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Abstract—A tool supporting the automatic identification of 

programming idioms specific to the construction of C++ 

generic libraries is presented.  The goal is to assist developers 

in understanding the complex syntactic elements of these 

libraries.  Large C++ generic libraries are notorious for being 

extremely difficult to comprehend due to their use of advanced 

language features and idiomatic nature.  To facilitate 

automated identification, the idioms are equated to 

micropatterns, which can be evaluated by a fact extractor.  

These micropattern instances act as beacons for the idioms 

being identified.  The method is applied to study a number of 

widely used open source C++ generic libraries. 
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I.  INTRODUCTION 

Generic programming is a paradigm that equips 
developers with a mechanism for designing adaptable and 
efficient generic algorithms and data structures.  In C++, the 
paradigm is rooted in the ability to parameterize (via 
templates) algorithms and data structures with user-specific 
types at compile time in order to compose more complex 
software abstractions.  While extensive use of the compiler 
may yield substantial benefits in terms runtime performance 
and elegant design, the resulting software is typically very 
difficult to comprehend due to the idiomatic nature of 
generic programming in C++.  Frequently composed of 
cryptic template definitions and instantiations, generic 
libraries can often perplex even the most seasoned software 
engineer. 

The incomprehensibility of C++ generic libraries can be 
largely attributed to the lack of supporting linguistic 
abstractions, which results in the abuse of existing language 
structures (e.g., classes) to develop programming idioms in 
their place.  Whereas languages that embrace other 
paradigms (esp., object-oriented programming) have evolved 
features that more readily express their idioms and 
abstractions, the language features underlying generic 
programming in C++ exists at the most basic level: class and 
function templates.   

In order for a programmer to become proficient in the 
generic paradigm, they must master the idioms and patterns 
that define its abstractions, which in the case of C++ implies 
a practical mastery of the entire language and the 

idiosyncrasies of its compilers.  On the other hand, one 
purpose of generic libraries is to provide reusable and 
adaptable libraries for application developers.  Given that 
generic libraries (via templates) are necessarily transparent 
(i.e., not black boxes), their usage creates a leaky abstraction.  
The idioms used in the construction of generic libraries are 
leaked to more casual developers in the form of error 
messages and, in some cases, compilation failures. 

Our goal is to assist developers in understanding patterns 
and idioms in generic libraries by providing tools to 
automatically identify them in source code.  This helps 
address the “leakiness” of advanced generic and generative 
programming technique by mapping these implementation-
level idioms into more comprehensible, abstract forms.  In 
this work, we survey a number of prevalent programming 
idioms used in widely-used C++ generic libraries.  By 
casting idioms as micropatterns, we describe a mechanism 
by which their instances can be automatically identified in 
source code. We present and validate a tool that 
automatically identifies instances of these micropatterns in 
C++ source code and use this tool to study a number of open 
source generic libraries.  Results of the study are used to 
motivate discussion on tools and techniques for using and/or 
maintaining generic libraries and aspects of the evolution of 
the C++ programming language along the same lines. 

This paper is organized as follows.  Section 2 presents 
related work.  In section 3, we describe commonly used 
idioms in generic programming, and in section 4 we 
decompose those idioms into micropatterns.  Section 5 
presents the implementation and its validation.  In section 6 
we describe the study of a number of widely used C++ 
generic libraries, and present discussion and conclusions in 
Section 7 & 8. 

II. RELATED WORK 

The style of generic programming that dominates the 
C++ landscape was pioneered in Ada [16] and later adapted 
to C++ templates [17] where it formed the basis of the 
Standard Template Library (and later a part of the C++ 
Standard Library) [3].  This work includes techniques for 
functors, tag dispatch, and traits classes.  The Boost Graph 
Library, for example, uses these techniques extensively to 
implement generic graph algorithms [19].  



A number of techniques related to this style of 
programming have been discussed in the literature.  Coplien 
provides the first description of common template patterns in 
generic components [5].  Specific design patterns for generic 
programming are presented in [8], and generative techniques 
for datatype composition (i.e., mixins) are described in [22].  
Template metaprogramming and its associated 
idioms/patterns are described by Abrahams and Gurtovoy 
[1].  Alexandrescu employs a number of these techniques in 
his treatment of C++ library design [2]. 

Despite the wealth of work on techniques for generic 
programming and library design, there is comparatively little 
work on program analysis or reverse engineering of generic 
libraries or templates.  There are a few notable exceptions.  A 
lint-like tool is presented in [12] that diagnoses misuses of 
generic concepts (especially iterators) in the STL.  A method 
of measuring the impact of changes to concept definitions is 
presented in [26].  An approach to support the debugging of 
template metaprograms is given in [18].  A method of 
recovering type constraints (concepts) from function 
templates is presented in [24], and a technique to support 
program analyses of template instantiations is given in [23]. 

This work is an extension of the study conducted in [13] 
on identifying programming idioms in C++ generic libraries.  
We have extended this work by adapting it to the notion of 
micropatterns [10], which are described as class-level 
patterns that can be expressed as a “simple formal condition 
on the attributes, types, name, and body”.  Many of the 
programming idioms identified in the previous study can be 
expressed as predicates on classes in generic libraries.  We 
have also expanded the set of idioms being identified. 

