
Identification of Idiom Usage in C++ Generic
Libraries

Andrew Sutton, Ryan Holeman, Jonathan I. Maletic
Department of Computer Science

Kent State University
Kent, Ohio 44242

{asutton, rholeman, jmaletic}@cs.kent.edu

Abstract—A tool supporting the automatic identification of

programming idioms specific to the construction of C++

generic libraries is presented. The goal is to assist developers

in understanding the complex syntactic elements of these

libraries. Large C++ generic libraries are notorious for being

extremely difficult to comprehend due to their use of advanced

language features and idiomatic nature. To facilitate

automated identification, the idioms are equated to

micropatterns, which can be evaluated by a fact extractor.

These micropattern instances act as beacons for the idioms

being identified. The method is applied to study a number of

widely used open source C++ generic libraries.

Keywords—C++, Templates, Generic Libraries, Emiprical

Study

I. INTRODUCTION

Generic programming is a paradigm that equips
developers with a mechanism for designing adaptable and
efficient generic algorithms and data structures. In C++, the
paradigm is rooted in the ability to parameterize (via
templates) algorithms and data structures with user-specific
types at compile time in order to compose more complex
software abstractions. While extensive use of the compiler
may yield substantial benefits in terms runtime performance
and elegant design, the resulting software is typically very
difficult to comprehend due to the idiomatic nature of
generic programming in C++. Frequently composed of
cryptic template definitions and instantiations, generic
libraries can often perplex even the most seasoned software
engineer.

The incomprehensibility of C++ generic libraries can be
largely attributed to the lack of supporting linguistic
abstractions, which results in the abuse of existing language
structures (e.g., classes) to develop programming idioms in
their place. Whereas languages that embrace other
paradigms (esp., object-oriented programming) have evolved
features that more readily express their idioms and
abstractions, the language features underlying generic
programming in C++ exists at the most basic level: class and
function templates.

In order for a programmer to become proficient in the
generic paradigm, they must master the idioms and patterns
that define its abstractions, which in the case of C++ implies
a practical mastery of the entire language and the

idiosyncrasies of its compilers. On the other hand, one
purpose of generic libraries is to provide reusable and
adaptable libraries for application developers. Given that
generic libraries (via templates) are necessarily transparent
(i.e., not black boxes), their usage creates a leaky abstraction.
The idioms used in the construction of generic libraries are
leaked to more casual developers in the form of error
messages and, in some cases, compilation failures.

Our goal is to assist developers in understanding patterns
and idioms in generic libraries by providing tools to
automatically identify them in source code. This helps
address the “leakiness” of advanced generic and generative
programming technique by mapping these implementation-
level idioms into more comprehensible, abstract forms. In
this work, we survey a number of prevalent programming
idioms used in widely-used C++ generic libraries. By
casting idioms as micropatterns, we describe a mechanism
by which their instances can be automatically identified in
source code. We present and validate a tool that
automatically identifies instances of these micropatterns in
C++ source code and use this tool to study a number of open
source generic libraries. Results of the study are used to
motivate discussion on tools and techniques for using and/or
maintaining generic libraries and aspects of the evolution of
the C++ programming language along the same lines.

This paper is organized as follows. Section 2 presents
related work. In section 3, we describe commonly used
idioms in generic programming, and in section 4 we
decompose those idioms into micropatterns. Section 5
presents the implementation and its validation. In section 6
we describe the study of a number of widely used C++
generic libraries, and present discussion and conclusions in
Section 7 & 8.

II. RELATED WORK

The style of generic programming that dominates the
C++ landscape was pioneered in Ada [16] and later adapted
to C++ templates [17] where it formed the basis of the
Standard Template Library (and later a part of the C++
Standard Library) [3]. This work includes techniques for
functors, tag dispatch, and traits classes. The Boost Graph
Library, for example, uses these techniques extensively to
implement generic graph algorithms [19].

A number of techniques related to this style of
programming have been discussed in the literature. Coplien
provides the first description of common template patterns in
generic components [5]. Specific design patterns for generic
programming are presented in [8], and generative techniques
for datatype composition (i.e., mixins) are described in [22].
Template metaprogramming and its associated
idioms/patterns are described by Abrahams and Gurtovoy
[1]. Alexandrescu employs a number of these techniques in
his treatment of C++ library design [2].

Despite the wealth of work on techniques for generic
programming and library design, there is comparatively little
work on program analysis or reverse engineering of generic
libraries or templates. There are a few notable exceptions. A
lint-like tool is presented in [12] that diagnoses misuses of
generic concepts (especially iterators) in the STL. A method
of measuring the impact of changes to concept definitions is
presented in [26]. An approach to support the debugging of
template metaprograms is given in [18]. A method of
recovering type constraints (concepts) from function
templates is presented in [24], and a technique to support
program analyses of template instantiations is given in [23].

This work is an extension of the study conducted in [13]
on identifying programming idioms in C++ generic libraries.
We have extended this work by adapting it to the notion of
micropatterns [10], which are described as class-level
patterns that can be expressed as a “simple formal condition
on the attributes, types, name, and body”. Many of the
programming idioms identified in the previous study can be
expressed as predicates on classes in generic libraries. We
have also expanded the set of idioms being identified.

III. IDIOMS FOR GENERIC PROGRAMMING

In this section, we present a number of common
programming idioms used in C++ generic library design.
We do not claim to describe all known idioms for generic
programming in C++, only those we perceive as the most
frequently used. In the presentation of these idioms, we
sometimes omit the typename specifier, for brevity.

template<typename T>

struct less {

 bool operator()(T x, T y) const {

 return x < y;

 }

};

Figure 1. The less functor encapsulates the comparison, via
operator<, for a type T.

A. Functors

A functor (sometimes called a function object) is a class
that overloads the function call operator (operator()).
Functors are used to support the definition of high-order
functions in C++. By implementing a function as an object,
functors be used to a) abstract or adapt calls to other
functions, b) curry function parameters, c) maintain state
(including external data references) between calls. An
example of a functor is given in Figure 1.

