
Measuring Class Importance in the Context of

Design Evolution

Maen Hammad

Department of Computer Science

Kent State University

Kent, OH 44242

mhammad@cs.kent.edu

Michael L. Collard

Department of Computer Science

The University of Akron

Akron, OH 44325

collard@uakron.edu

Jonathan I. Maletic

Department of Computer Science

Kent State University

Kent, OH 44242

jmaletic@cs.kent.edu

Abstract—A measure of how a class is impacted during design

evolution is presented. The history of design changes that

involve a given class is the basis for the measure. Classes that

are often impacted by design changes are branded as

important to the design of the system. Identifying these

important classes helps reveal what parts of the system are

regularly evolved (e.g., specific features or cross-cutting

concerns). The design importance of a class is measured as the

number of commits that impact both the design and the class.

This is also measured for sets of classes that collaborate to

realize a feature or concept in the system. Collaborating

classes are identified using itemset mining on commits that

impact the design. A small study is presented on two open

source projects to illustrate the approach.

Keywords- impact analysis; software evolution; mining

software repositories.

I. INTRODUCTION

As a software system evolves over time its design can
drastically change. Classes that once were key players in the
design may become less important. Collaborations between
classes change to reflect the evolved design and added
features. That is, the current list of important classes to
understand for a change to be implemented is often very
different compared to the list of earlier versions of the
system.

Our premise is that classes and collaborations that have
been greatly impacted by design changes in recent history
are very critical to the current design. Furthermore, these
classes and collaborations should most likely be well
understood, in the context of the design, before a
maintenance task is undertaken.

If this premise holds true, we must first identify which
changes impact the design. This will in turn lead us to the
classes and collaborations that are most often impacted by
these changes.

In the work presented here, we develop a means to
measure the importance of classes and collaborations in the
context of an evolving design. We leverage our previous
work that automatically identifies which changes to a system
impact the design [4] and which do not. In short we identify
which source code changes add or delete: classes, methods,
or relationships between classes. These types of changes

impact the design (i.e., UML class diagram) in substantial
ways. That is, interfaces are modified, new functionality
added or removed, and collaborations between classes
changed or added. We label these types of changes as design
changes. Our previous work evaluated this approach and
found it to be robust at distinguishing between which
changes impact the design.

We use this technique to identify design changes and
empirically examine the version history of two open source
software systems. Our goal is to determine which classes are
critical to the evolving design. Furthermore, we
automatically identify sets of collaborating classes that are
impacted together in the context of design evolution. These
sets represent classes, which co-evolve, and participate
together to realize a feature or concern.

Our approach does not assume the existence of any
design model. All information is derived from the source
code and version (commit) history.

The paper is organized as follows. Section II describes
the case study. Measuring importance of single classes is
detailed in Section III. Identifying collaborative classes and
measuring their importance are detailed in Section IV.
Related work and conclusions follow.

II. THE STUDY

The evolutionary histories of two C++ open source
projects over specific time durations were analyzed. The
selected systems are the KDE editor Kate

1
, and the KOffice

spreadsheet KSpread
2
. These two projects were chosen

because they are written in C++, are well documented, have
large evolutionary history, and vary in their purposes.

A. Data Collection

For each project, a period from its evolutionary history
was selected, a target directory was chosen, and all commits
between two specific dates from that period were extracted.
Start and end dates were selected to cover a duration of three
consecutive years. The starting dates were chosen so that
both projects were well established and undergoing active
development and maintenance. The selected three years
periods for the two projects are from 1/1/2006 to 12/31/2008.

1 See kate-editor.org
2 See www.koffice.org/kspread

We selected directories that contained the most source and
header C++ files. From the set of commits during that time
duration those with no C++ code changes are excluded. Test
files are not included since they are not part of the design.

TABLE I. INFORMATION ABOUT THE EXTRACTED COMMITS FROM KATE

AND KSPREAD

Project Directory
Time

Duration

#Source

Files

Total

Commits

Kate KDE/kdelibs/kate 3 years 111 1592

KSpread koffice/kspread 3 years 207 2389

TABLE II. TOP 5 CLASSES WITH THE HIGHEST IMPORTANCE FOR THE

SYSTEMS KATE AND KSPREAD

Kate Kspread

Class Importance

(#Commits)

Class Importance

(#Commits)

KateView 81 Sheet 178

KateDocument 72 Cell 148

KateViNormalMode 49 View 106

KateSearchBar 34 Doc 97

KateViewInternal 33 Region 80

TABLE III. DISTRIBUTION OF CLASSES BASED ON THEIR IMPORTANCE FOR

KATE AND KSPREAD

Project
Class Importance

1 2-3 4-6 > 6

Kate 34% (114/334) 36% 17% 13%

KSpread 28% (154/542) 33% 20% 18%

Avg. 33% 34% 18% 15%

Table I presents information about the commits from the
projects including the directory in the repository, time period
of the duration, the number of C++ header and source files in
that directory at the beginning of the duration, and the
resulting number of included commits.