III. IDIOMS FOR GENERIC PROGRAMMING 

In this section, we present a number of common 
programming idioms used in C++ generic library design.  
We do not claim to describe all known idioms for generic 
programming in C++, only those we perceive as the most 
frequently used.  In the presentation of these idioms, we 
sometimes omit the typename specifier, for brevity. 

template<typename T> 

struct less { 

  bool operator()(T x, T y) const { 

    return x < y; 

  } 

}; 

Figure 1.  The less functor encapsulates the comparison, via 
operator<, for a type T. 

A. Functors 

A functor (sometimes called a function object) is a class 
that overloads the function call operator (operator()).  
Functors are used to support the definition of high-order 
functions in C++.  By implementing a function as an object, 
functors be used to a) abstract or adapt calls to other 
functions, b) curry function parameters, c) maintain state 
(including external data references) between calls.  An 
example of a functor is given in Figure 1.  

Here, the class template less is a functor that abstracts 
the syntactic comparison of objects via operator<.  This 
can be used to parameterize high order functions 
(algorithms) such as sort. 

B. Template Metaprogramming 

Template metaprogramming encompasses the definition 
and use of programs that perform compile-time operations on 
types or integral constants, and is predicated upon the 
definition of template metafunctions [1].  A template 
metafunction is class (usually a template) that “returns” a 
computed result as a typedef or static constant.  A non-
template metafunction is called a constant metafunction; the 
Boost.MPL types true_ and false_ can be thought of as 
constant metafunctions.  A metafunction that returns a type 
(via a typedef) is called a type metafunction, and a 
metafunction that returns a value (via a static constant or 
enumeration value) is called an integral metafunction, and if 
the integral type is bool, then we refer to it as a boolean 
metafunction.  We use the term “return” loosely.  In reality, 
the “caller” of a metafunction accesses the “return” value by 
referring to a nested declaration. 

There are generally two uses of metafunctions: the 
definition of integral metaprograms (e.g., GCD and LCM) 
and the manipulation or selection of types in generic 
libraries.  The latter application is of more interest in this 
work.  Metafunctions that operate on types are frequently 
used to select and refine class structure, enhance C++ 
overloading, and act as aliases to more complex type 
definitions.  For example, consider the type metafunction 
(also called a type accessor) shown in Figure 2. 

template<typename T, typename U> 

struct add_result { 

  typedef decltype(T() + U()) type; 

}; 

Figure 2.  The add_result type accessor yields the result type of the 
operator+ defined for the T and U. 

The add_result type accessor demonstrates an 
interesting pattern in C++, namely the use of metafunctions 
functions to deduce the result type of an expression. 

template<typename T, typename U> 

struct is_same { 

  static bool const value = false; 

}; 

template<typename T> 

struct is_same<T, T> { 

  static bool const value = true; 

}; 

Figure 3.  The is_same type trait is comprised of a class template that 
responds in the negative and a partial specialization that responds in the 

affirmative iff the template is instantiated over the same types. 

Another common use of metafunctions is that of type 
traits.  Type traits are typically classified as any metafunction 
query or transformation on a type (or types) with respect to 
some domain.  Many of these queries are Boolean 
metafunctions, and are implemented as a set of class 
template specializations.  The standard header 



<type_traits> defines a number of traits that can be used 
to evaluate common properties of types in the C++ type 
system.  For example, consider an implementation of the 
is_same type trait shown in Figure 3. 

Another used with metafunctions is the definition of 
metafunction classes.  A metafunction class is a class 
(frequently a template) that defines a nested metafunction 
(generally named “apply”).  Metafunction classes enable 
high-order metafunction programming by allowing lazy (or 
deferred) instantiation of the metafunctions.  This technique 
is frequently used to wrap template names, projecting them 
into the type system.  For example, the Boost Graph Library 
(BGL) uses a variant of this approach to select and 
instantiate containers for vertex and edge lists.  The vector 
selector is shown in Figure 4.   

struct vecS { 

  template<typename T> 

  struct bind_ { 

    typedef std::vector<T> type; 

  }; 

}; 

Figure 4.  The vecS metafunction class uses an inner bind_ operator to 
the requested container. 

The technique used here allows the adjacency list 
implementation to select features when the container is 
known to be vecS, but before the underlying vector type has 
been instantiated.  In this particular case, instantiation of the 
vector is delayed because of cyclic dependencies between 
types in the definition of the graph class.  We note that this 
definition is only used when the compiler does not correctly 
support partial template specialization.  

C. Tag Dispatch 

Tag dispatch is a technique that is used to enhance 
function overloading on different kinds or categories of 
types.  This technique is used when different algorithms can 
be identified for similar but related abstractions within a 
generic domain.  The tag dispatch idiom relies on the 
definition of tag classes and the overloading of functions on 
those types.   

Specifically, there are four components to the tag 
dispatch idiom: a set of tag classes, a map function, the 
dispatcher, and the dispatch targets.  A tag class is an empty 
class that describes a kind of type or a property of a type.  
Tag classes are sometimes organized inheritance hierarchies 
(called tag class hierarchies) in order to categorize types.  
The map function is a function or metafunction that maps a 
type to its most specialized tag class.   

The dispatch framework is comprised of a dispatcher and 
set of targets.  The dispatch targets have mostly the same 
parameters but are overloaded on different tag classes.  The 
dispatcher invokes a target calling the overloaded name with 
the expected arguments and the result of the map function.  
The compiler will statically resolve the overload, and the use 
of inlining and copy elision will generally guarantee that the 
dispatch technique incurs no runtime overhead. 