Here, the class template less is a functor that abstracts
the syntactic comparison of objects via operator<. This
can be used to parameterize high order functions
(algorithms) such as sort.

B. Template Metaprogramming

Template metaprogramming encompasses the definition
and use of programs that perform compile-time operations on
types or integral constants, and is predicated upon the
definition of template metafunctions [1]. A template
metafunction is class (usually a template) that “returns” a
computed result as a typedef or static constant. A non-
template metafunction is called a constant metafunction; the
Boost.MPL types true_ and false_ can be thought of as
constant metafunctions. A metafunction that returns a type
(via a typedef) is called a type metafunction, and a
metafunction that returns a value (via a static constant or
enumeration value) is called an integral metafunction, and if
the integral type is bool, then we refer to it as a boolean
metafunction. We use the term “return” loosely. In reality,
the “caller” of a metafunction accesses the “return” value by
referring to a nested declaration.

There are generally two uses of metafunctions: the
definition of integral metaprograms (e.g., GCD and LCM)
and the manipulation or selection of types in generic
libraries. The latter application is of more interest in this
work. Metafunctions that operate on types are frequently
used to select and refine class structure, enhance C++
overloading, and act as aliases to more complex type
definitions. For example, consider the type metafunction
(also called a type accessor) shown in Figure 2.

template<typename T, typename U>

struct add_result {

 typedef decltype(T() + U()) type;

};

Figure 2. The add_result type accessor yields the result type of the
operator+ defined for the T and U.

The add_result type accessor demonstrates an
interesting pattern in C++, namely the use of metafunctions
functions to deduce the result type of an expression.

template<typename T, typename U>

struct is_same {

 static bool const value = false;

};

template<typename T>

struct is_same<T, T> {

 static bool const value = true;

};

Figure 3. The is_same type trait is comprised of a class template that
responds in the negative and a partial specialization that responds in the

affirmative iff the template is instantiated over the same types.

Another common use of metafunctions is that of type
traits. Type traits are typically classified as any metafunction
query or transformation on a type (or types) with respect to
some domain. Many of these queries are Boolean
metafunctions, and are implemented as a set of class
template specializations. The standard header

<type_traits> defines a number of traits that can be used
to evaluate common properties of types in the C++ type
system. For example, consider an implementation of the
is_same type trait shown in Figure 3.

Another used with metafunctions is the definition of
metafunction classes. A metafunction class is a class
(frequently a template) that defines a nested metafunction
(generally named “apply”). Metafunction classes enable
high-order metafunction programming by allowing lazy (or
deferred) instantiation of the metafunctions. This technique
is frequently used to wrap template names, projecting them
into the type system. For example, the Boost Graph Library
(BGL) uses a variant of this approach to select and
instantiate containers for vertex and edge lists. The vector
selector is shown in Figure 4.

struct vecS {

 template<typename T>

 struct bind_ {

 typedef std::vector<T> type;

 };

};

Figure 4. The vecS metafunction class uses an inner bind_ operator to
the requested container.

The technique used here allows the adjacency list
implementation to select features when the container is
known to be vecS, but before the underlying vector type has
been instantiated. In this particular case, instantiation of the
vector is delayed because of cyclic dependencies between
types in the definition of the graph class. We note that this
definition is only used when the compiler does not correctly
support partial template specialization.

C. Tag Dispatch

Tag dispatch is a technique that is used to enhance
function overloading on different kinds or categories of
types. This technique is used when different algorithms can
be identified for similar but related abstractions within a
generic domain. The tag dispatch idiom relies on the
definition of tag classes and the overloading of functions on
those types.

Specifically, there are four components to the tag
dispatch idiom: a set of tag classes, a map function, the
dispatcher, and the dispatch targets. A tag class is an empty
class that describes a kind of type or a property of a type.
Tag classes are sometimes organized inheritance hierarchies
(called tag class hierarchies) in order to categorize types.
The map function is a function or metafunction that maps a
type to its most specialized tag class.

The dispatch framework is comprised of a dispatcher and
set of targets. The dispatch targets have mostly the same
parameters but are overloaded on different tag classes. The
dispatcher invokes a target calling the overloaded name with
the expected arguments and the result of the map function.
The compiler will statically resolve the overload, and the use
of inlining and copy elision will generally guarantee that the
dispatch technique incurs no runtime overhead.

One of the best known examples of tag dispatch is the
STL advance operation for iterators. The entire series of
structures is given in Figures 5-7.

struct in_iter_tag { };

struct fwd_iter_tag : in_iter_tag { };

struct bidi_iter_tag : fwd_iter_tag { };

struct ra_iter_tag : bidi_iter_tag { };

Figure 5. The STL iterator tag class hierarchy classifies iterators based on
their traversal operations and properties.

template<typename Iter>

typename Iter::category

iterator_category(Iter) {

 return Iter::category();

}

template<typename T>

ra_iter_tag iterator_category(T*) {

 return ra_iter_tag();

}

Figure 6. The iterator_category function maps an iterator type to
its corresponding tag class. An overload is required for pointer types.

template<typename Iter>

void adv(Iter& i, int n, in_iter_tag) {

 assert(n >= 0);

 while(n--) ++i;

}

template<typename Iter>

void adv(Iter& i, int n, bidi_iter_tag) {

 if(n > 0) while(n--) ++i;

 else while(n++) --i;

}

template<typename Iter>

void adv(Iter& i, int n, ra_iter_tag) {

 i += n;

}

template<typename Iter>

void advance(Iter& i, int n) {

 advance(i, n, iterator_category(i));

}

Figure 7. The advance algorithms are dispatched for different kinds of
iterators based on the iterator tag hierarchy. The last implementation is the

dispatcher.