B. Classes Impacted by Design Changes

Here, only the classes involved in design changes are of
interest. Therefore, only the commits that involved design
changes are examined. After extracting all commits for a
specific time duration, code changes in these commits are
analyzed by our tool srcTracer [4] to identify design changes.
A design change is defined as the addition or deletion of a
class, a method, or a relationship (i.e., generalization,
association, dependency) in the corresponding UML class
diagram. Based on this analysis, commits are categorized as
those with design changes (impact) and those with no design
changes.

For commits with design changes we extracted the names
of all classes that are involved in any design change. For
example, the following design changes were reported by
srcTracer after analyzing revision 727209 on Kate:

NEW METHOD KateLayoutCache::slotEditDone

NEW GENERALIZATION

FROM KateLayoutCache TO QObject

NEW DEPENDENCY

FROM KateLayoutCache TO KateEditInfo

The names of all classes appeared in these changes (in
bold) are extracted. So, revision 727209 will be considered
as a design impact that involved classes KateLayoutCache,

QObject, and KateEditInfo. Using data mining
terminology, the commit is a transaction with three items
(i.e., classes).

For Kate, the total number of transactions (commits
including design changes) is 424. The total number of
distinct items (classes) is 334. For KSpread, there are 681
commits with design changes and 542 unique classes
involved in these design changes.

III. IMPORTANCE OF INDIVIDUAL CLASSES

Our approach measures class importance during design
evolution based on the number of commits with design
changes that impacted the class. The importance of a single
class A is measured as follows:

1. Extract all commits in specific time ranges from the

software repository

2. Find set of commits S that impacted the design by

analyzing code change using srcTracer tool

3. Find subset of commits S’ that impact class A from

set S

4. Importance of class A is the cardinality of S’

The measure of the importance of a particular class
during design evolution is the number of design-change
commits involving that class. If most of the commits, with
design impact, involved class A, then this class is viewed as
very important to the design. The impact to a class may be
direct, e.g., new methods were added to the class, or indirect,
e.g., relationships involving the class were changed.

Based on this measure, Table II presents the 5 most
important classes of Kate and KSpread. Classes are ranked
according to their importance. The most impacted class by
Kate’s design changes is the class KateView and for
KSpread it is the class Sheet. During the studied three years,
81 revisions committed design changes to Kate involved
KateView, either directly or indirectly. These 81 revisions
are out of the total number of commits (424) with design
impact. So, the importance of KateView during design
evolution, compared to all other classes, is 81/424 (19%).

The importance of KateView (ranked 1) shows that it is
at the core of many design changes on Kate during the
studied three years. It also means that the features related to
KateView have undergone considerable evolution. The
same applies for the class Sheet in KSpread.

Most classes were involved in very few design changes
and only a few classes were impacted by a large number of
design changes. The distribution of classes, involved in
design changes during the studied three years, based on their
importance for the projects is shown in Table III. Classes are
grouped into four fixed ranges of importance values (0-1, 2-
3, 4-6 and greater than 6). For Kate, 114 classes of all the
334 classes involved in design changes (34%) were impacted
by only one commit. For 36% of the classes, their
importance values are 2 or 3 commits. The percentage of
classes that participated in 4, 5, or 6 commits is 17%. Only
13% of classes have impacted by more than 6 commits. On
average, for the two projects 67% of classes were impacted
by only 1, 2, or 3 commits which means most classes have
low importance values).

+class OutputObject:public KJS::JSObject {

+ public:

+ OutputObject(KJS::ExecState *exec,

+ KateDocument *d, KateView *v);

+ virtual ~OutputObject();

+ virtual KJS::UString className()const;

+ void setChangedFlag(bool *flag)

+ { changed = flag; }

+ void setOutputFile

+ (const QString &filename)

+ {this->filename = filename; }

+ private:

+ KateDocument *doc;

+ KateView *view;

+ bool *changed;

+ QString filename;

+ friend class OutputFunction;

+};

Figure 1. Example of code change with collaborative classes that impacted

together by design changes

IV. IMPORTANCE OF MULTIPLE CLASSES

In Section III, we measured the importance of individual
classes. Now we extend this measure to the importance of
multiple classes that collaborate together to implement a
feature or concept. Two classes A and B are collaborative
classes if:

• Class A added/deleted a relationship with B and vice

versa (B to A)

• Class A and B appeared together in a code change at

the file level

Fig. 1 shows an example of collaborative classes from

the code changes to the file test_regression.h. This
code change is part of a larger set of changes committed in
revision 589090 of Kate. The commit message indicates that
this revision included the feature “added output-object for
direct manipulation of result file”. To implement this
feature, revision 589090 impacted the design by adding a
new class OutputObject with a set of methods. Code

change to the class OutputObject also indirectly involved

the classes KateView, KateDocument and

KJS::JSObject. As a result all three classes collaborate to
achieve a specific high-level goal that is adding the feature
“output an object”.