One of the best known examples of tag dispatch is the 
STL advance operation for iterators.  The entire series of 
structures is given in Figures 5-7. 

struct in_iter_tag { }; 

struct fwd_iter_tag : in_iter_tag { }; 

struct bidi_iter_tag : fwd_iter_tag { }; 

struct ra_iter_tag : bidi_iter_tag { }; 

Figure 5.  The STL iterator tag class hierarchy classifies iterators based on 
their traversal operations and properties. 

template<typename Iter> 

typename Iter::category 

iterator_category(Iter) { 

  return Iter::category(); 

} 

template<typename T> 

ra_iter_tag iterator_category(T*) { 

  return ra_iter_tag(); 

} 

Figure 6.  The iterator_category function maps an iterator type to 
its corresponding tag class.  An overload is required for pointer types. 

template<typename Iter> 

void adv(Iter& i, int n, in_iter_tag) { 

  assert(n >= 0); 

  while(n--) ++i; 

} 

template<typename Iter> 

void adv(Iter& i, int n, bidi_iter_tag) { 

  if(n > 0) while(n--) ++i; 

  else      while(n++) --i; 

} 

template<typename Iter> 

void adv(Iter& i, int n, ra_iter_tag) { 

  i += n; 

} 

template<typename Iter> 

void advance(Iter& i, int n) { 

  advance(i, n, iterator_category(i)); 

} 

Figure 7.  The advance algorithms are dispatched for different kinds of 
iterators based on the iterator tag hierarchy.  The last implementation is the 

dispatcher. 

The STL defines a tag hierarchy for iterator, which is 
shown in Figure 5.  The tag class hierarchy defines four 
distinct classifications of iterators based on their traversal 
properties—how an iterator moves along or consumes a 
sequence of objects.  Each kind of iterator is represented by a 
tag class in this hierarchy.  An input iterator allows forward 
traversal through a sequence.  A forward iterator is a multi-
pass input iterator (the sequence is not consumed during 
traversal).  A bidirectional iterator can also traverse 
backwards in the sequence, and a random access iterator can 
move multiple steps in either direction in constant time.  
Iterator types are mapped to the iterator hierarchy via the 
iterator_category function, whose implementation is 
shown in Figure 6 

The advance algorithm moves an iterator by n steps. The 
values of n allowed by the algorithm and the efficiency with 
which the move is computed vary with the kind of iterator.  



If the iterator is a forward iterator (e.g., singly linked lists), n 
must be positive, but if the iterator is bidirectional n may also 
be negative.  The algorithm executes in O(1) if and only if 
the iterator supports random access, O(n) otherwise.  The 
advance algorithm and its dispatch targets are shown in 
Figure 7. 

D. Traits Class 

A traits class is a class template that adapts a type to a 
generic abstraction (or concept) by providing associated 
types and static functions and (constant) data.  A traits class 
decouples the access of these elements from actual 
implementation types allowing generic algorithms and data 
structures to be written in terms of the abstraction rather than 
the implementations.  This is especially useful if the 
implementations provide varied interfaces to similar 
functionality.  A traits class typically has two components: a 
generic definition and a set of specializations that adapt types 
to that definition. 

The canonical example of traits classes is the STL’s 
iterator_traits.  The iterator_traits class makes it 
possible to write algorithms in terms of a generic iterator 
abstraction by providing a mechanism for adapting arbitrary 
types to the iterator concept.  The sole purpose of this 
adaptive technique is to decouple the access of associated 
types from the iterator.  This is required for pointer types, 
which do not define nested types (e.g., value_type, 
reference, pointer, etc.). 

template<typename Iter> 

struct iterator_traits { 

  typedef Iter::value_type value_type; 

  typedef Iter::reference reference; 

  typedef Iter::pointer pointer; 

}; 

template<typename T> 

struct iterator_traits<T*> { 

  typedef T value_type; 

  typedef T& reference; 

  typedef T* pointer; 

}; 

Figure 8.  The iterator_traits class derives a number of different 
associated types for its Iter template parameter.  A partial specialization 

adapts pointer type to the generic definition. 

The iterator_traits class acts as a kind of 
parameterized façade for a number of different type 
accessors on its Iter template parameter.  In some cases, 
however, it is not possible for an iterator implementation to 
define these associated types.  For example, instantiating this 
template over pointer types (i.e., T*) will lead to compiler 
errors—even though T* is a valid (random access) iterator—
because T* cannot have any associated types.  This enables 
generic algorithms to be written in terms traits classes rather 
than specific types. 

The generic iterator_traits class implements an 
adaptor for conformant types.  Any iterator implementation 
can be made to conform to the iterator concept by defining 
the correct associated types.  This is shown in Figure 8. 

E. Constrained Templates 

There are cases, in the design of generic data structures or 
algorithms, where it becomes useful to enable or disable a 
subset of specializations or overloads based on the properties 
of the types over which they are being instantiated.  Concept-
controlled polymorphism [14, 15] is similar to tag dispatch 
except that template instantiations are enabled or disabled by 
a metafunction rather than being selected by a tag class. 

This technique of enabling or disabling template 
instantiation is rooted in the use of SFINAE (Substitution 
Failure Is Not An Error) to quietly remove specializations or 
overloads from the list of templates being considered for 
instantiation and overload resolution.  Although SFINAE can 
be applied casually in a large number of situations, its 
systematic use is typically predicated upon the use of 
SFINAE-based enablers and disablers.  SFINAE enablers 
are designed to trigger substitution failures based on the 
evaluation of Boolean metafunctions and are, themselves, 
typically implemented as a kind of “partial” metafunction.  A 
simplified version the Boost C++ Library’s SFINAE enabler, 
called enable_if, is shown in Figure 9. 

template<typename C, typename T = void> 

struct enable_if {  

  typedef T type; 

}; 

template<typename T> 

struct enable_if<false_, T> { }; 

Figure 9.  The enable_if template implements a SFINAE enabler that 
can be used to control the instantiation of templates based the evaluation of 

a metafunction C. 

