes and collaborations should most likely be well 
understood, in the context of the design, before a 
maintenance task is undertaken.   

If this premise holds true, we must first identify which 
changes impact the design.  This will in turn lead us to the 
classes and collaborations that are most often impacted by 
these changes. 

In the work presented here, we develop a means to 
measure the importance of classes and collaborations in the 
context of an evolving design.  We leverage our previous 
work that automatically identifies which changes to a system 
impact the design [4] and which do not.  In short we identify 
which source code changes add or delete: classes, methods, 
or relationships between classes.  These types of changes 

impact the design (i.e., UML class diagram) in substantial 
ways.  That is, interfaces are modified, new functionality 
added or removed, and collaborations between classes 
changed or added.  We label these types of changes as design 
changes.  Our previous work evaluated this approach and 
found it to be robust at distinguishing between which 
changes impact the design. 

We use this technique to identify design changes and 
empirically examine the version history of two open source 
software systems.  Our goal is to determine which classes are 
critical to the evolving design.  Furthermore, we 
automatically identify sets of collaborating classes that are 
impacted together in the context of design evolution.  These 
sets represent classes, which co-evolve, and participate 
together to realize a feature or concern. 

Our approach does not assume the existence of any 
design model.  All information is derived from the source 
code and version (commit) history. 

The paper is organized as follows. Section II describes 
the case study.  Measuring importance of single classes is 
detailed in Section III.  Identifying collaborative classes and 
measuring their importance are detailed in Section IV.  
Related work and conclusions follow.   

II. THE STUDY 

The evolutionary histories of two C++ open source 
projects over specific time durations were analyzed.  The 
selected systems are the KDE editor Kate

1
, and the KOffice 

spreadsheet KSpread
2
.  These two projects were chosen 

because they are written in C++, are well documented, have 
large evolutionary history, and vary in their purposes. 

A. Data Collection 

For each project, a period from its evolutionary history 
was selected, a target directory was chosen, and all commits 
between two specific dates from that period were extracted.  
Start and end dates were selected to cover a duration of three 
consecutive years.  The starting dates were chosen so that 
both projects were well established and undergoing active 
development and maintenance.  The selected three years 
periods for the two projects are from 1/1/2006 to 12/31/2008.  

                                                           
1 See kate-editor.org 
2 See www.koffice.org/kspread 



We selected directories that contained the most source and 
header C++ files.  From the set of commits during that time 
duration those with no C++ code changes are excluded.  Test 
files are not included since they are not part of the design. 

TABLE I.  INFORMATION ABOUT THE EXTRACTED COMMITS FROM KATE 

AND KSPREAD 

Project Directory 
Time 

Duration 

#Source 

Files 

Total 

Commits 

Kate KDE/kdelibs/kate 3 years 111 1592 

KSpread koffice/kspread 3 years 207 2389 

TABLE II.  TOP 5 CLASSES WITH THE HIGHEST IMPORTANCE FOR THE 

SYSTEMS KATE AND KSPREAD 

Kate Kspread 

Class Importance 

(#Commits) 

Class Importance 

(#Commits) 

KateView 81 Sheet 178 

KateDocument 72 Cell 148 

KateViNormalMode 49 View 106 

KateSearchBar 34 Doc 97 

KateViewInternal 33 Region 80 

TABLE III.  DISTRIBUTION OF CLASSES BASED ON THEIR IMPORTANCE FOR 

KATE AND KSPREAD 

Project 
Class Importance 

1 2-3 4-6 > 6 

Kate 34% (114/334) 36% 17% 13% 

KSpread 28% (154/542) 33% 20% 18% 

Avg. 33% 34% 18% 15% 
 

Table I presents information about the commits from the 
projects including the directory in the repository, time period 
of the duration, the number of C++ header and source files in 
that directory at the beginning of the duration, and the 
resulting number of included commits. 

B. Classes Impacted by Design Changes 

Here, only the classes involved in design changes are of 
interest.  Therefore, only the commits that involved design 
changes are examined.  After extracting all commits for a 
specific time duration, code changes in these commits are 
analyzed by our tool srcTracer [4] to identify design changes.  
A design change is defined as the addition or deletion of a 
class, a method, or a relationship (i.e., generalization, 
association, dependency) in the corresponding UML class 
diagram.  Based on this analysis, commits are categorized as 
those with design changes (impact) and those with no design 
changes. 

For commits with design changes we extracted the names 
of all classes that are involved in any design change.  For 
example, the following design changes were reported by 
srcTracer after analyzing revision 727209 on Kate: 

 

NEW METHOD KateLayoutCache::slotEditDone 

NEW GENERALIZATION  

FROM KateLayoutCache TO QObject 

NEW DEPENDENCY  

FROM KateLayoutCache TO KateEditInfo 
 

The names of all classes appeared in these changes (in 
bold) are extracted.  So, revision 727209 will be considered 
as a design impact that involved classes KateLayoutCache, 

QObject, and KateEditInfo.  Using data mining 
terminology, the commit is a transaction with three items 
(i.e., classes). 