It is important to point out that classes KateView,

KateDocument and KJS::JSObject were not changed.
The goal is to identify collaborative classes that were
involved together in design changes. By including only
classes with design changes, we attempt to identify
collaborative classes that are mostly responsible for a
feature, concept or cross-cutting concern.

The method we used to identify collaborative classes and
measure their importance is itemset mining [1]. We
represented each commit with design impact as a transaction
of classes (items). All classes that impacted the design in the
same commit are assumed to be potential collaborative
classes. We then apply the Apriori algorithm [1] to all
transactions. This well-known algorithm is used to identify
co-changed sets of item (itemsets). Apriori is a direct

technique to identify sets of collaborative classes, with
different sizes, and their measure of importance. The
method is summarized as follows.

1. Represent each commit with design impact as a

transaction of items (classes)

2. Apply Apriori mining on these transactions with an

appropriate support value

3. Consider frequent itemsets as collaborative and the

frequencies in which they occur as their importance

Table IV shows the most frequent sets with sizes 2-5

from Kate. The three classes KateViewInternal,

KateView and KateViNormalMode were impacted together
eight times. So, their importance together is eight.

The distribution of these sets based on size is shown in
Table V. For Kate, the size range of the identified itemsets
(with support value 3) is from two to six (column Set Size).

 The frequency of itemsets with size one (1-itemset) is
the measure that we discussed in Section III (importance of
individual classes).

TABLE IV. SOME IDENTIFIED ITEMSETS (COLLABORATIVE CLASSES) FROM

KATE BY APPRIORI

Set

(Collaborative Classes)

Set

Size

Frequency

(Importance)

KateDocument KateView 2 24

KateViewInternal KateView

KateViNormalMode
3 8

KateCmdActionItem KDialog

KateCmdAction KateCmdActionMenu
4 3

Date Character SedReplace

CoreCommands SearchCommand
5 3

TABLE V. RESULTS OF THE IDENTIFIED ITEMSETS BY APRIORI FOR KATE

(SUPPORT=3) AND KSPREAD (SUPPORT=5)

 Kate - Support = 3

Set Size 2 3 4 5 6

Number of Sets 193 131 52 14 2

 KSpread - Support = 5

Set Size 2 3 4 5 6

Number of Sets 188 116 43 6 0

V. RELATED WORK

Zaidman and Demeyer [13] proposed a technique to
identify the most important (key) classes in a system. They
defined key classes by classes with a lot of control within the
application (controlling functions). Their definition for key
classes does not involve the design evolution and differs
from our definition. In [11], Xing and Stroulia provided a
class evolution taxonomy that consists of eight distinct
evolution types. They also employed the Apriori association-
rule mining algorithm to discover co-evolving classes. Our
works differ in applying Apriori mining to classes that
collaborate together in code changes and are not necessarily
co-changed. Lanza and Ducasse [6] presented the class
blueprint visualization to visualize the internal structure of
classes. Sager et al. [10] presented an approach to detect
similar Java classes based upon their abstract syntax tree
representations. Our work tries to identify collaborative
classes that are not necessarily similar. Gîrba et al. [3]
proposed the usage of formal concept analysis to identify

groups of entities with similar properties that change in the
same way and in the same time. For classes, the goal is to
identify bad smells. Bieman et al. [2] identified and
visualized classes that experience frequent changes together.
They call this change-coupling between classes. The
approach depends on using class-level implementation
metrics and class’s relationships.

Pinzgert et al. [8] visualized the evolution of source-code
entity (e.g. classes and files) and relationship metrics across
multiple releases. Robillard [9] proposed a technique based
on structural dependencies to automatically discover the
program elements (including classes) relevant to a change
task. The method depends on static analysis of the source
code and does not take into account the history of changes.

Zimmermann et al. [15] Presented a prototype called
ROSE that applies data mining methods to version histories
in order to guide programmers along related changes. The
Apriori Algorithm is used to obtain association rules from
version histories. Identifying co-changed lines [14] is an
example of applying data mining techniques identify co-
changed entities from software repositories. Other example
are the identification of call-usage pattern for functions [5]
and predicting code changes [12]. Li and Zhou [7] proposed
PR-Miner that uses frequent itemset mining to extract
general programming rules from large software code. The
technique is applied only on the source code of one version.

Our work is distinguished by identifying key classes
based on how they impacted the history of design changes.
We also identify key sets of collaborating classes based on
their involvement in design changes.