We say that enable_if is a partial metafunction since 
only one specialization defines the requisite associated type.   
If the template is instantiated in such a way that C is 
substituted with the constant metafunction false_, then the 
associated type will not be defined in the resulting template 
instance, and a subsequent reference to type will generate a 
substitution failure.  A SFINAE disabler simply inverts the 
logic of the enabler. 

SFINAE enablers are used as either the result type of a 
function declaration or as the type of an additional function 
parameter that defaults to nullptr.  Consider the operation 
infinity shown in Figure 10, in which the constraint is 
applied to the result type. 

template<typename T> 

enable_if<is_floating_point<T>, T>::type  

infinity() { 

  return numeric_limits<T>::inf(); 

} 

template<typename T> 

disable_if<is_floating_point<T>, T>::type  

infinity() { 

  return numeric_limits<T>::max(); 

} 

Figure 10.  The first overload of infinity is enabled if and only if T 
satisfies the is_floating_point predicate. 



If is_floating_point<T> evaluates to true_ (e.g., 
called as infinity<double>()) then the first overload is 
instantiated correctly and the second overload is quietly 
removed from the candidate set.  Conversely, if the template 
argument is given as int, then the first overload will be 
excluded and the second selected.  

F. Partial Templates 

Another technique used to selectively allow (or disallow) 
template instantiation is to declare (but not define) a class or 
function template and then only provide specializations or 
overloads for the intended targets.  The intent of the partial 
template idiom is to explicitly restrict the set of valid 
arguments over which it can be instantiated.  For example, 
consider the container_gen facility in the BGL, which is 
used to instantiate vertex and edge containers based on a 
selectable tag class.  Its implementation is shown in Figure 
11. 

template<typename Tag, typename Value> 

struct container_gen { }; 

template<typename Value> 

struct container_gen<vecS, Value> { 

  typedef std::vector<Value> type; 

}; 

template<typename Value> 

struct container_gen<listS, Value> { 

  typedef std::list<Value> type; 

}; 

Figure 11.  The partial template container_gen must be parameterized 
over a valid container selector (Tag) class and value type. 

If the instantiation of container_gen includes a tag 
class that is not specialized on, this will almost certainly 
result in a compiler error.  Another common technique is to 
declare, but not define the primary template.  This is 
common with recursive, variadic templates in C++0x. 

G. Mixins 

A mixin is a class that can be used to “inject” 
functionality into a user-defined type [22, 25].  In C++, 
mixins typically take the form of a class template that derives 
from one of its template parameters.  This technique allows 
programmers to construct or compose data structures that 
aggregate the functionality of their mixins.   

template<typename Base = null_arch> 

struct def_ctor_arch : Base { 

  def_ctor_archetype(); 

}; 

template<typename Base = null_archetype> 

struct copy_ctor_arch : Base { 

  copy_ctor_arch(copy_ctor_arch const&); 

};  

Figure 12.  The default constructible archetype uses the mixins pattern to 
support interface aggregation. 

For example, mixins are used in the archetype system of 
the Boost C++ libraries to support concept-checking tests.  
An archetype is a class that exposes only the structural 
requirements of a concept (or template type constraint), no 

more, no less.  They are used to evaluate the specification of 
concepts in generic algorithms and data structures.  Figure 12 
shows an abbreviated version of the Boost archetype that 
enables tests for default and copy constructability. 

Here, two archetype classes expose functionality for 
constructing types that are either copy constructible or 
default constructible.  A new archetype that is both copy and 
default constructible can be composed as the type 
copy_ctor_arch<def_ctor_arch<>>.  The resulting 
class should expose both constructors, but no more. 

H. Curiously Recurring Template Pattern 

The Curiously Recurring Template Pattern (CRTP) is an 
inheritance pattern that most frequently used to provide 
default implementations of common operations for a user-
defined type [5].  In this idiom, the base class provides 
services that depend on operations in the deriving class.  In a 
sense, this is analogous to dynamic polymorphism where the 
base class invokes virtual or abstract methods that are 
intended to be overridden or implemented by the derived 
class.  Instead of virtual methods however, this base class 
statically casts itself as the derived class and invokes the 
needed method.  CRTP is largely a utility mechanism that is 
frequently used to simplify the process of adapting types to a 
known interface. 

template<typename Derived, typename Value> 

class iterator_facde { 

  typedef Value value_type; 

  typedef Value& reference; 

  typedef Value* pointer; 

  Derived* self() { 

    return static_cast<Derived*>(this); 

  } 

  Derived& operator++() { 

    self()->increment(); 

    return *self(); 

  } 

  reference operator*() { 

    return self()->dereference(); 

  } 

  pointer operator->() { 

    return &(self()->dereference()); 

  } 

}; 

Figure 13.  A partial implementation of Boost’s iterator_facade is 
parameterized over a Derived iterator implementation and its Value 
type.  Standard iterator operations are implemented in terms of functions 

defined by the Derived type. 

For example, consider a partial implementation of the 
Boost Iterator Library’s iterator_facade class.  The 
iterator_facade is a class template that is parameterized 
over a user-defined class that can be adapted to act as an 
iterator.  The user-defined class is required to supply several 
methods to work with the base. 