The STL defines a tag hierarchy for iterator, which is
shown in Figure 5. The tag class hierarchy defines four
distinct classifications of iterators based on their traversal
properties—how an iterator moves along or consumes a
sequence of objects. Each kind of iterator is represented by a
tag class in this hierarchy. An input iterator allows forward
traversal through a sequence. A forward iterator is a multi-
pass input iterator (the sequence is not consumed during
traversal). A bidirectional iterator can also traverse
backwards in the sequence, and a random access iterator can
move multiple steps in either direction in constant time.
Iterator types are mapped to the iterator hierarchy via the
iterator_category function, whose implementation is
shown in Figure 6

The advance algorithm moves an iterator by n steps. The
values of n allowed by the algorithm and the efficiency with
which the move is computed vary with the kind of iterator.

If the iterator is a forward iterator (e.g., singly linked lists), n
must be positive, but if the iterator is bidirectional n may also
be negative. The algorithm executes in O(1) if and only if
the iterator supports random access, O(n) otherwise. The
advance algorithm and its dispatch targets are shown in
Figure 7.

D. Traits Class

A traits class is a class template that adapts a type to a
generic abstraction (or concept) by providing associated
types and static functions and (constant) data. A traits class
decouples the access of these elements from actual
implementation types allowing generic algorithms and data
structures to be written in terms of the abstraction rather than
the implementations. This is especially useful if the
implementations provide varied interfaces to similar
functionality. A traits class typically has two components: a
generic definition and a set of specializations that adapt types
to that definition.

The canonical example of traits classes is the STL’s
iterator_traits. The iterator_traits class makes it
possible to write algorithms in terms of a generic iterator
abstraction by providing a mechanism for adapting arbitrary
types to the iterator concept. The sole purpose of this
adaptive technique is to decouple the access of associated
types from the iterator. This is required for pointer types,
which do not define nested types (e.g., value_type,
reference, pointer, etc.).

template<typename Iter>

struct iterator_traits {

 typedef Iter::value_type value_type;

 typedef Iter::reference reference;

 typedef Iter::pointer pointer;

};

template<typename T>

struct iterator_traits<T*> {

 typedef T value_type;

 typedef T& reference;

 typedef T* pointer;

};

Figure 8. The iterator_traits class derives a number of different
associated types for its Iter template parameter. A partial specialization

adapts pointer type to the generic definition.

The iterator_traits class acts as a kind of
parameterized façade for a number of different type
accessors on its Iter template parameter. In some cases,
however, it is not possible for an iterator implementation to
define these associated types. For example, instantiating this
template over pointer types (i.e., T*) will lead to compiler
errors—even though T* is a valid (random access) iterator—
because T* cannot have any associated types. This enables
generic algorithms to be written in terms traits classes rather
than specific types.

The generic iterator_traits class implements an
adaptor for conformant types. Any iterator implementation
can be made to conform to the iterator concept by defining
the correct associated types. This is shown in Figure 8.

E. Constrained Templates

There are cases, in the design of generic data structures or
algorithms, where it becomes useful to enable or disable a
subset of specializations or overloads based on the properties
of the types over which they are being instantiated. Concept-
controlled polymorphism [14, 15] is similar to tag dispatch
except that template instantiations are enabled or disabled by
a metafunction rather than being selected by a tag class.

This technique of enabling or disabling template
instantiation is rooted in the use of SFINAE (Substitution
Failure Is Not An Error) to quietly remove specializations or
overloads from the list of templates being considered for
instantiation and overload resolution. Although SFINAE can
be applied casually in a large number of situations, its
systematic use is typically predicated upon the use of
SFINAE-based enablers and disablers. SFINAE enablers
are designed to trigger substitution failures based on the
evaluation of Boolean metafunctions and are, themselves,
typically implemented as a kind of “partial” metafunction. A
simplified version the Boost C++ Library’s SFINAE enabler,
called enable_if, is shown in Figure 9.

template<typename C, typename T = void>

struct enable_if {

 typedef T type;

};

template<typename T>

struct enable_if<false_, T> { };

Figure 9. The enable_if template implements a SFINAE enabler that
can be used to control the instantiation of templates based the evaluation of

a metafunction C.

We say that enable_if is a partial metafunction since
only one specialization defines the requisite associated type.
If the template is instantiated in such a way that C is
substituted with the constant metafunction false_, then the
associated type will not be defined in the resulting template
instance, and a subsequent reference to type will generate a
substitution failure. A SFINAE disabler simply inverts the
logic of the enabler.

SFINAE enablers are used as either the result type of a
function declaration or as the type of an additional function
parameter that defaults to nullptr. Consider the operation
infinity shown in Figure 10, in which the constraint is
applied to the result type.

template<typename T>

enable_if<is_floating_point<T>, T>::type

infinity() {

 return numeric_limits<T>::inf();

}

template<typename T>

disable_if<is_floating_point<T>, T>::type

infinity() {

 return numeric_limits<T>::max();

}

Figure 10. The first overload of infinity is enabled if and only if T
satisfies the is_floating_point predicate.

If is_floating_point<T> evaluates to true_ (e.g.,
called as infinity<double>()) then the first overload is
instantiated correctly and the second overload is quietly
removed from the candidate set. Conversely, if the template
argument is given as int, then the first overload will be
excluded and the second selected.

F. Partial Templates

Another technique used to selectively allow (or disallow)
template instantiation is to declare (but not define) a class or
function template and then only provide specializations or
overloads for the intended targets. The intent of the partial
template idiom is to explicitly restrict the set of valid
arguments over which it can be instantiated. For example,
consider the container_gen facility in the BGL, which is
used to instantiate vertex and edge containers based on a
selectable tag class. Its implementation is shown in Figure
11.

template<typename Tag, typename Value>

struct container_gen { };

template<typename Value>

struct container_gen<vecS, Value> {

 typedef std::vector<Value> type;

};

template<typename Value>

struct container_gen<listS, Value> {

 typedef std::list<Value> type;

};

Figure 11. The partial template container_gen must be parameterized
over a valid container selector (Tag) class and value type.