VI. CONCLUSIONS & FUTURE WORK

A means to measure the importance of a class or set of
collaborating classes in the context of the design of a system
undergoing evolution is presented.

We found that very few classes are critical to the design
in the context of evolution. That is, only around 15% of all
classes in the two systems studied are impacted by more than
six design changes. We feel that these classes play a vital
role in the evolution of the system design and should be well
understood before maintenance of the systems is undertaken.
Special attention must be given to these classes to keep the
design intact during evolution.

The itemset mining method is used to automatically
identify sets of classes that are impacted by design changes
together. This extends the idea of single important classes of
the design to sets of classes that when taken as a group, are
critical to the design.

Our future work aims to verify the accuracy of the
identified collaborative classes by the itemset mining
technique, and to use clustering as another technique to
identify collaborative classes from commits. We also plan to
measure the importance of features by using concept analysis
methods to identify features and relate them to their design
changes. We are working on applying the measure on more
open source C++ and Java projects. The identification of
related classes that work together may be an indication of
class-level refactorings or participation in design patterns
will be examined.

REFERENCES

[1] Agrawal, R. and Srikant, R., "Fast Algorithms for Mining
Association Rules", in Proceedings of 20th International
Conference Very Large Data Bases (VLDB'94), 1994.

[2] Bieman, J. M., Andrews, A. A., and Yang, H. J.,
"Understanding Change-proneness in OO Software through
Visualization", in Proceedings of 11th IEEE Int. Workshop
on Program Comprehension (IWPC'03), 2003, pp. 44-53.

[3] Gîrba, T., Ducasse, S., Kuhn, A., Marinescu, R., and Daniel,
R., "Using concept analysis to detect co-change patterns", in
Proceedings of 9th International Workshop on Principles of
Software Evolution (IWPSE'07), Croatia, 2007, pp. 83-89.

[4] Hammad, M., Collard, M. L., and Maletic, J. I., "Automatically
Identifying Changes that Impact Code-to-Design
Traceability", in Proceedings of 17th IEEE International
Conference on Program Comprehension (ICPC’09),
Vancouver, Canada, May 17-19 2009, pp. 20-29.

[5] Kagdi, H., Collard, M. L., and Maletic , J. I., "An Approach to
Mining Call-Usage Patterns", in Proceedings of ACM/IEEE
International Conference on Automated Software
Engineering (ASE’07), 2007, pp. 457-460.

[6] Lanza, M. and Ducasse, S., "A Categorization of Classes based
on the Visualization of their Internal Structure: the Class
Blueprint", in Proceedings of 16th ACM SIGPLAN
Conference on Object Oriented Programming Systems
Languages and Applications, 2001, pp. 300 - 311.

[7] Li, Z. and Zhou, Y., "PR-Miner: automatically extracting
implicit programming rules and detecting violations in large
software code", in Proceedings of 10th European Software
Engineering Conference (ESEC-FSE’05), 2005, pp. 306-315.

[8] Pinzger, M., Gall, H., Fischer, M., and Lanza, M., "Visualizing
Multiple Evolution Metrics ", in Proceedings of 2005 ACM
Symp. on Software Visualization (SoftVis'05), pp. 67-75.

[9] Robillard, M. P., "Automatic generation of suggestions for
program investigation", ACM SIGSOFT Software
Engineering Notes, vol. 30, no. 5, 2005, pp. 11 - 20.

[10] Sager, T., Bernstein, A., Pinzger, M., and Kiefer, C.,
"Detecting similar Java classes using tree algorithms", in
Proceedings of 2006 International Workshop on Mining
Software Repositories (MSR'06), China, 2006, pp. 65-71.

[11] Xing, Z. and Stroulia, E., "Understanding Class Evolution in
Object-Oriented Software", in Proceedings of 12th IEEE
International Workshop on Program Comprehension
(IWPC’04), 2004, pp. 34 - 43.

[12] Ying, A. T. T., Murphy, G. C., Ng, R., and Chu-Carroll, M.
C., "Predicting Source Code Changes by Mining Change
History", IEEE Transactions on Software Engineering, vol.
30, no. 9, 2004, pp. 574-586.

[13] Zaidman, A. and Demeyer, S., "Automatic identification of
key classes in a software system using webmining
techniques", Journal of Software Maintenance and
Evolution: Research and Practice (JSME), vol. 20, no. 6,
2008, pp. 387-417.

[14] Zimmermann, T., Kim, S., Zeller, A., and Jr, E. J. W.,
"Mining Version Archives for Co-changed Lines", in
Proceedings of 2006 International Workshop on Mining
Software Repositories (MSR'06), 2006, pp. 72-75.

[15] Zimmermann, T., Zeller, A., Weissgerber, P., and Diehl, S.,
"Mining version histories to guide software changes", IEEE
Transactions on Software Engineering, vol. 31, no. 6, 2005,
pp. 429 - 445.