The iterator_facade class is parameterized over two 
types, the first of which is a user-defined class that 
implements some form of iterator functions (this is the CRTP 
parameter), and the second is the value type of the iterator, 
which is used to determine the reference type.  One of the 



TABLE 1. THE MICROPATTERN CLASSIFICATIONS AND DESCRIPTIONS ARE EXTENDED AND ADAPTED TO ADDRESS C++ AND GENERIC PROGRAMMING.  THE 
IDIOM REPRESENTED BY THE MICROPATTERN, IF ANY, IS GIVEN IN THE 3RD COLUMN 

Degenerate Classes 

Degenerate State and Behavior 

Designator A non-template class with no members Tag Class 
Taxonomy A Designator that derives from one other class Tag Class 
Joiner A Designator that derives from multiple classes Tag Class 
Traits Class A class template with only typedefs and possibly static (constant) members  Traits Class 
Metaprogramming 

Type Metafunction A class declaring an associated type named ‘type’ Metafunction 
Integral Metafunction A class declaring a static constant integral attribute named ‘value’ Metafunction 
Constant Metafunction A metafunction that is not a class template Metafunction 
Metafunction Class A class declaring a nested Metafunction named ‘apply’ Metafunction 
Degenerate Behavior 

Functor A class that overloads the function call operator Functor 
Function Class A class with a single static method and no attributes  
Degenerate State 

Stateless A class with no attributes.  

Containment 

Data Managers 

Record A class with only non-reference, public attributes  
Environment A class whose attributes are all references  

Inheritance 

Base Classes 

Static Outline A class that statically down-casts ‘this’ as a dependent type Curious Template 
Inheritors 

Mixin A class that derives from a template parameter Mixin 

Specialization 

Degenerate Specialization 

Enabler A Metafunction with a specialization that is not a Metafunction Template Constraint 
Partial Template An undefined or empty class template with non-empty specializations Partial Template 

 
most important feature of this class is the self function, 
which statically downcasts this object to its Derived class.  
The required iterator interface, the operators ++, *, and -> 
are provided by the façade.  The class represented by the 
type parameter Derived must implement the functions 
increment, decrement, and dereference.  

IV. MICROPATTERNS IN GENERIC LIBRARIES 

In order to study the use of these idioms in generic 
libraries, we considered the elements of their composition 
and were able to reduce many program elements to 
micropatterns [10].  A micropattern is a predicate on a class 
that can be expressed in terms of its attributes, types, name, 
or body.  We map these idioms onto the micropattern 
concept for two reasons.  First, micropatterns provide a 
method of encapsulating observations of classes that does not 
depend on the evaluation of relationships between them.  
Second, most of idioms we have described can be expressed 
as predicates on the properties of a class definition.  The only 
exceptions are tag dispatch and constrained function 
templates, which deserve special attention, and partial 
template specializations (including enable_if), which 
depend on the analysis of their specialization relationship. 

We extended and refined this set of micropatterns, 
adapting it to C++ and generic programming.  The set of new 
and adapted micropatterns and their descriptions are given in 
Table 1.  We provide a mapping of each micropattern to the 
idiom that it represents. 

We added a new top-level category, Specialization, to the 
micropattern catalog.  This category of micropatterns 
describes properties of class template specializations.  The 
one subgroup we identified, Degenerate Specializations, 
refers to the fact that the specializations are not statically 
polymorphic with the base template.  The names chosen for 
the micropatterns are intended be representative of the 
predicate rather than the more established name of the idiom.  
Specific adaptations and extensions of the previous catalog, 
and rationale or other notes are now given. 

Designator, Taxonomy, and Joiner.  We refined these 
micropatterns, restricting them to non-template classes.  Note 
that under our definition, all taxonomies and joiners are also 
designators.  These micropatterns are tag classes in the 
generic programming literature. 

Traits Class.   A traits class is a class template that 
decouples a generic abstraction from specific 
implementations.  It is comprised entirely of typedefs and 
occasionally static methods and attributes. 

Type, Integral, and Constant Metafunctions.  These 
micropatterns are classes that are used to compute or 
evaluate properties of types (or integral constants) at compile 
time.  We further note that a class deriving from a 
metafunction is also a metafunction. 

Metafunction Class.  A metafunction class is a class 
(possibly a class template) that contains a nested 
metafunction.  Metafunction classes are frequently used to 



delay the instantiation of templates (or partially instantiate 
them).  

Functor.  A functor is a class (often a template) that 
overloads the function call operator in order to interoperate 
with C++ high-order functions or generic algorithms.  
Functors are frequently Stateless (i.e., having no side effects) 
or Environments (i.e., referring to external data sources), 
depending on their intended purpose. 

Function Class.  We opted to refer to the “Cobol-Like” 
design pattern as a “function class” since the function is 
associated with the class rather than its object.  This 
micropattern occurs frequently in generic libraries as a 
means of deferring the instantiation of a function template, 
especially in the BGL. 

Stateless.  A stateless class is one that declares no 
member variables, but may have static attributes.  

Record.  A record is a class with no member functions 
(excluding constructors) and only public non-reference 
member variables.  Records are often used as simple value or 
POD (Plain old data) types. 

Environment.  An environment is a class whose 
attributes are all references (or pointers) to data outside the 
class itself.  The pattern’s name is derived from the fact that 
these classes are frequently used to emulate a function 
calling environment: a set of arguments and/or accumulated 
results. 