If the instantiation of container_gen includes a tag
class that is not specialized on, this will almost certainly
result in a compiler error. Another common technique is to
declare, but not define the primary template. This is
common with recursive, variadic templates in C++0x.

G. Mixins

A mixin is a class that can be used to “inject”
functionality into a user-defined type [22, 25]. In C++,
mixins typically take the form of a class template that derives
from one of its template parameters. This technique allows
programmers to construct or compose data structures that
aggregate the functionality of their mixins.

template<typename Base = null_arch>

struct def_ctor_arch : Base {

 def_ctor_archetype();

};

template<typename Base = null_archetype>

struct copy_ctor_arch : Base {

 copy_ctor_arch(copy_ctor_arch const&);

};

Figure 12. The default constructible archetype uses the mixins pattern to
support interface aggregation.

For example, mixins are used in the archetype system of
the Boost C++ libraries to support concept-checking tests.
An archetype is a class that exposes only the structural
requirements of a concept (or template type constraint), no

more, no less. They are used to evaluate the specification of
concepts in generic algorithms and data structures. Figure 12
shows an abbreviated version of the Boost archetype that
enables tests for default and copy constructability.

Here, two archetype classes expose functionality for
constructing types that are either copy constructible or
default constructible. A new archetype that is both copy and
default constructible can be composed as the type
copy_ctor_arch<def_ctor_arch<>>. The resulting
class should expose both constructors, but no more.

H. Curiously Recurring Template Pattern

The Curiously Recurring Template Pattern (CRTP) is an
inheritance pattern that most frequently used to provide
default implementations of common operations for a user-
defined type [5]. In this idiom, the base class provides
services that depend on operations in the deriving class. In a
sense, this is analogous to dynamic polymorphism where the
base class invokes virtual or abstract methods that are
intended to be overridden or implemented by the derived
class. Instead of virtual methods however, this base class
statically casts itself as the derived class and invokes the
needed method. CRTP is largely a utility mechanism that is
frequently used to simplify the process of adapting types to a
known interface.

template<typename Derived, typename Value>

class iterator_facde {

 typedef Value value_type;

 typedef Value& reference;

 typedef Value* pointer;

 Derived* self() {

 return static_cast<Derived*>(this);

 }

 Derived& operator++() {

 self()->increment();

 return *self();

 }

 reference operator*() {

 return self()->dereference();

 }

 pointer operator->() {

 return &(self()->dereference());

 }

};

Figure 13. A partial implementation of Boost’s iterator_facade is
parameterized over a Derived iterator implementation and its Value
type. Standard iterator operations are implemented in terms of functions

defined by the Derived type.

For example, consider a partial implementation of the
Boost Iterator Library’s iterator_facade class. The
iterator_facade is a class template that is parameterized
over a user-defined class that can be adapted to act as an
iterator. The user-defined class is required to supply several
methods to work with the base.

The iterator_facade class is parameterized over two
types, the first of which is a user-defined class that
implements some form of iterator functions (this is the CRTP
parameter), and the second is the value type of the iterator,
which is used to determine the reference type. One of the

TABLE 1. THE MICROPATTERN CLASSIFICATIONS AND DESCRIPTIONS ARE EXTENDED AND ADAPTED TO ADDRESS C++ AND GENERIC PROGRAMMING. THE
IDIOM REPRESENTED BY THE MICROPATTERN, IF ANY, IS GIVEN IN THE 3RD COLUMN

Degenerate Classes

Degenerate State and Behavior

Designator A non-template class with no members Tag Class
Taxonomy A Designator that derives from one other class Tag Class
Joiner A Designator that derives from multiple classes Tag Class
Traits Class A class template with only typedefs and possibly static (constant) members Traits Class
Metaprogramming

Type Metafunction A class declaring an associated type named ‘type’ Metafunction
Integral Metafunction A class declaring a static constant integral attribute named ‘value’ Metafunction
Constant Metafunction A metafunction that is not a class template Metafunction
Metafunction Class A class declaring a nested Metafunction named ‘apply’ Metafunction
Degenerate Behavior

Functor A class that overloads the function call operator Functor
Function Class A class with a single static method and no attributes
Degenerate State

Stateless A class with no attributes.

Containment

Data Managers

Record A class with only non-reference, public attributes
Environment A class whose attributes are all references

Inheritance

Base Classes

Static Outline A class that statically down-casts ‘this’ as a dependent type Curious Template
Inheritors

Mixin A class that derives from a template parameter Mixin

Specialization

Degenerate Specialization

Enabler A Metafunction with a specialization that is not a Metafunction Template Constraint
Partial Template An undefined or empty class template with non-empty specializations Partial Template

most important feature of this class is the self function,
which statically downcasts this object to its Derived class.
The required iterator interface, the operators ++, *, and ->
are provided by the façade. The class represented by the
type parameter Derived must implement the functions
increment, decrement, and dereference.

IV. MICROPATTERNS IN GENERIC LIBRARIES

In order to study the use of these idioms in generic
libraries, we considered the elements of their composition
and were able to reduce many program elements to
micropatterns [10]. A micropattern is a predicate on a class
that can be expressed in terms of its attributes, types, name,
or body. We map these idioms onto the micropattern
concept for two reasons. First, micropatterns provide a
method of encapsulating observations of classes that does not
depend on the evaluation of relationships between them.
Second, most of idioms we have described can be expressed
as predicates on the properties of a class definition. The only
exceptions are tag dispatch and constrained function
templates, which deserve special attention, and partial
template specializations (including enable_if), which
depend on the analysis of their specialization relationship.