For Kate, the total number of transactions (commits 
including design changes) is 424.  The total number of 
distinct items (classes) is 334.  For KSpread, there are 681 
commits with design changes and 542 unique classes 
involved in these design changes. 

III. IMPORTANCE OF INDIVIDUAL CLASSES 

Our approach measures class importance during design 
evolution based on the number of commits with design 
changes that impacted the class.  The importance of a single 
class A is measured as follows: 

1. Extract all commits in specific time ranges from the 

software repository 

2. Find set of commits S that impacted the design by 

analyzing code change using srcTracer tool 

3. Find subset of commits S’ that impact class A from 

set S 

4. Importance of class A is the cardinality of S’ 
 

The measure of the importance of a particular class 
during design evolution is the number of design-change 
commits involving that class.  If most of the commits, with 
design impact, involved class A, then this class is viewed as 
very important to the design.  The impact to a class may be 
direct, e.g., new methods were added to the class, or indirect, 
e.g., relationships involving the class were changed.   

Based on this measure, Table II presents the 5 most 
important classes of Kate and KSpread.  Classes are ranked 
according to their importance.  The most impacted class by 
Kate’s design changes is the class KateView and for 
KSpread it is the class Sheet.  During the studied three years, 
81 revisions committed design changes to Kate involved 
KateView, either directly or indirectly.  These 81 revisions 
are out of the total number of commits (424) with design 
impact.  So, the importance of KateView during design 
evolution, compared to all other classes, is 81/424 (19%). 

The importance of KateView (ranked 1) shows that it is 
at the core of many design changes on Kate during the 
studied three years.  It also means that the features related to 
KateView have undergone considerable evolution.  The 
same applies for the class Sheet in KSpread. 

Most classes were involved in very few design changes 
and only a few classes were impacted by a large number of 
design changes.  The distribution of classes, involved in 
design changes during the studied three years, based on their 
importance for the projects is shown in Table III.  Classes are 
grouped into four fixed ranges of importance values (0-1, 2-
3, 4-6 and greater than 6).  For Kate, 114 classes of all the 
334 classes involved in design changes (34%) were impacted 
by only one commit.  For 36% of the classes, their 
importance values are 2 or 3 commits.  The percentage of 
classes that participated in 4, 5, or 6 commits is 17%.  Only 
13% of classes have impacted by more than 6 commits.  On 
average, for the two projects 67% of classes were impacted 
by only 1, 2, or 3 commits which means most classes have 
low importance values). 



+class OutputObject:public KJS::JSObject { 

+ public: 

+ OutputObject(KJS::ExecState *exec, 

+         KateDocument *d, KateView *v); 

+ virtual ~OutputObject(); 

+ virtual KJS::UString className()const; 

+ void setChangedFlag(bool *flag)  

+    { changed = flag; } 

+ void setOutputFile 

+              (const QString &filename)  

+   {this->filename = filename; } 

+ private: 

+    KateDocument *doc; 

+    KateView *view; 

+    bool *changed; 

+    QString filename; 

+    friend class OutputFunction; 

+}; 

Figure 1.  Example of code change with collaborative classes that impacted 

together by design changes   

IV. IMPORTANCE OF MULTIPLE CLASSES 

In Section III, we measured the importance of individual 
classes.  Now we extend this measure to the importance of 
multiple classes that collaborate together to implement a 
feature or concept.  Two classes A and B are collaborative 
classes if: 

• Class A added/deleted a relationship with B and vice 

versa (B to A) 

• Class A and B appeared together in a code change at 

the file level 
 

Fig. 1 shows an example of collaborative classes from 

the code changes to the file test_regression.h.  This 
code change is part of a larger set of changes committed in 
revision 589090 of Kate.  The commit message indicates that 
this revision included the feature “added output-object for 
direct manipulation of result file”.  To implement this 
feature, revision 589090 impacted the design by adding a 
new class OutputObject with a set of methods.  Code 

change to the class OutputObject also indirectly involved 

the classes KateView, KateDocument and 

KJS::JSObject.  As a result all three classes collaborate to 
achieve a specific high-level goal that is adding the feature 
“output an object”. 

It is important to point out that classes KateView, 

KateDocument and KJS::JSObject were not changed.  
The goal is to identify collaborative classes that were 
involved together in design changes.  By including only 
classes with design changes, we attempt to identify 
collaborative classes that are mostly responsible for a 
feature, concept or cross-cutting concern.   

The method we used to identify collaborative classes and 
measure their importance is itemset mining [1].  We 
represented each commit with design impact as a transaction 
of classes (items).  All classes that impacted the design in the 
same commit are assumed to be potential collaborative 
classes.  We then apply the Apriori algorithm [1] to all 
transactions.  This well-known algorithm is used to identify 
co-changed sets of item (itemsets).  Apriori is a direct 

technique to identify sets of collaborative classes, with 
different sizes, and their measure of importance.  The 
method is summarized as follows. 