Static Outline.  Similar to the concept of a (dynamic) 
outline, the static outline invokes functionality on its derived 
classes via static down-casting rather than virtual methods.  
The name is derived from the fact that the Outline 
micropattern is essentially the abstract framework class in 
the Template Method design pattern [9].  In [8], the Generic 
Template Method demonstrates how CRTP is used to 
statically delegate to the derived class.  For this reason, we 
refer to a class know to use CRTP as a Static Outline. 

Mixin.  A mixin is a class that derives from a template 
parameter.  This pattern is used to compose interfaces or data 
structures. 

Enabler.  An enabler (or disabler) is a Metafunction with 
a specialization that is not a metafunction (i.e., it does not 
define a nested type member).  This micropattern is typified 
by Boost’s enable_if and disable_if classes and is 
more fully defined in E.  A class deriving from an enabler is 
also an enabler. 

Partial Template.  A partial template is an empty or 
undefined class template with one or more non-empty class 
template specializations.  These are sometimes used to 
restrict the set of types over which a template can be 
instantiated, especially when that set of types is small. 

Identifying instances of tag dispatch and constrained 
function templates can be done by checking the parameter 
and return types of functions.  Nominally, we could express 
these as nanopatterns, but since we only identify two such 
conditions, we have opted to bypass their formalization.   

If a function takes a tag class as the type of a function 
parameter, then it participates in tag dispatch.  Likewise if 
the template name of an enabler is found as a function 
parameter type or the return type of a function, then it is 
being actively constrained.  Instances where SFINAE is used 

casually (i.e., not via enable_if or disable_if) to 
constrain templates can be very difficult to detect specifically 
(with a low false positive rate). 

V. IMPLEMENTATION AND VALIDATION 

In order to study the idioms in generic libraries, we 
extended our srcTools framework [23] to identify the 
micropatterns described in the previous section.  srcTools is 
a srcML-based [4] fact extraction and source code analysis 
framework for C++. 

srcML is a lightweight, lexical markup for C++ that 
embeds structural information about the contents of a source 
file in the output XML file.  The approach espoused by 
srcML is intended to support the rapid construction of source 
code analysis tools.  Because the srcML translator is 
intended is a reverse engineering parser that aims to support 
lightweight tools and rapid application development, it 
forgoes many of the responsibilities traditionally associated 
with compiler parsers.  The srcML translator does not 
preprocess source code, nor does it perform any semantic 
analysis.  By forgoing these aspects of compilation, the 
srcML translator is substantially faster and more robust (able 
to handle a broader set of dialects) than most traditional 
compilers.  Efficiency and usability come at the cost of 
accuracy.  The srcML translator is not able to disambiguate 
some aspects of the language and can generate inaccurate 
srcML output.  

srcTools is a Python-based framework that supplements 
the lightweight approach of srcML by implementing more 
traditional parsing capabilities on top of the srcML format.  
The srcTools parser component is capable of reconstructing 
an AST from the XML input generated by the srcML 
translator.  However, srcTools also accepts that source code 
at “face value”, which is to say that it does not preprocess the 
source code and does not attempt to instantiate templates.  
Although maintenance of symbol tables and an AST-like 
model greatly improves the accuracy and efficacy of the 
parsing and modeling framework, srcML markup errors are 
still propagated into the output.   

In order to compensate for possible markup errors and 
the lack of preprocessing, the srcTools AST allows for 
inaccurate type references in its program model.  This feature 
allows us to use srcML+srcTools to reverse engineer any 
C++ programs without worrying about their external 
dependencies or even system header files. 

The srcTools framework supports application 
development and extension as a variation of the Observer 
pattern.  This is to say that Python modules interact with the 
parser framework by registering handlers for specific parsing 
or AST-construction events.  The internal construction of the 
srcTools AST is actually built using this same mechanism. 

A fact extraction front-end to srcTools, the srcfacts 
program, is used to construct and populate a relational 
database (SQLite) containing declarations parsed from 
source code.  This database stores each kind of AST element 
(class, function, method, constructor, etc) in a separate table, 
indexed by the globally unique name of each element.  For 
example the standard vector class template would found in 
the src_class table with the identifier vector<$T1-1, 



TABLE 2.  ACCURACY, PRECISION, AND RECALL FOR EACH OF THE 
MICROPATTERN. 

Micropattern Acc. Prec. Rec. 

Designator .98 .96 .90 
Taxonomy 1.0 .78 1.0 

Joiner 1.0 1.0 1.0 
Traits Class .97 .67 .91 

Type Metafunction .94 .95 .67 
Integral Metafunction .94 1.0 .29 

Constant Metafunction .99 .78 1.0 
Metafunction Class .99 .84 1.0 

Functor .99 .99 .97 
Function Class 1.0 .97 1.0 

Stateless .91 .87 .99 
Record .98 .86 .71 

Environment .99 .92 .98 
Static Outline 1.0 1.0 .50 

Mixin 1.0 1.0 1.0 
Enabler .99 0.0 NaN 

Partial Template .99 .93 .76 

 

TABLE 3.  COUNTS OF MICROPATTERN INSTANCES FROM THE BOOST 
GRAPH LIBRARY. 