We extended and refined this set of micropatterns,
adapting it to C++ and generic programming. The set of new
and adapted micropatterns and their descriptions are given in
Table 1. We provide a mapping of each micropattern to the
idiom that it represents.

We added a new top-level category, Specialization, to the
micropattern catalog. This category of micropatterns
describes properties of class template specializations. The
one subgroup we identified, Degenerate Specializations,
refers to the fact that the specializations are not statically
polymorphic with the base template. The names chosen for
the micropatterns are intended be representative of the
predicate rather than the more established name of the idiom.
Specific adaptations and extensions of the previous catalog,
and rationale or other notes are now given.

Designator, Taxonomy, and Joiner. We refined these
micropatterns, restricting them to non-template classes. Note
that under our definition, all taxonomies and joiners are also
designators. These micropatterns are tag classes in the
generic programming literature.

Traits Class. A traits class is a class template that
decouples a generic abstraction from specific
implementations. It is comprised entirely of typedefs and
occasionally static methods and attributes.

Type, Integral, and Constant Metafunctions. These
micropatterns are classes that are used to compute or
evaluate properties of types (or integral constants) at compile
time. We further note that a class deriving from a
metafunction is also a metafunction.

Metafunction Class. A metafunction class is a class
(possibly a class template) that contains a nested
metafunction. Metafunction classes are frequently used to

delay the instantiation of templates (or partially instantiate
them).

Functor. A functor is a class (often a template) that
overloads the function call operator in order to interoperate
with C++ high-order functions or generic algorithms.
Functors are frequently Stateless (i.e., having no side effects)
or Environments (i.e., referring to external data sources),
depending on their intended purpose.

Function Class. We opted to refer to the “Cobol-Like”
design pattern as a “function class” since the function is
associated with the class rather than its object. This
micropattern occurs frequently in generic libraries as a
means of deferring the instantiation of a function template,
especially in the BGL.

Stateless. A stateless class is one that declares no
member variables, but may have static attributes.

Record. A record is a class with no member functions
(excluding constructors) and only public non-reference
member variables. Records are often used as simple value or
POD (Plain old data) types.

Environment. An environment is a class whose
attributes are all references (or pointers) to data outside the
class itself. The pattern’s name is derived from the fact that
these classes are frequently used to emulate a function
calling environment: a set of arguments and/or accumulated
results.

Static Outline. Similar to the concept of a (dynamic)
outline, the static outline invokes functionality on its derived
classes via static down-casting rather than virtual methods.
The name is derived from the fact that the Outline
micropattern is essentially the abstract framework class in
the Template Method design pattern [9]. In [8], the Generic
Template Method demonstrates how CRTP is used to
statically delegate to the derived class. For this reason, we
refer to a class know to use CRTP as a Static Outline.

Mixin. A mixin is a class that derives from a template
parameter. This pattern is used to compose interfaces or data
structures.

Enabler. An enabler (or disabler) is a Metafunction with
a specialization that is not a metafunction (i.e., it does not
define a nested type member). This micropattern is typified
by Boost’s enable_if and disable_if classes and is
more fully defined in E. A class deriving from an enabler is
also an enabler.

Partial Template. A partial template is an empty or
undefined class template with one or more non-empty class
template specializations. These are sometimes used to
restrict the set of types over which a template can be
instantiated, especially when that set of types is small.

Identifying instances of tag dispatch and constrained
function templates can be done by checking the parameter
and return types of functions. Nominally, we could express
these as nanopatterns, but since we only identify two such
conditions, we have opted to bypass their formalization.

If a function takes a tag class as the type of a function
parameter, then it participates in tag dispatch. Likewise if
the template name of an enabler is found as a function
parameter type or the return type of a function, then it is
being actively constrained. Instances where SFINAE is used

casually (i.e., not via enable_if or disable_if) to
constrain templates can be very difficult to detect specifically
(with a low false positive rate).

V. IMPLEMENTATION AND VALIDATION

In order to study the idioms in generic libraries, we
extended our srcTools framework [23] to identify the
micropatterns described in the previous section. srcTools is
a srcML-based [4] fact extraction and source code analysis
framework for C++.

srcML is a lightweight, lexical markup for C++ that
embeds structural information about the contents of a source
file in the output XML file. The approach espoused by
srcML is intended to support the rapid construction of source
code analysis tools. Because the srcML translator is
intended is a reverse engineering parser that aims to support
lightweight tools and rapid application development, it
forgoes many of the responsibilities traditionally associated
with compiler parsers. The srcML translator does not
preprocess source code, nor does it perform any semantic
analysis. By forgoing these aspects of compilation, the
srcML translator is substantially faster and more robust (able
to handle a broader set of dialects) than most traditional
compilers. Efficiency and usability come at the cost of
accuracy. The srcML translator is not able to disambiguate
some aspects of the language and can generate inaccurate
srcML output.

srcTools is a Python-based framework that supplements
the lightweight approach of srcML by implementing more
traditional parsing capabilities on top of the srcML format.
The srcTools parser component is capable of reconstructing
an AST from the XML input generated by the srcML
translator. However, srcTools also accepts that source code
at “face value”, which is to say that it does not preprocess the
source code and does not attempt to instantiate templates.
Although maintenance of symbol tables and an AST-like
model greatly improves the accuracy and efficacy of the
parsing and modeling framework, srcML markup errors are
still propagated into the output.

In order to compensate for possible markup errors and
the lack of preprocessing, the srcTools AST allows for
inaccurate type references in its program model. This feature
allows us to use srcML+srcTools to reverse engineer any
C++ programs without worrying about their external
dependencies or even system header files.

The srcTools framework supports application
development and extension as a variation of the Observer
pattern. This is to say that Python modules interact with the
parser framework by registering handlers for specific parsing
or AST-construction events. The internal construction of the
srcTools AST is actually built using this same mechanism.