1. Represent each commit with design impact as a 

transaction of items (classes) 

2. Apply Apriori mining on these transactions with an 

appropriate support value 

3. Consider frequent itemsets as collaborative and the 

frequencies in which they occur as their importance 
 

Table IV shows the most frequent sets with sizes 2-5 

from Kate. The three classes KateViewInternal, 

KateView and KateViNormalMode were impacted together 
eight times.  So, their importance together is eight.  

The distribution of these sets based on size is shown in 
Table V.  For Kate, the size range of the identified itemsets 
(with support value 3) is from two to six (column Set Size).   

 The frequency of itemsets with size one (1-itemset) is 
the measure that we discussed in Section III (importance of 
individual classes).  

TABLE IV.  SOME IDENTIFIED ITEMSETS (COLLABORATIVE CLASSES) FROM 

KATE BY APPRIORI 

Set  

(Collaborative Classes) 

Set 

Size  

Frequency 

(Importance) 

KateDocument KateView 2 24 

KateViewInternal KateView 

KateViNormalMode 
3 8 

KateCmdActionItem KDialog 

KateCmdAction KateCmdActionMenu 
4 3 

Date Character SedReplace 

CoreCommands SearchCommand 
5 3 

TABLE V.  RESULTS OF THE IDENTIFIED ITEMSETS BY APRIORI FOR KATE 

(SUPPORT=3) AND KSPREAD (SUPPORT=5) 

 Kate - Support = 3 

Set Size  2 3 4 5 6 

Number of Sets 193 131 52 14 2 

  KSpread - Support = 5 

Set Size  2 3 4 5 6 

Number of Sets 188 116 43 6 0 

V. RELATED WORK 

Zaidman and Demeyer [13] proposed a technique to 
identify the most important (key) classes in a system.  They 
defined key classes by classes with a lot of control within the 
application (controlling functions).  Their definition for key 
classes does not involve the design evolution and differs 
from our definition.  In [11], Xing and Stroulia provided a 
class evolution taxonomy that consists of eight distinct 
evolution types. They also employed the Apriori association-
rule mining algorithm to discover co-evolving classes.  Our 
works differ in applying Apriori mining to classes that 
collaborate together in code changes and are not necessarily 
co-changed.  Lanza and Ducasse [6] presented the class 
blueprint visualization to visualize the internal structure of 
classes.  Sager et al. [10] presented an approach to detect 
similar Java classes based upon their abstract syntax tree 
representations.  Our work tries to identify collaborative 
classes that are not necessarily similar.  Gîrba et al. [3] 
proposed the usage of formal concept analysis to identify 



groups of entities with similar properties that change in the 
same way and in the same time.  For classes, the goal is to 
identify bad smells.  Bieman et al. [2] identified and 
visualized classes that experience frequent changes together.  
They call this change-coupling between classes.  The 
approach depends on using class-level implementation 
metrics and class’s relationships.   

Pinzgert et al. [8] visualized the evolution of source-code 
entity (e.g. classes and files) and relationship metrics across 
multiple releases.  Robillard [9] proposed a technique based 
on structural dependencies to automatically discover the 
program elements (including classes) relevant to a change 
task.  The method depends on static analysis of the source 
code and does not take into account the history of changes. 

Zimmermann et al. [15] Presented a prototype called 
ROSE that applies data mining methods to version histories 
in order to guide programmers along related changes. The 
Apriori Algorithm is used to obtain association rules from 
version histories.  Identifying co-changed lines [14] is an 
example of applying data mining techniques identify co-
changed entities from software repositories.  Other example 
are the identification of call-usage pattern for functions [5] 
and predicting code changes [12].  Li and Zhou [7] proposed 
PR-Miner that uses frequent itemset mining to extract 
general programming rules from large software code. The 
technique is applied only on the source code of one version. 

Our work is distinguished by identifying key classes 
based on how they impacted the history of design changes.  
We also identify key sets of collaborating classes based on 
their involvement in design changes. 

VI. CONCLUSIONS & FUTURE WORK 

A means to measure the importance of a class or set of 
collaborating classes in the context of the design of a system 
undergoing evolution is presented.   

We found that very few classes are critical to the design 
in the context of evolution.  That is, only around 15% of all 
classes in the two systems studied are impacted by more than 
six design changes.  We feel that these classes play a vital 
role in the evolution of the system design and should be well 
understood before maintenance of the systems is undertaken.  
Special attention must be given to these classes to keep the 
design intact during evolution.   

The itemset mining method is used to automatically 
identify sets of classes that are impacted by design changes 
together.  This extends the idea of single important classes of 
the design to sets of classes that when taken as a group, are 
critical to the design.     

Our future work aims to verify the accuracy of the 
identified collaborative classes by the itemset mining 
technique, and to use clustering as another technique to 
identify collaborative classes from commits.  We also plan to 
measure the importance of features by using concept analysis 
methods to identify features and relate them to their design 
changes.  We are working on applying the measure on more 
open source C++ and Java projects. The identification of 
related classes that work together may be an indication of 
class-level refactorings or participation in design patterns 
will be examined. 
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