Micropattern Manual Auto 

Designator 112 105 
Taxonomy 7 9 

Joiner 2 2 
Traits Class 58 79 

Type Metafunction 159 111 
Integral Metafunction 73 21 

Constant Metafunction 57 68 
Metafunction Class 39 50 

Functor 176 171 
Function Class 31 32 

Stateless 522 596 
Record 34 28 

Environment 48 51 
Static Outline 4 2 

Mixin 11 11 
Enabler 0 6 

Partial Template 17 14 

 
$T1-2>, with $T indicating a type parameter, and the m-n 
notation describing its canonical position rather than name.  
The second type parameter is an allocator.  This particular 
naming of class and function templates enables srcTools to 
effectively differentiate templates and their specializations.  
For example, the vector<bool> specialization is encoded 
as std::vector<bool, $T1-1>.  This technique was 
pioneered in our previous work [23]. 

In order to support his work, we developed a new idiom-
identification module for srcTools and integrated it into the 
srcfacts fact extractor.  This module augments the existing 
database with a table containing instances of identified 
micropatterns.  Each row in this table contains the unique 
identifier of a class or class template and a sequence of 
Boolean values indicating whether or not the class was 
identified as any of the 17 micropatterns given in Table 1. 

To help demonstrate the viability of this software to 
conduct large-scale empirical studies, we conducted a 
controlled experiment to determine the accuracy, precision, 
and recall of the srcfacts tool and the micropattern 
identification module.  We evaluated the tool against the 
Boost Graph Library (BGL) v1.41.0 [19], which is part of the 
Boost C++ Libraries1.  The BGL is 56 KSLOC2, and has 
approximately 990 classes (not counting class template 
specializations).  More importantly, the BGL is known to be 
“heavily generic” and includes generic data structures, 
algorithms, and a substantial amount of template 
metaprogramming.  We manually examined each of the 
classes and classified them according to the micropatterns 
described in Section IV.  Counts of these observations are 
given in Table 4.  The srcfacts tool identified 922 of the 
classes (about 93%). 

Of these 922 classes, we observed the micropattern 
counts in 85% of them.  We can interpret this as a measure of 
the degree of “idiomization” within these libraries.  The 
remaining 15% are comprised of more traditional (often 

                                                           
1 See http://www.boost.org/ for details. 
2 All SLOC counts generated using David A. Wheeler’s SLOCCount.  See 
http://www.dwheeler.com/sloccount/ for details. 

generic) data structures, describing objects exhibiting both 
state and behavior. 

There are two interesting observations to make regarding 
these counts.  First, the number of stateless classes is quite 
high, but this largely reflects the set of classes that are 
designators, taxonomies, joiners, metafunctions, a large 
number of functors, and partial templates.  Second, we 
manually identified no enablers in the BGL.  This is because 
the BGL relies on the Boost’s enable_if template, which is 
defined outside this body of source code.   

The precision, recall and accuracy of these counts are 
shown in Table 2.  Accuracy, precision, and recall are 
defined as ratios of true and false positives or negatives. 
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We note that the recall for identifying Enablers is 
undefined.  Since we manually identified no instances of this 
micropattern, there can be no false negatives.  On average 
srcfacts identifies instances with 98% accuracy, 85% 
precision, and 85% recall (excluding the count for Enablers).  
As a result, we feel fairly confident in the ability of this tool 
to identify idiom instances in generic libraries.  

There are naturally threats to the validity of this study.  
First, there may be errors in the manual classification of 
templates in the BGL.  To help reduce the error rate, we 
cross-checked the manual results with the automated results 
and investigated every disagreement.  Second, the srcTools 
framework is designed for imprecise parsing to 
accommodate partial, incomplete, and un-preprocessed 
source code.  As such, the parser will often fail to construct 
accurate models of the source code.  Also, these 
measurements are made with respect to classes identified 
both manually and automatically; we do not include the 70 or 
so classes not identified by srcfacts. 



VI. AN EMPIRICAL STUDY OF GENERIC LIBRARIES 

As part of this work, we have used srcfacts to study the 
occurrence of these idioms within a number of well-know 
generic libraries, specifically the Standard C++ Library 
(GCC-4.4.3 3 ), the Computational Geometry Algorithms 
Library (CGAL-3.54), and the Boost C++ Libraries (1.41.0).  
Note that the Boost C++ libraries are actually a collection of 
(sometimes largely) independent generic and systems 
libraries.  In total, we surveyed approximately 1.1 MSLOCs 
and just fewer than 26,000 classes.  Library percentages of 
micropattern identified by srcfacts are shown in Table 4. 

TABLE 4.  SLOCS, NUMBER OF CLASSES, AND MICROPATTERN COUNT 
PERCENTAGES FROM GCC’S STANDARD C++ LIBRARY, CGAL, AND THE 

BOOST C++ LIBRARIES. 

Micropattern GCC Std CGAL Boost 

SLOC 70,200 436,288 781,979 
Classes 149 4,572 21,237 

Designator 4.7% 2.5% 3.2% 
Taxonomy 2.0% 0.4% 0.5% 

Joiner 0.0% 0.1% 0.4% 
Traits Class 14.1% 8.7% 7.1% 

Type Metafunction 0.0% 1.6% 15.6% 
Integral Metafunction 0.0% 0.1% 0.7% 

Constant Metafunction 0.0% 0.0% 0.5% 
Metafunction Class 0.0% 0.0% 1.3% 

Functor 16.8% 32.5% 4.5% 
Function Class 7.4% 0.3% 3.0% 

Stateless 64.4% 54.0% 52.3% 
Record 7.4% 1.6% 2.5% 

Environment 14.8% 4.3% 2.5% 
Static Outline 0.0% 0.0% 0.1% 

Mixin 0.0% 2.3% 0.8% 
Enabler 0.0% 0.0% 0.1% 

Partial Template 0.0% 1.5% 1.6% 

The most outstanding result from this study is the large 
percentage of stateless classes found in C++ generic libraries.  
Here, the percentage of classes is 64%, 54%, and 52% for the 
Standard C++ Library, CGAL, and Boost, respectively.  In 
contrast Java (object-oriented) products contain 6-15% 
stateless classes [10].  This is easily attributed to the large 
number of metafunctions, traits classes, and partial templates 
found in these libraries.  Only the Boost C++ Libraries seem 
to contain significant numbers of metafunctions. 