A fact extraction front-end to srcTools, the srcfacts
program, is used to construct and populate a relational
database (SQLite) containing declarations parsed from
source code. This database stores each kind of AST element
(class, function, method, constructor, etc) in a separate table,
indexed by the globally unique name of each element. For
example the standard vector class template would found in
the src_class table with the identifier vector<$T1-1,

TABLE 2. ACCURACY, PRECISION, AND RECALL FOR EACH OF THE
MICROPATTERN.

Micropattern Acc. Prec. Rec.

Designator .98 .96 .90
Taxonomy 1.0 .78 1.0

Joiner 1.0 1.0 1.0
Traits Class .97 .67 .91

Type Metafunction .94 .95 .67
Integral Metafunction .94 1.0 .29

Constant Metafunction .99 .78 1.0
Metafunction Class .99 .84 1.0

Functor .99 .99 .97
Function Class 1.0 .97 1.0

Stateless .91 .87 .99
Record .98 .86 .71

Environment .99 .92 .98
Static Outline 1.0 1.0 .50

Mixin 1.0 1.0 1.0
Enabler .99 0.0 NaN

Partial Template .99 .93 .76

TABLE 3. COUNTS OF MICROPATTERN INSTANCES FROM THE BOOST
GRAPH LIBRARY.

Micropattern Manual Auto

Designator 112 105
Taxonomy 7 9

Joiner 2 2
Traits Class 58 79

Type Metafunction 159 111
Integral Metafunction 73 21

Constant Metafunction 57 68
Metafunction Class 39 50

Functor 176 171
Function Class 31 32

Stateless 522 596
Record 34 28

Environment 48 51
Static Outline 4 2

Mixin 11 11
Enabler 0 6

Partial Template 17 14

$T1-2>, with $T indicating a type parameter, and the m-n
notation describing its canonical position rather than name.
The second type parameter is an allocator. This particular
naming of class and function templates enables srcTools to
effectively differentiate templates and their specializations.
For example, the vector<bool> specialization is encoded
as std::vector<bool, $T1-1>. This technique was
pioneered in our previous work [23].

In order to support his work, we developed a new idiom-
identification module for srcTools and integrated it into the
srcfacts fact extractor. This module augments the existing
database with a table containing instances of identified
micropatterns. Each row in this table contains the unique
identifier of a class or class template and a sequence of
Boolean values indicating whether or not the class was
identified as any of the 17 micropatterns given in Table 1.

To help demonstrate the viability of this software to
conduct large-scale empirical studies, we conducted a
controlled experiment to determine the accuracy, precision,
and recall of the srcfacts tool and the micropattern
identification module. We evaluated the tool against the
Boost Graph Library (BGL) v1.41.0 [19], which is part of the
Boost C++ Libraries1. The BGL is 56 KSLOC2, and has
approximately 990 classes (not counting class template
specializations). More importantly, the BGL is known to be
“heavily generic” and includes generic data structures,
algorithms, and a substantial amount of template
metaprogramming. We manually examined each of the
classes and classified them according to the micropatterns
described in Section IV. Counts of these observations are
given in Table 4. The srcfacts tool identified 922 of the
classes (about 93%).

Of these 922 classes, we observed the micropattern
counts in 85% of them. We can interpret this as a measure of
the degree of “idiomization” within these libraries. The
remaining 15% are comprised of more traditional (often

1 See http://www.boost.org/ for details.
2 All SLOC counts generated using David A. Wheeler’s SLOCCount. See
http://www.dwheeler.com/sloccount/ for details.

generic) data structures, describing objects exhibiting both
state and behavior.

There are two interesting observations to make regarding
these counts. First, the number of stateless classes is quite
high, but this largely reflects the set of classes that are
designators, taxonomies, joiners, metafunctions, a large
number of functors, and partial templates. Second, we
manually identified no enablers in the BGL. This is because
the BGL relies on the Boost’s enable_if template, which is
defined outside this body of source code.

The precision, recall and accuracy of these counts are
shown in Table 2. Accuracy, precision, and recall are
defined as ratios of true and false positives or negatives.

�������� �
�� 	 �

�� 	 �
 	 �� 	 �

����
�
�
 �
��

�� 	 ��
 ������ �

��

�� 	 �

We note that the recall for identifying Enablers is
undefined. Since we manually identified no instances of this
micropattern, there can be no false negatives. On average
srcfacts identifies instances with 98% accuracy, 85%
precision, and 85% recall (excluding the count for Enablers).
As a result, we feel fairly confident in the ability of this tool
to identify idiom instances in generic libraries.

There are naturally threats to the validity of this study.
First, there may be errors in the manual classification of
templates in the BGL. To help reduce the error rate, we
cross-checked the manual results with the automated results
and investigated every disagreement. Second, the srcTools
framework is designed for imprecise parsing to
accommodate partial, incomplete, and un-preprocessed
source code. As such, the parser will often fail to construct
accurate models of the source code. Also, these
measurements are made with respect to classes identified
both manually and automatically; we do not include the 70 or
so classes not identified by srcfacts.

VI. AN EMPIRICAL STUDY OF GENERIC LIBRARIES

As part of this work, we have used srcfacts to study the
occurrence of these idioms within a number of well-know
generic libraries, specifically the Standard C++ Library
(GCC-4.4.3 3), the Computational Geometry Algorithms
Library (CGAL-3.54), and the Boost C++ Libraries (1.41.0).
Note that the Boost C++ libraries are actually a collection of
(sometimes largely) independent generic and systems
libraries. In total, we surveyed approximately 1.1 MSLOCs
and just fewer than 26,000 classes. Library percentages of
micropattern identified by srcfacts are shown in Table 4.

TABLE 4. SLOCS, NUMBER OF CLASSES, AND MICROPATTERN COUNT
PERCENTAGES FROM GCC’S STANDARD C++ LIBRARY, CGAL, AND THE

BOOST C++ LIBRARIES.