Functors also contribute to the high stateless counts.  We 
find that 80%, 85%, and 71% of all functors are stateless 
between the Standard Library, CGAL and Boost, 
respectively.  Interestingly, the remaining 15-30% are 
stateful, with 6 and 10% of functors being identified as 
environments.  This indicates that parameterization over 
stateful or referential functors is a common practice. 

We note that the number of enabler instances is 
vanishingly small (0 in the Standard Library, 1 in CGAL and 
25 in Boost).  This is generally attributable to the fact that a 
single enabler/disabler can simply be reused throughout the 
library.  Because Boost libraries are relatively independent of 
each other, it is not uncommon for idioms to be duplicated. 

                                                           
3 See http://gcc.gnu.org/ for details. 
4 See http://www.cgal.org/ for details. 

We also searched the acquired data for uses of the 
enable_if and disable_if to constrain function 
templates and found that their use is practically non-existent.  
In Boost, only 182 of 34,684 functions, methods, or 
constructors referenced those data types.  We can attribute 
this lack of explicit constraints to a) the detriment to 
readability caused by the use of enablers on functions 
templates, b) the use of concept checking libraries within 
template definitions [20, 27].  In fact, feature only seems to 
be used when instantiation with the wrong type can lead to 
subtle type-based runtime errors. 

Additionally, we conducted an informal survey of tag 
classes and their usage.  In this investigation, we discovered 
that designators are frequently used to represent disjoint or 
boolean properties of types, taxonomies are used to represent 
categorized properties, and joiners are used to merge 
multiple, orthogonal categories (taxonomies) into a single 
property.  There are few categories represented in these 
libraries.  We suspect that the number of joiners is actually 
much higher than reported due to incomplete information 
during parsing.  We further observed that only 11% of tag 
classes are used as function parameters.  From this, we infer 
that tag dispatch is not a commonly used technique. 

VII. DISCUSSION  

We begin the discussion by observing that new tools and 
techniques are needed to support the comprehension, 
construction, and maintenance of C++ generic libraries.  The 
benefit of research and development in the areas of reverse 
engineering, program comprehension, and software 
maintenance have been of great benefit to practitioners in the 
areas of other software development paradigm, especially 
object-oriented programming.   

The object-oriented paradigm is of particular interest 
because it provides the “language” in which the surveyed 
idioms are mostly written.  By this we mean that most of the 
programming idioms surveyed and identified are rooted in 
the language of object-oriented programming: classes.  
However, our survey indicates that the construction 
techniques for generic libraries are definitely not object-
oriented in nature.  Most of the classes used to support the 
generic paradigm do not describe objects. Our study 
indicates that the non-object-oriented components of the 
libraries make up a vast majority of the libraries’ 
composition.  A direct result of this “couching of one 
language within another” is the misleading results that can be 
produced by existing reverse engineering tools. 

In this paper, we present a tool that is capable of 
automatically identifying, with some margin of error, the 
kinds of idioms being used in the construction of generic 
libraries.  The abstract labeling or stereotyping of elements is 
often used to improve the ways in which developers interact 
with source code [7].  While this technique might be used to 
inform a developer of what a class might actually represent, 
the tool cannot help determine the role of the idiom in the 
design of the library.  Clearly, more work is needed in the 
area of design recovery for generic libraries.  This is not 
possible without first understanding how these programming 
idioms relate to the design of such libraries.  Many of these 



idioms surveyed in this paper are closely associated with the 
evolution of the C++0x programming language.  One well-
developed and obvious example of this association is that of 
functors to C++0x lambda functions.  

Traits classes, metafunctions, tag dispatch, and template 
constraints are closely related to concepts, an extensive set of 
language features proposed C++0x [6, 11, 21].  Traits classes 
and metafunctions (type traits) are very similar to the 
abstractions that can be described by concept definitions, and 
the tag class hierarchies (taxonomies and joiners) are used to 
define properties and categories of types.  The use of 
enable_if can be deprecated through features for explicitly 
constraining templates.  However, despite the potential for 
improvement in the readability and writeability of generic 
libraries, concepts were removed from the C++0x proposal.  
We can easily imagine, however, that an effective definition 
of concepts for C++ will ameliorate many of the 
complexities leaked through generic libraries, while creating 
a number of interesting opportunities for tool builders. 

VIII. CONCLUSIONS 

We have presented a survey of common programming 
idioms used in the construction of C++ generic libraries, and 
implemented a tool that is capable of identifying instances of 
these idioms in terms of micropattern instances.  The 
techniques and tools discussed in this paper are intended to 
support a programmer’s comprehension of C++ generic 
libraries.  Based on evaluation, the approach can correctly 
identify the elements of design and implementation used in 
the construction of these libraries—elements that, despite 
being rooted in the syntax of an object-oriented construct 
(i.e., classes), are decidedly atypical of object-oriented 
construction.  We feel that this is a good first step toward 
addressing comprehension problems in this domain. 
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