Micropattern GCC Std CGAL Boost

SLOC 70,200 436,288 781,979
Classes 149 4,572 21,237

Designator 4.7% 2.5% 3.2%
Taxonomy 2.0% 0.4% 0.5%

Joiner 0.0% 0.1% 0.4%
Traits Class 14.1% 8.7% 7.1%

Type Metafunction 0.0% 1.6% 15.6%
Integral Metafunction 0.0% 0.1% 0.7%

Constant Metafunction 0.0% 0.0% 0.5%
Metafunction Class 0.0% 0.0% 1.3%

Functor 16.8% 32.5% 4.5%
Function Class 7.4% 0.3% 3.0%

Stateless 64.4% 54.0% 52.3%
Record 7.4% 1.6% 2.5%

Environment 14.8% 4.3% 2.5%
Static Outline 0.0% 0.0% 0.1%

Mixin 0.0% 2.3% 0.8%
Enabler 0.0% 0.0% 0.1%

Partial Template 0.0% 1.5% 1.6%

The most outstanding result from this study is the large
percentage of stateless classes found in C++ generic libraries.
Here, the percentage of classes is 64%, 54%, and 52% for the
Standard C++ Library, CGAL, and Boost, respectively. In
contrast Java (object-oriented) products contain 6-15%
stateless classes [10]. This is easily attributed to the large
number of metafunctions, traits classes, and partial templates
found in these libraries. Only the Boost C++ Libraries seem
to contain significant numbers of metafunctions.

Functors also contribute to the high stateless counts. We
find that 80%, 85%, and 71% of all functors are stateless
between the Standard Library, CGAL and Boost,
respectively. Interestingly, the remaining 15-30% are
stateful, with 6 and 10% of functors being identified as
environments. This indicates that parameterization over
stateful or referential functors is a common practice.

We note that the number of enabler instances is
vanishingly small (0 in the Standard Library, 1 in CGAL and
25 in Boost). This is generally attributable to the fact that a
single enabler/disabler can simply be reused throughout the
library. Because Boost libraries are relatively independent of
each other, it is not uncommon for idioms to be duplicated.

3 See http://gcc.gnu.org/ for details.
4 See http://www.cgal.org/ for details.

We also searched the acquired data for uses of the
enable_if and disable_if to constrain function
templates and found that their use is practically non-existent.
In Boost, only 182 of 34,684 functions, methods, or
constructors referenced those data types. We can attribute
this lack of explicit constraints to a) the detriment to
readability caused by the use of enablers on functions
templates, b) the use of concept checking libraries within
template definitions [20, 27]. In fact, feature only seems to
be used when instantiation with the wrong type can lead to
subtle type-based runtime errors.

Additionally, we conducted an informal survey of tag
classes and their usage. In this investigation, we discovered
that designators are frequently used to represent disjoint or
boolean properties of types, taxonomies are used to represent
categorized properties, and joiners are used to merge
multiple, orthogonal categories (taxonomies) into a single
property. There are few categories represented in these
libraries. We suspect that the number of joiners is actually
much higher than reported due to incomplete information
during parsing. We further observed that only 11% of tag
classes are used as function parameters. From this, we infer
that tag dispatch is not a commonly used technique.

VII. DISCUSSION

We begin the discussion by observing that new tools and
techniques are needed to support the comprehension,
construction, and maintenance of C++ generic libraries. The
benefit of research and development in the areas of reverse
engineering, program comprehension, and software
maintenance have been of great benefit to practitioners in the
areas of other software development paradigm, especially
object-oriented programming.

The object-oriented paradigm is of particular interest
because it provides the “language” in which the surveyed
idioms are mostly written. By this we mean that most of the
programming idioms surveyed and identified are rooted in
the language of object-oriented programming: classes.
However, our survey indicates that the construction
techniques for generic libraries are definitely not object-
oriented in nature. Most of the classes used to support the
generic paradigm do not describe objects. Our study
indicates that the non-object-oriented components of the
libraries make up a vast majority of the libraries’
composition. A direct result of this “couching of one
language within another” is the misleading results that can be
produced by existing reverse engineering tools.

In this paper, we present a tool that is capable of
automatically identifying, with some margin of error, the
kinds of idioms being used in the construction of generic
libraries. The abstract labeling or stereotyping of elements is
often used to improve the ways in which developers interact
with source code [7]. While this technique might be used to
inform a developer of what a class might actually represent,
the tool cannot help determine the role of the idiom in the
design of the library. Clearly, more work is needed in the
area of design recovery for generic libraries. This is not
possible without first understanding how these programming
idioms relate to the design of such libraries. Many of these

idioms surveyed in this paper are closely associated with the
evolution of the C++0x programming language. One well-
developed and obvious example of this association is that of
functors to C++0x lambda functions.

Traits classes, metafunctions, tag dispatch, and template
constraints are closely related to concepts, an extensive set of
language features proposed C++0x [6, 11, 21]. Traits classes
and metafunctions (type traits) are very similar to the
abstractions that can be described by concept definitions, and
the tag class hierarchies (taxonomies and joiners) are used to
define properties and categories of types. The use of
enable_if can be deprecated through features for explicitly
constraining templates. However, despite the potential for
improvement in the readability and writeability of generic
libraries, concepts were removed from the C++0x proposal.
We can easily imagine, however, that an effective definition
of concepts for C++ will ameliorate many of the
complexities leaked through generic libraries, while creating
a number of interesting opportunities for tool builders.

VIII. CONCLUSIONS

We have presented a survey of common programming
idioms used in the construction of C++ generic libraries, and
implemented a tool that is capable of identifying instances of
these idioms in terms of micropattern instances. The
techniques and tools discussed in this paper are intended to
support a programmer’s comprehension of C++ generic
libraries. Based on evaluation, the approach can correctly
identify the elements of design and implementation used in
the construction of these libraries—elements that, despite
being rooted in the syntax of an object-oriented construct
(i.e., classes), are decidedly atypical of object-oriented
construction. We feel that this is a good first step toward
addressing comprehension problems in this domain.

REFERENCES
[1] D. Abrahams and A. Gurtovoy, C++ template metaprogramming:

Concepts, tools, and techniques from boost and beyond: Addison
Wesley, 2005.

[2] A. Alexandrescu, Modern c++ design: Generic programming and
design patterns applied: Addison Wesley, 2001.

[3] M. Austern, Generic programming and the stl: Using and extending the
c++ standard template library, 7th ed. Boston, Massachusetts:
Addison-Welsey Longman, 1998.

[4] M. L. Collard, H. Kagdi, and J. I. Maletic, "An xml-based lightweight
c++ fact extractor," in 11th IEEE International Workshop on Program
Comprehension (IWPC'03), Portland, Oregon, May 10-11, 2003, pp.
134-143.

[5] J. Coplien, "Curiously recurring template patterns," C++ Report, vol. 7,
pp. 24-27, Feb, 1995.

[6] G. Dos Reis and B. Stroustrup, "Specifying c++ concepts," in 33rd
Symposium on Principles of Programming Languages (POPL'06),
Charleston, SC, Jan 11-13, 2006, pp. 295-308.

[7] N. Dragan, M. L. Collard, and J. I. Maletic, "Reverse engineering
method stereotypes," in 22nd IEEE International Conference on
Software Maintenance (ICSM'06), Philadelphia, Pennsylvania, Sep
25-27, 2006, pp. 24-34.

[8] A. Duret-Lutz, T. Géraud, and A. Demaille, "Design patterns for
generic programming in c++," in 6th USENIX Conference on Object-
Oriented Technologies and Systems (COOTS'01) San Antonio,
Texas, 2001, p. 14.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns
elements of reusable object-oriented software: Addison Wesley, 1995.

[10] J. Y. Gil and I. Maman, "Micro patterns in java code," in 20th
Conference on Object-Oriented Programming Systems, Langauges,
and Applications (OOPSLA'05), San Diego, California, Oct 16-20,
2005, pp. 97-116.

[11] D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G. Dos Reis, and A.
Lumsdaine, "Concepts: Linguistic support for generic programming
in c++," in ACM SIGPLAN Conference on Object-Oriented
Programming, Systemls, Languages, and Applications (OOPSLA'06),
Portland, Oregon, Oct 22-26, 2006, pp. 291-310.

[12] D. Gregor and S. Schupp, "Stllint: Lifting static checking from
languages to libraries," Software: Practice and Experience, vol. 36,
pp. 225-254, Mar, 2005.

[13] R. Holeman, "Identifying programming idioms in c++ generic
libraries," in Department of Computer Science. vol. MS: Kent State
University, 2009, p. 72.

[14] J. Järvi, A. Lumsdaine, J. Siek, and J. Willcock, "An analysis of
constrained polymorphism for generic programming," in Workshop
on Multiparadigm Programming with Object-Oriented Languages,
Anaheim, California, Oct 26, 2003, pp. 87-107.

[15] J. Järvi, J. Willcock, and A. Lumsdaine, "Concept-controlled
polymorphism," in 2nd International Conference on Generative
Programming and Component Engineering (GPCE'03), Erfurt,
Germany, Sep 22-25, 2003, pp. 228-244.

[16] D. Musser and A. Stepanov, "A library of generic algorithms in ada,"
in SIGAda International Conference on Ada, Boston, Massachusetts,
Dec, 1987, pp. 216-225.

[17] D. Musser and A. Stepanov, "Algorithm-oriented generic libraries,"
Software: Practice and Experience, vol. 24, pp. 623-642, Jul, 1994.

[18] Z. Porkoláb, J. Mihalicza, and Á. Sipos, "Debugging c++ template
metaprograms," in 5th International Conference on Generative
Programming and Component Engineering (GPCE'06), Portland,
Oregon, Oct 22-26, 2006, pp. 255-264.

[19] J. Siek, L.-Q. Lee, and A. Lumsdaine, The boost graph library: User
guide and reference manual: Addison-Wesley, 2001.

[20] J. Siek and A. Lumsdaine, "Concept checking: Binding parametric
polymorphism in c++," in 1st Workshop on C++ Template
Programming, Erfurt, Germany, Oct 10, 2000.

[21] J. Siek and A. Lumsdaine, "Essential language support for generic
programming," in ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI'05), Chicago, Illinois,
Jun 11-15, 2005, pp. 73-84.

[22] Y. Smaragdakis and D. Batory, "Mixin-based programming in c++," in
Generative and component-based software engineering. vol. 2177:
Springer Berlin/Heidelberg, 2001, pp. 164-178.

[23] A. Sutton, R. Holeman, and J. I. Maletic, "Abstracting the template
instantiation relation in c++," in 25th International Conference on
Software Maintenance, Edmonton, Canada, Sep 20-26, 2009, pp. 559-
562.

[24] A. Sutton and J. I. Maletic, "Automatically identifying c++0x concepts
in function templates," in 24th International Conference on Software
Maintenance (ICSM'04), Beijing, China, Sep 28-Oct 4, 2008, pp. 57-
66.

[25] M. VanHilst and D. Notkin, "Using c++ templates to implemnt role-
based designs," in Object technologies for advanced software. vol.
1049: Springer Berlin/Heidelberg, 1996, pp. 22-37.

[26] M. Zalewski and S. Schupp, "Change impact analysis for generic
libraries," in 22nd Conference on Software Maintenance (ICSM'06),
Philadelphia, PA, Sep 24-27, 2006, pp. 35-44.

[27] I. Zólyomi and Z. Porkoláb, "Towards a general template introspection
library," in 3rd International Conference on Generative Programming
and Component Engineering (GPCE'04), Vancouver, Canada, Oct 24-
28, 2004, pp. 266-282.

